Examen du 26 mars 2019

Durée : 2 heures. Correction

Exercice 1 (8+1 points)

Soit $n \in \mathbb{N}^*$. On dit qu'une v.a. X suit la loi Gamma(n) si elle a pour densité

$$x \mapsto \frac{x^{n-1}}{(n-1)!} \exp(-x) \mathbf{1}_{[0,+\infty[}(x).$$

- 1. Soit X une v.a. de loi Gamma(1). Quelle autre nom porte la loi de X? Calculer $\mathbf{E}[X]$ et $\mathbf{Var}(X)$.
 - (1 point) X est de loi Exponentielle de paramètre 1. $\mathbf{E}[X] = \int_0^\infty x e^{-x} dx = [x(-e^{-x})]_0^\infty + \int_0^\infty e^{-x} dx = 1$. $\mathbf{E}[X^2] = \int_0^\infty x^2 e^{-x} dx = [x^2(-e^{-x})]_0^\infty + \int_0^\infty 2x e^{-x} dx = 2$, donc $\mathbf{Var}(X) = 2 1^2 = 1$.
- 2. Soit (X_n) une suite de v.a. i.i.d. de loi Gamma(1). Pour $n \ge 1$, on pose $S_n = X_1 + \cdots + X_n$.
 - (a) Calculer l'espérance et la variance de S_n .

(1 point) $\mathbf{E}[S_n] = \sum_{i=1}^n \mathbf{E}[X_i] = n\mathbf{E}[X_1] = n$. Comme les variables sont i.i.d., $\mathbf{Var}(S_n) = n\mathbf{Var}(X_1) = n$.

(b) Est-ce que la suite (S_n/n) converge en probabilité?

(1 point) Oui : X_1 est intégrable donc d'après la loi faible des grands nombres, $\frac{S_n}{n} \xrightarrow{\mathbb{P}}_n \mathbf{E}[X_1] = 1$.

(c) Montrer que S_n suit la loi Gamma(n).

(1,5 points) On montre le résultat par récurrence sur n. Pour n=1 c'est vrai par définition. Fixons maintenant $n \in \mathbb{N}^*$ et supposons que S_n suit la loi $\operatorname{Gamma}(n)$. On va montrer que S_{n+1} est de loi $\operatorname{Gamma}(n+1)$ en utilisant la méthode de la fonction muette. S_n et X_{n+1} sont indépendantes donc on peut écrire, pour toute fonction $f: \mathbb{R} \to \mathbb{R}_+$ mesurable,

$$\begin{split} \mathbf{E}[f(S_{n+1})] &= \mathbf{E}[f(S_n + X_{n+1})] = \frac{1}{(n-1)!} \int_{\mathbb{R}^2_+} f(s+x) s^{n-1} e^{-s} e^{-x} ds dx \\ &= \frac{1}{(n-1)!} \int_0^\infty s^{n-1} \left(\int_0^\infty f(s+x) e^{-(s+x)} dx \right) ds = \frac{1}{(n-1)!} \int_0^\infty s^{n-1} \left(\int_s^\infty f(y) e^{-y} dy \right) ds \\ &= \frac{1}{(n-1)!} \int_0^\infty \int_0^\infty s^{n-1} f(y) e^{-y} \mathbf{1}_{s \leqslant y} dy ds = \frac{1}{(n-1)!} \int_0^\infty f(y) e^{-y} \left(\int_0^y s^{n-1} ds \right) dy \\ &= \frac{1}{n!} \int_0^\infty f(y) y^n e^{-y} dy. \end{split}$$

 S_{n+1} est donc bien de loi Gamma(n+1), ce qui conclut la preuve.

- 3. Soit T une v.a. de loi Gamma(n) pour $n \in \mathbb{N}^*$.
 - (a) Calculer la densité (notée h) de la variable aléatoire $Z = \log(T/n)$.

(1,5 points) On utilise encore la méthode de la fonction muette. Soit $f: \mathbb{R} \to \mathbb{R}_+$ mesurable.

$$\mathbf{E}[f(Z)] = \mathbf{E}[f(\log(T/n))] = \frac{1}{(n-1)!} \int_0^\infty f(\log(x/n)) x^{n-1} e^{-x} dx$$

$$y = \log(x/n) \frac{1}{(n-1)!} \int_{-\infty}^\infty f(y) (ne^y)^{n-1} e^{-ne^y} ne^y dy$$

On a donc pour $x \in \mathbb{R}$, $h(x) = \frac{n^n}{(n-1)!}e^{-n(e^x - x)}$.

