Examen du 9 mai 2017 - Corrigé

Exercice 1

1. On a pour $k \in \mathbb{N}$, $\mathbf{P}(N > k) = \mathbf{P}(X_0 = \cdots = X_k = Y_0 = \cdots = Y_k = 0) = (1/2)^{2(k+1)}$ par indépendance, formule valable aussi pour k = -1. On a donc

$$\mathbf{P}(N=k) = \mathbf{P}(N > k - 1) - \mathbf{P}(N > k) = (1/4)^k - (1/4)^{k+1} = (3/4)(1/4)^k$$

ce qui montre que N suit une loi gémétrique de paramètre 3/4.

- 2. On a $\{N=n, X_N=1, Y_N=0\}=\{X_0=\cdots=X_{n-1}=0, X_n=1, Y_0=\cdots=Y_n=0\}$ donc l'événement a probabilité $2^{-2(n+1)}$.
- 3. On a donc $\mathbf{P}(X_N=1,Y_N=0)=\sum_{n=0}^{\infty}\mathbf{P}(N=n,X_N=1,Y_N=0)=\sum_{n=0}^{\infty}(\frac{1}{4})^{n+1}=1/3.$
- 4. On a $\mathbf{P}(X_N=0,Y_N=0)=0$ et $\mathbf{P}(X_N=0,Y_N=1)=\mathbf{P}(X_N=1,Y_N=1)=1/3$ en raisonnant comme prédécemment.
- 5. On lance deux fois la pièce. Si le résultat pile/pile, on choisit 1; si c'est pile/face, on choisit 2; si c'est face/pile, on choisit 3; si c'est face/face, on recommence avec deux nouveaux lancers. On obtient ainsi les événements de probabibilté 1/3 considérés à la question précédente.

Exercice 2

- 1. On a par indépendance $\mathbf{E}|Y_n| = \mathbf{E}|X_nX_{n+1}| = \mathbf{E}|X_n| \times \mathbf{E}|X_{n+1}| < +\infty$.
- 2. Les variables aléatoires $(Y_{2n+1})_{n\geqslant 0}$ sont indépendantes (par groupement par paquets) de même loi et intégrables. Le résultat demandé découle de la loi forte des grands nombres. De même, les v.a. $(Y_{2n+1})_{n\geqslant 1}$ sont i.i.d.
- 3. Soit $\varepsilon > 0$. On a

$$\sum_{n=1}^{\infty} \mathbf{P}(|Y_n|/n \geqslant \varepsilon) = \sum_{n=1}^{\infty} \mathbf{P}(|Y_1/\varepsilon| \geqslant n) \leqslant \int_0^{\infty} \mathbf{P}(|Y_1/\varepsilon| \geqslant t) \, \mathrm{d}t = \mathbf{E}|Y_1/\varepsilon| < \infty$$

donc la série $\sum_{n=1}^{\infty} \mathbf{P}(|Y_n|/n \ge \varepsilon)$ converge. Par le lemme de Borel-Cantelli, on a p.s. $|Y_n|/n < \varepsilon$ pour n assez grand. C'est vrai simultanément p.s. pour tout $\varepsilon > 0$ rationnel, ce qui implique que (Y_n/n) converge p.s. vers 0.

4. Notons $Z_n = (Y_1 + \cdots + Y_n)/n$. La sous-suite (Z_{2n}) converge p.s. vers $\mathbf{E}Y_1$ comme conséquence de la question 2 (ajouter les 2 équations). Puisque $Z_{2n+1} = \frac{2n}{2n+1}Z_{2n} + \frac{Y_{2n+1}}{2n+1}$, la question 3 implique alors que la sous-suite (Z_{2n+1}) converge p.s. vers $\mathbf{E}Y_1$. On donc donc p.s. convergence à la fois de (Z_{2n}) et (Z_{2n+1}) , donc de (Z_n) , vers $\mathbf{E}Y_1$.

Exercice 3

1. Soit $0 < \varepsilon < 1$. Tout d'abord pour tout n, il existe K_n tel que $\mathbf{P}(|X_n| \geqslant K_n) \leqslant \varepsilon$ puisque $\bigcap_{K \in \mathbf{N}} \{|X_n| \geqslant K\} = \emptyset$. Notons X la limite de X_n , et soit x, y des points de continuité de F_X vérifiant $F_X(x) < \varepsilon/2$ et $F_X(y) > 1 - \varepsilon/2$. La caractérisation de la converge en loi par les fonctions de répartition implique que $\lim F_{X_n}(x) = F_X(x)$ et $\lim F_{X_n}(y) = F_X(y)$. Ainsi pour n assez grand (disons $n > n_0$), on a $F_{X_n}(x) < \varepsilon/2$ et $F_{X_n} > 1 - \varepsilon/2$, donc

$$\mathbf{P}(X_n \notin [x, y]) = \mathbf{P}(X_n < x) + \mathbf{P}(X_n > y) \leqslant \mathbf{P}(X_n \leqslant x) + 1 - \mathbf{P}(X_n \leqslant x) \leqslant \varepsilon.$$

On peut finalement choisir $K = \max(-x, y, K_1, \dots, K_{n_0})$.

