Examen du 28 mai 2018

Durée: 2 heures.

Tous les documents sont interdits.

Rappels. Une variable aléatoire X suit une loi gaussienne $N(m, \sigma^2)$ si la densité de X est la fonction

$$x \mapsto \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right).$$

Exercice 1 (5 points)

Soit $(X_n)_{n\geqslant 1}$ une suite de v.a. i.i.d. vérifiant $\mathbf{P}(X_n=1)=\mathbf{P}(X_n=0)=1/2$. Pour $n\geqslant 1$, on pose

$$Y_n = X_n + X_{n+1}.$$

- 1. (1 point) Les v.a. $(Y_n)_{n\geqslant 1}$ sont-elles identiquement distribuées? Justifier.
- 2. (1 point) Pour $n \ge 1$, déterminer la loi, l'espérance et la variance de Y_n .
- 3. (1 point) Les v.a. $(Y_n)_{n\geqslant 1}$ sont-elles indépendantes? Justifier.
- 4. (1 point) Les v.a. $(Y_{2n})_{n\geqslant 1}$ sont-elles indépendantes? Justifier.
- 5. (1 point) Montrer que la suite $\left(\frac{Y_1+\cdots+Y_n}{n}\right)_{n\geqslant 1}$ converge presque sûrement vers une v.a. à préciser.

Exercice 2 (4 points)

Soient X et Y deux v.a. indépendantes de loi N(0,1).

- 1. (2 points) Calculer $\mathbf{E}[|X|]$.
- 2. (2 points) Calculer $\mathbf{E}[\max(X,Y)]$.

Indication : on pourra utiliser la relation $\max(a,b) = \frac{a+b+|a-b|}{2}$.

Exercice 3 (5 points)

Soit $p \in [0, \frac{1}{2}]$ et X une v.a. à valeurs dans $\{0, 1, 2\}$ telle que $\mathbf{P}(X = 1) = \mathbf{P}(X = 2) = p$. On note Z_n le nombre d'individus à la génération n d'un processus de branchement où on suppose $Z_0 = 1$ et $Z_1 \stackrel{\text{loi}}{\sim} X$.

- 1. (1 point) Calculer $\mathbf{E}[X]$ et Var(X).
- 2. (1 point) Quelle est la probabilité d'extinction du processus de branchement?
- 3. (1 point) Montrer que pour tout réel $a > \mathbf{E}[X]$, il existe $r \in [0,1[$ tel que

$$\mathbf{P}(Z_n \geqslant a^n) \leqslant r^n$$
.

4. (2 points) En déduire que presque sûrement

$$\limsup_{n \to \infty} Z_n^{1/n} \leqslant \mathbf{E}[X].$$

Exercice 4 (4 points)

- 1. (2 points) Soit (X_n) une suite de variables aléatoires qui converge en loi. Montrer que cette suite est tendue, c'est-à-dire que pour tout $\varepsilon > 0$, il existe K > 0 tel que pour tout n, $\mathbf{P}(|X_n| \ge K) \le \varepsilon$.
- 2. (2 points) Montrer que si (X_n) est une suite tendue de variables aléatoires et si (Y_n) tend vers 0 en probabilité, alors (X_nY_n) tend vers 0 en probabilité.

Exercice 5 (4 points)

- 1. (1 point) Calculer la fonction caractéristique d'une v.a. de loi $P(\lambda)$ (la loi de Poisson de paramètre $\lambda > 0$).
- 2. (1 point) En déduire une preuve du fait suivant : si X et Y sont des v.a. indépendantes, avec $X \sim P(\lambda)$ et $Y \sim P(\mu)$, alors $X + Y \sim P(\lambda + \mu)$.
- 3. (2 points) Soit X_1 une v.a. de loi $P(\lambda_1)$ et X_2 une v.a. de loi $P(\lambda_2)$. On suppose $\lambda_2 \geqslant \lambda_1$. En utilisant le résultat de la question 2, montrer que pour tout $n \in \mathbf{N}$, on a

$$\mathbf{P}(X_1 \geqslant n) \leqslant \mathbf{P}(X_2 \geqslant n).$$