- (b) Montrer que pour tout x ≥ 0, on a h(x) ≤ h(-x).
 Indication. On pourra utiliser l'inégalité x ≤ e^x-e^{-x}/2 pour x ≥ 0 (bonus si vous la démontrez)
 (1 point) Soit x ≥ 0. On a h(x) > 0 donc on peut calculer h(-x)/h(x) = e^{n(e^x-e^{-x}-2x)}. D'après l'indication, le terme dans l'exponentielle est positif, donc h(-x)/h(x) ≥ 1.
 Montrons l'indication (1 point). Notons f(x) = e^x e^{-x} 2x. f'(x) = e^x + e^{-x} 2, f''(x) = e^x e^{-x}. f'' ≥ 0 pour x ≥ 0, donc f' est croissante sur R₊, donc pour x ≥ 0 f'(x) ≥ f'(0) = 0.
 Donc f est croissante sur R₊ et pour x ≥ 0 f(x) ≥ f(0) = 0.
- (c) (*) En déduire que $\mathbf{P}(T \geqslant n) \leqslant 1/2$. (1 point) $\mathbf{P}(T \geqslant n) = \mathbf{P}(Z \geqslant 0) = \int_0^\infty h(x) dx \leqslant \int_0^\infty h(-x) dx$ d'après la question précédente. Or $\int_0^\infty h(-x) dx = \int_{-\infty}^0 h(x) dx = \mathbf{P}(Z < 0) = 1 - \mathbf{P}(Z \geqslant 0)$. Donc $\mathbf{P}(T \geqslant n) \leqslant 1 - \mathbf{P}(T \geqslant n)$ et par conséquent $\mathbf{P}(T \geqslant n) \leqslant 1/2$.

Exercice 2 (7 points)

Soit X une v.a. à valeurs dans \mathbb{N} . On rappelle que sa fonction génératrice est $G(s) = \sum_{k=0}^{\infty} \mathbf{P}(X = k)s^k$ pour $s \in [0, 1]$.

1. On suppose que X est bornée. Exprimer $\mathbf{E}[X]$ en fonction de G et montrer que

$$\mathbf{Var}(X) = G''(1) + G'(1)(1 - G'(1)).$$

- (1,5 points) Comme X est bornée, il existe $N \in \mathbb{N}^*$ tel que $\mathbf{P}(X=k)=0$ pour tout $k \geqslant N$, donc G est un polynôme. $G'(1)=\sum_{k=0}^N k\mathbf{P}(X=k)=\mathbf{E}[X]$. $G''(1)=\sum_{k=1}^N k(k-1)\mathbf{P}(X=k)=\mathbf{E}[X^2]-\mathbf{E}[X]$, donc $\mathbf{Var}(X)=G''(1)+\mathbf{E}[X]-\mathbf{E}[X]^2=G''(1)+G'(1)(1-G'(1))$.
- 2. Soit $p \in [0, \frac{1}{2}]$ et X une v.a. dans $\{0, 1, 2\}$ telle que $\mathbf{P}(X = 1) = \mathbf{P}(X = 2) = p$. On note Z_n le nombre d'individus à la génération n d'un processus de branchement où on suppose $Z_0 = 1$ et $Z_1 \sim_{\text{loi}} X$.
 - (a) Calculer $\mathbf{E}[X]$ et $\mathbf{Var}(X)$. (1 point) $\mathbf{E}[X] = \mathbf{P}(X = 1) + 2\mathbf{P}(X = 2) = 3p$. $\mathbf{Var}(X) = 1^2\mathbf{P}(X = 1) + 2^2\mathbf{P}(X = 2) - (3p)^2 = 5p - 9p^2$.
 - (b) Quelle est la probabilité d'extinction du processus de branchement?
 - (1,5 points) La probabilité d'extinction est le plus petit point fixe de G dans [0,1]. Pour $s \in [0,1]$, $G(s) = 1 2p + ps + ps^2$. $G(s) = s \Leftrightarrow s^2 + (1-1/p)s + 1/p 2 = 0 \Leftrightarrow (s-1)(s+2-1/p) = 0$ (on peut utiliser le fait que 1 est racine de G pour factoriser). G a donc deux points fixes sur $\mathbf{R}: 1$ et 1/p-2. Comme $p \leq 1/2$, $1/p-2 \geq 0$. Reste donc à savoir dans quel cas $1/p-2 \leq 1$: c'est exactement quand $p \geq 1/3$. On a donc

$$\mathbf{P}(\text{extinction}) = \begin{cases} 1 & \text{si } p < 1/3 \\ 1/p - 2 & \text{si } p \geqslant 1/3. \end{cases}$$