2. Soit $\varepsilon > 0$, et K donné par la question précédente. On a

$$\mathbf{P}(|X_nY_n|\geqslant \varepsilon)\leqslant \mathbf{P}(|X_n|\geqslant K \text{ ou } |Y_n|\geqslant \varepsilon/K)\leqslant \mathbf{P}(|X_n|\geqslant K)+\mathbf{P}(|Y_n|\geqslant \varepsilon/K)\leqslant \varepsilon+\mathbf{P}(|Y_n|\geqslant \varepsilon/K)$$

et cette quantité est majorée par 2ε pour n assez grand puisque (Y_n) tend en probabilité vers 0.

Exercice 4

1. Le plus simple est de vérifier l'égalité des fonctions caractéristiques : pour tout $t \in \mathbf{R}$

$$\Phi_{(X+Y)/\sqrt{2}}(t) = \Phi_{X+Y}(t/\sqrt{2}) = \Phi_X(t/\sqrt{2}) \\ \Phi_Y(t/\sqrt{2}) = (\exp(-\sigma^2 t^2/4))^2 = \Phi_X(t)$$

- 2. Découle du fait que X et $\frac{X+Y}{\sqrt{2}}$ ont même espérance, et de la linéarité de l'espérance.
- 3. Par récurrence sur n.
- 4. Soit (X_n) des copies indépendantes de X, et $Y_n = (X_1 + \cdots + X_n)/\sqrt{n}$. Par le théorème central limite, la suite (Y_n) converge en loi vers une v.a. de loi $N(0, \sigma^2)$. La sous-suite (Y_{2^n}) converge aussi en loi vers la même limite; comme cette sous-suite est constante en loi de même loi que X, il suit que $X \sim N(0, \sigma^2)$.

Exercice 5

1.
$$\int_0^{\theta} f_{\theta} = \frac{1}{\sqrt{\theta}} \int_0^{\theta} \frac{1}{2\sqrt{x}} dx = \frac{\sqrt{\theta}}{\sqrt{\theta}} = 1$$

2. (a) Par linéarite de l'espérance, $\mathbf{E}\tilde{\theta}_n = 3\mathbf{E}X_1 = 3\int_0^\theta x f_\theta(x) \,\mathrm{d}x = \frac{3}{2\sqrt{\theta}}\int_0^\theta \sqrt{x} \,\mathrm{d}x = \theta$. De plus, par indépendance de (X_n) ,

$$\mathbf{Var}\tilde{\theta_n} = \frac{9}{n^2} \left[\mathbf{Var}(X_1) + \dots + \mathbf{Var}(X_n) \right] = \frac{9}{n} \mathbf{Var} X_1.$$

On calcule

$$\mathbf{E}X_1^2 = \int_0^\theta x^2 f_\theta(x) \, dx = \frac{1}{2\sqrt{\theta}} \int_0^\theta x^{3/2} \, dx = \theta^2 / 5.$$

On a donc $\mathbf{Var} X_1 = \mathbf{E}(X_1^2) - (\mathbf{E} X_1)^2 = \theta^2/5 - \theta^2/9 = 4\theta^2/45$. Finalement $\mathbf{Var} \tilde{\theta}_n = \frac{4\theta^2}{5n}$.

- (b) On applique le théorème central limite à la suite de v.a. (X_n) , i.i.d. L^2 de moyenne $\theta/3$ et de variance $4\theta^2/45$. On a donc la convergence en loi de $(X_1+\cdots+X_n-n\theta/3)/\sqrt{n}$ vers une v.a. de loi $N(0,4\theta^2/45)$. De manière équivalente, $\sqrt{n}(\tilde{\theta}_n-\theta)$ converge en loi vers une v.a. de loi $N(0,4\theta^2/5)$.
- 3. (a) Pour $t \in (0, \theta)$ $\mathbf{P}(\hat{\theta}_n \leqslant t) = \mathbf{P}(\forall i \in \{1, \dots, n\}, X_i \leqslant t) = \mathbf{P}(X_1 \leqslant t)^n = (\sqrt{t/\theta})^n$.
 - (b) On a p.s. $X_i < \theta$ pour tout i, donc $\hat{\theta}_n < \theta$. On a donc $\mathbf{E}\hat{\theta}_n < \theta$: $\hat{\theta}$ est biaisé.
 - (c) Pour tout $\varepsilon > 0$, on a $\mathbf{P}(|\hat{\theta}_n \theta| \ge \varepsilon) = \mathbf{P}(\hat{\theta}_n \le \theta \varepsilon) = (1 \varepsilon/\theta)^{n/2} \to 0$ donc $\hat{\theta}$ est consistant.
 - (d) Montrons que $\hat{\theta}$ a vitesse n: effet pour x > 0

$$\mathbf{P}(n(\hat{\theta}_n - \theta) < -x) = \mathbf{P}(\hat{\theta}_n < \theta - \frac{x}{n}) = \left(1 - \frac{x}{n\theta}\right)^{n/2}$$

qui tend vers $\exp(-x/2\theta)$ quand $n \to \infty$. On a donc

$$\lim_{n \to \infty} \mathbf{P}(n(\hat{\theta}_n - \theta) < x) = \begin{cases} \exp(x/2\theta) & \text{si } x < 0 \\ 1 & \text{sinon.} \end{cases}$$

Ainsi $n(\hat{\theta}_n - \theta)$ converge en loi vers une v.a. non constante, d'où le résultat.

(e) L'estimateur $\hat{\theta}$ est préférable même s'il est biaisé car il a une vitesse supérieure (n au lieu de \sqrt{n}).