Examen du 28 mai 2018 Corrigé

Exercice 1

- 1. Oui, c'est la loi de la somme de 2 copies indépendantes de X_1 .
- 2. La loi de Y_n est $\frac{1}{4}\delta_0 + \frac{1}{2}\delta_1 + \frac{1}{4}\delta_2$. On a $\mathbf{E}[Y_n] = 1$ et $\mathbf{Var}(Y_n) = 2\mathbf{Var}(X_n) = \frac{1}{2}$.
- 3. Non. Par exemple, on a $0 = \mathbf{P}(Y_1 = 0, Y_2 = 2) \neq \mathbf{P}(Y_1 = 0)\mathbf{P}(Y_2 = 2) = \frac{1}{16}$.
- 4. Oui, comme conséquence du lemme de groupement par paquets.
- 5. On a $Y_1 + \dots + Y_n = 2(X_1 + \dots + X_n) + X_{n+1} X_1$. Par loi forte des grands nombres, $\left(\frac{X_1 + \dots + X_n}{n}\right)_{n \geqslant 1}$ converge p.s. vers $\mathbf{E}[X_1] = \frac{1}{2}$. Comme $\left|\frac{X_{n+1} X_1}{n}\right| \leqslant \frac{1}{n}$, on obtient $\lim \frac{Y_1 + \dots + Y_n}{n} = 1$ p.s.

Exercice 2

1. Par la formule du transfert,

$$\mathbf{E}|X| = \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} |x| \exp(-x^2/2) \, \mathrm{d}x = \frac{2}{\sqrt{2\pi}} \int_{\mathbf{R}} |x| \exp(-x^2/2) \, \mathrm{d}x = \sqrt{\frac{2}{\pi}} \left[-\exp(-x^2/2) \right]_0^{\infty} = \sqrt{\frac{2}{\pi}}.$$

2. Comme X et Y sont indépendantes, $X-Y \stackrel{\text{loi}}{\sim} N(0,2)$ et donc $\frac{X-Y}{\sqrt{2}} \stackrel{\text{loi}}{\sim} N(0,2)$. On a donc

$$\mathbf{E}[\max(X,Y)] = \mathbf{E}\frac{X + Y + |X - Y|}{2} = \frac{1}{\sqrt{2}}\mathbf{E}\frac{|X - Y|}{\sqrt{2}} = \frac{1}{\sqrt{\pi}}$$

Exercice 3

- 1. On a $\mathbf{E}[X] = 3p$ et $\mathbf{E}[X^2] = 5p$, d'où $\mathbf{Var}X = 5p 9p^2$.
- 2. On sait par le cours que le probabilité d'extinction est la plus petite solution dans [0, 1] de l'équation

$$G(s) = s \iff (1 - 2p) + ps + ps^2 = s \iff s = 1 \text{ ou } s = \frac{1 - 2p}{p}.$$

Comme $\frac{1-2p}{p} \leqslant 1 \iff p \geqslant 1/3$, on en déduit que la probabilité d'extinction vaut 1 si $p \leqslant 1/3$ (résultat qui découle aussi du fait que $\mathbf{E}X \leqslant 1$) et vaut $\frac{1-2p}{p}$ si 1/3 .

3. On a (cf. cours) $\mathbf{E}[Z_n] = F'_n(1)$ où $F_n = G \circ \cdots \circ G$ (composée n fois). En dérivant la relation $F_{n+1} = G \circ F_n$, on obtient $F'_{n+1}(1) = F'_n(1)G'(1)$, donc par récurrence $\mathbf{E}[Z_n] = \mathbf{E}[X]^n$. Par l'inégalité de Markov, on a donc

$$\mathbf{P}(Z_n \geqslant a^n) \leqslant \frac{\mathbf{E}[Z_n]}{a^n} = \left(\frac{\mathbf{E}[x]}{a}\right)^n.$$

4. Soit $a > \mathbf{E}[X]$. Par la question précdente, $\mathbf{P}(Z_n^{1/n} \leqslant a) \leqslant r^n$ pour un r < 1. Comme $\sum r^n$ converge, le lemme de Borel-Cantelli implique que lim sup $Z_n^{1/n} \leqslant a$ p.s. Enfin on applique ce résultat pour $a = \mathbf{E}[X] + 1/k$ avec $k \in \mathbf{N}$ et on utilise le fait qu'une intersection dénombrable d'événements de probabilité 1 a probabilité 1.

Exercice 4

1. Soit $0 < \varepsilon < 1$. Tout d'abord pour tout n, il existe K_n tel que $\mathbf{P}(|X_n| \geqslant K_n) \leqslant \varepsilon$ puisque $\bigcap_{K \in \mathbf{N}} \{|X_n| \geqslant K\} = \emptyset$. Notons X la limite de X_n , et soit x,y des points de continuité de F_X vérifiant $F_X(x) < \varepsilon/2$ et $F_X(y) > 1 - \varepsilon/2$. La caractérisation de la converge en loi par les fonctions de répartition implique que $\lim F_{X_n}(x) = F_X(x)$ et $\lim F_{X_n}(y) = F_X(y)$. Ainsi pour n assez grand (disons $n > n_0$), on a $F_{X_n}(x) < \varepsilon/2$ et $F_{X_n} > 1 - \varepsilon/2$, donc

$$\mathbf{P}(X_n \notin [x, y]) = \mathbf{P}(X_n < x) + \mathbf{P}(X_n > y) \leqslant \mathbf{P}(X_n \leqslant x) + 1 - \mathbf{P}(X_n \leqslant x) \leqslant \varepsilon.$$

On peut finalement choisir $K = \max(-x, y, K_1, \dots, K_{n_0})$.

2. Soit $\varepsilon > 0$, et K donné par la question précédente. On a

$$\mathbf{P}(|X_nY_n|\geqslant\varepsilon)\leqslant\mathbf{P}(|X_n|\geqslant K\text{ ou }|Y_n|\geqslant\varepsilon/K)\leqslant\mathbf{P}(|X_n|\geqslant K)+\mathbf{P}(|Y_n|\geqslant\varepsilon/K)\leqslant\varepsilon+\mathbf{P}(|Y_n|\geqslant\varepsilon/K)$$

et cette quantité est majorée par 2ε pour n assez grand puisque (Y_n) tend en probabilité vers 0.

Exercice 5

- 1. $\Phi(t) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} e^{itk} = e^{-\lambda} \exp(\lambda e^{it}) = e^{\lambda(e^{it-1})}$
- 2. On a $\Phi_{X+Y}(t) = \Phi_X(t)\Phi_Y(t) = e^{\lambda(e^{it}-1)}e^{\mu(e^{it}-1)} = e^{(\lambda+\mu)(e^{it}-1)}$ et on conclut car la fonction caractéristique caractérise la loi.
- 3. On introduit une v.a. Y indépendante de X_1 et de loi $P(\lambda_2 \lambda_1)$. On sait que $X_1 + Y$ a même loi que X_2 , et donc (puisque Y est poisitive)

$$\mathbf{P}(X_1 \geqslant n) \leqslant \mathbf{P}(X_1 + Y \geqslant n) = \mathbf{P}(X_2 \geqslant n).$$