(c) Montrer que pour tout réel $a > \mathbf{E}[X]$, il existe $r \in [0,1[$ tel que

$$\mathbf{P}(Z_n \geqslant a^n) \leqslant r^n$$
.

- (1,5 points) On sait (cf TD5) que $\mathbf{E}[Z_n] = (\mathbf{E}[X])^n$. L'inégalité de Markov implique donc pour tout a > 0 $\mathbf{P}(Z_n \ge a^n) \le (\mathbf{E}[X]/a)^n$. On peut donc poser $r = \mathbf{E}[X]/a$, et si $a > \mathbf{E}[X]$ alors $r \in [0,1[$.
- (d) En déduire que $(Z_n^{1/n})_{n\geqslant 1}$ est bornée p.s.
 - (1,5 points) Remarquons d'abord que $Z_n \geqslant 0$. On veut montrer que $\mathbf{P}(\left(Z_n^{1/n}\right)_{n\geqslant 1}$ est bornée) = 1. Fixons M>0 et pour $n\in\mathbb{N}^*$, considérons l'événement $A_n=\{Z_n^{1/n}\geqslant M\}$. Pour $M>\mathbf{E}[X]$, la question précédente implique que $\sum_n \mathbf{P}(A_n)<\infty$. D'après le premier lemme de Borel-Cantelli, on a donc $\mathbf{P}(\limsup_n A_n)=0$, c'est-à-dire (en passant au complémentaire) $\mathbf{P}(\exists n\in\mathbb{N}^*\ \forall k\geqslant n,\ Z_k^{1/k}< M)=1$. Posons $A=(\limsup_n A_n)^c$. Pour tout $\omega\in A$, on a donc l'existence de $n(\omega)$ tel que pour tout $k\geqslant n(\omega),\ Z_k(\omega)^{1/k}< M$. D'après un résultat classique sur les suites réelles, ceci implique que $(Z_n(\omega)^{1/n})_n$ est bornée (on peut prendre comme majorant $K(\omega)=\max(M,\max_{i=1,\dots,n(\omega)}(Z_i^{1/i}))$). Donc $A\subset\{(Z_n^{1/n})_{n\geqslant 1}\text{ est bornée}\}$, et comme $\mathbf{P}(A)=1$ on a aussi $\mathbf{P}((Z_n^{1/n})_{n\geqslant 1}\text{ est bornée})=1$.

Exercice 3 (6 points)

Soit $X_n, n \ge 1$ une suite de v.a. i.i.d. de loi exponentielle de paramètre 1. On rappelle que leur densité est $\mathbf{1}_{[0,+\infty[}(x)\exp(-x)$.

1. Montrer que pour tout $\varepsilon \geqslant 0$,

$$\mathbf{P}(X_n > (1+\varepsilon)\log n) = \frac{1}{n^{1+\varepsilon}}.$$

(1 point) On sait (ou on recalcule) que pour X une variable exponentielle de paramètre $\lambda > 0$ et $t \ge 0$, $\mathbf{P}(X \ge t) = e^{-\lambda t}$. On a donc $\mathbf{P}(X_n > (1+\varepsilon)\log n) = e^{-(1+\varepsilon)\log n} = n^{-(1+\varepsilon)}$.

2. En choisissant $\varepsilon > 0$, en déduire que p.s.,

$$\limsup_{n \to \infty} \frac{X_n}{\log n} \leqslant 1.$$

(2 points) Pour $\varepsilon > 0$, d'après la question précédente, on a $\sum_n \mathbf{P}(X_n > (1+\varepsilon)\log n) < \infty$, donc d'après le premier lemme de Borel-Cantelli, $\mathbf{P}(\limsup_n \{X_n > (1+\varepsilon)\log n\}) = 0$. En passant au complémentaire, on obtient $\mathbf{P}(\exists n \in \mathbb{N}^* \ \forall k \geqslant n, \ \frac{X_k}{\log k} \leqslant 1+\varepsilon) = 1$. Or pour tout $\omega \in \{\exists n \in \mathbb{N}^* \ \forall k \geqslant n, \ \frac{X_k}{\log k} \leqslant 1+\varepsilon\}$, $\limsup_n \frac{X_n}{\log n} \leqslant 1+\varepsilon$. Donc $\mathbf{P}(\limsup_n \frac{X_n}{\log n} \leqslant 1+\varepsilon) = 1$ pour tout $\varepsilon > 0$.

En particulier, en choisissant $\varepsilon=1/m$ avec $m\in\mathbb{N}^*$, on obtient $\mathbf{P}(\forall m\in\mathbb{N}^* \ \limsup_{n \ \log n} \frac{X_n}{\log n}\leqslant 1+1/m)=1$, comme probabilité d'une intersection dénombrable d'événements de proba 1. D'où $\mathbf{P}(\limsup_n \frac{X_n}{\log n}\leqslant 1)=1$.

3. En utilisant les questions précédentes, montrer que

$$\limsup_{n \to \infty} \frac{X_n}{\log n} = 1.$$

(1 point) D'après la question $1, \sum_n \mathbf{P}(X_n > \log n) = +\infty$. De plus, les événements $\{X_n > \log n\}$ sont indépendants car les X_n le sont, donc d'après le second lemme de Borel-Cantelli, $\mathbf{P}(\limsup_n \{X_n > \log n\}) = 1$. Or par définition pour $\omega \in \limsup_n \{X_n > \log n\}$, pour tout $n \in \mathbb{N}^*$ il existe $k \ge n$ tel que $X_k(\omega)/\log k > 1$, et donc $\limsup_n X_n/\log n \ge 1$. Donc $\mathbf{P}(\limsup_n X_n/\log n \ge 1) \ge \mathbf{P}(\limsup_n \{X_n > \log n\}) = 1$. Donc $\mathbf{P}(\limsup_n X_n/\log n = 1) = \mathbf{P}(\{\limsup_n X_n/\log n \ge 1\}) \cap \{\limsup_n X_n/\log n \le 1\}) = 1$ en utilisant le dernier résultat et la question 2.

4. On pose $Z_n = \frac{\max(X_1, \cdots, X_n)}{\log n}$ pour tout $n \geqslant 2$, montrer que

$$\liminf_{n \to \infty} Z_n \geqslant 1, \text{ p.s.}$$

(2 points) Soit $\varepsilon > 0$. Calculons $\mathbf{P}(Z_n \leqslant (1-\varepsilon)\log n) = \mathbf{P}(\forall i=1,\ldots,n,\ X_i \leqslant (1-\varepsilon)\log n) = (1-e^{-(1-\varepsilon)\log n})^n$ en utilisant le fait que les X_i sont i.i.d. Donc $\mathbf{P}(Z_n/\log n \leqslant 1-\varepsilon) = (1-1/n^{1-\varepsilon})^n \sim e^{-n^\varepsilon}$. On a donc $\sum_n \mathbf{P}(Z_n/\log n \leqslant 1-\varepsilon) < \infty$ et d'après le premier lemme de Borel-Cantelli, $\mathbf{P}(\limsup_n \{Z_n/\log n \leqslant 1-\varepsilon\}) = 0$. En passant au complémentaire, on a donc $\mathbf{P}(\exists n \in \mathbb{N}^* \ \forall k \geqslant n Z_n/\log n > 1-\varepsilon) = 1$. Or si une suite est supérieure à $1-\varepsilon$ à partir d'un certain rang, c'est le cas aussi de sa limite inférieure, donc $\mathbf{P}(\liminf_n Z_n/\log n \geqslant 1-\varepsilon) = 1$. En choisissant $\varepsilon = 1/m$ et en prenant l'intersection sur $m \in \mathbb{N}^*$, on obtient $1 = \mathbf{P}(\cap_{m \in \mathbb{N}^*} \{\liminf_n Z_n/\log n \geqslant 1-1/m\}) = \mathbf{P}(\liminf_n Z_n/\log n \geqslant 1)$.