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Chapitre 1

Le théorème de Baire

1.1 Le théorème de Baire

On considère un espace métrique complet (X, d). Étant donnés x ∈ X et r > 0, on note
Bf (x, r) la boule fermée de centre x et de rayon r. On note également B(x, r) la boule
ouverte de mêmes centre et rayon.

Théorème (Théorème de Baire). Soit (Fn)n une suite de fermés d’intérieur vide d’un
espace métrique complet (X, d). Alors

⋃
Fn est d’intérieur vide.

Notons diam(A) = supx,y∈A d(x, y) le diamètre d’une partie A ⊂ X. Pour démontrer le
théorème de Baire, on va utiliser la propriété dite des fermés emboîtés : si (Bn) est une
suite décroissante de fermés non vides tels que lim diam(Bn) = 0, alors

⋂
Bn est non vide.

(Preuve : prendre xn ∈ Bn et observer que la suite (xn) est de Cauchy donc converge vers
x ∈

⋂
Bn). L’ensemble non vide

⋂
Bn est un singleton puisque son diamètre vaut 0.

Exercice. Montrer qu’un espace métrique qui vérifie la propriété des fermés emboîtés est
complet.

Le théorème de Baire s’énonce souvent sous la forme complémentaire.

Théorème (Théorème de Baire). Soit (On)n une suite d’ouverts denses d’un espace
métrique complet (X, d). Alors

⋂
On est dense.

Montrons-le sous cette forme, équivalente à la précédente en considérant Fn = X \On.
Une partie A d’un espace métrique X est dense si et seulement si tout ouvert non vide
de X intersecte A. Cette remarque implique, dans tout espace métrique, que l’intersection
de deux ouverts denses est un ouvert dense ; par récurrence, cela est vrai également pour
l’intersection d’un nombre fini d’ouverts denses.

Démonstration. Il suffit de montrer que tout ouvert non vide Ω de X intersecte
⋂
On. Nous

allons construire par récurrence une suite décroissante de boules fermées Bn = Bf (xn, rn)
vérifiant 0 < rn ⩽ 2−n et Bn ⊂ On ∩Ω. On note également B′

n la boule ouverte B(xn, rn).
0. Puisque O0 est dense, l’ouvert O0 ∩ Ω est non vide, donc contient une boule B0 =
Bf (x0, r0) avec 0 < r0 ⩽ 1.

1. Puisque O1 est dense et B′
0 ∩ Ω est un ouvert non vide, l’ouvert B′

0 ∩ Ω ∩ O1 est
non vide, donc contient une boule B1 = Bf (x1, r1) avec 0 < r1 ⩽ 1/2.

...
n. Puisque On est dense et B′

n−1 ∩ Ω est un ouvert non vide, l’ouvert B′
n−1 ∩ Ω ∩On

est non vide, donc contient une boule Bn = Bf (xn, rn) avec 0 < rn ⩽ 2−n.
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...

Puisque diam(Bn) ⩽ 2rn, la suite (Bn) est une suite décroissante de fermés dont le diamètre
tend vers 0 ; son intersection contient donc un (unique) point x. Pour tout n, on a x ∈
Bn ⊂ On ∩ Ω, et donc Ω intersecte

⋂
On.

Fixons quelques points de terminologie
— Étant donnée une partie non vide A ⊂ X, on note d(x,A) = infy∈A d(x, y). La

fonction x 7→ d(x,A) est une fonction continue (et même 1-lipschitzienne) de X
dans R, qui s’annule exactement sur A.

— On dit qu’une partie A ⊂ X est maigre si elle est incluse dans une réunion dénom-
brable de fermés d’intérieur vide.

— Dans un espace métrique complet, le théorème de Baire dit qu’une partie maigre
est d’intérieur vide ; il implique aussi qu’une réunion dénombrable de parties maigres
est encore une partie maigre.

— On dit qu’une partie A ⊂ X est comaigre si X \ A est maigre. Le théorème de
Baire dit qu’une partie comaigre est dense.

— On dit qu’une partie A ⊂ X est un Fσ si on peut l’écrire comme réunion dénom-
brable de fermés.

— On dit qu’une partie A ⊂ X est un Gδ si on peut l’écrire comme intersection
dénombrable d’ouverts.

Remarquons que tout fermé F est un Gδ puisqu’on peut écrire F =
⋂
On avec On =

{x ∈ X : d(x, F ) < 2−n}.
Exemple. Dans R, toute partie dénombrable est maigre.

Exercice. Trouver une partition R = A ∪B où A est maigre et B est de mesure nulle.

1.2 Fonctions de première classe

On dit qu’une fonction f : R → R est de première classe si elle est limite simple d’une
suite de fonctions continues. Une fonction continue est de première classe. La fonction
indicatrice d’un intervalle de R est de première classe.

Théorème. Soit f une fonction de première classe. Alors l’ensemble des points de conti-
nuité de f est comaigre (et donc dense).

Montrons d’abord le lemme suivant.

Lemme. Soit f une fonction de première classe. Alors, pour tout fermé F de R, l’ensemble
f−1(F ) est un Gδ.

De manière équivalente, le lemme dit que pour tout ouvert O de R, l’ensemble f−1(O)
est un Fσ.

Démonstration. Écrivons f = lim fn avec (fn) continues. On écrit F comme un Gδ par
la formule F =

⋂
k∈NOk où Ok = {x ∈ R : d(x, F ) < 2−k}. La conclusion du lemme

découle de la formule
f−1(F ) =

⋂
k∈N

⋃
n⩾k

f−1
n (Ok).

Vérifions cette formule en utilisant la remarque que d(·, F ) s’annule exactement sur F ,
puisque F est un fermé
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⊂ Si x ∈ f−1(F ), alors pour tout k, f(x) ∈ Ok et donc fn(x) ∈ Ok pour n assez
grand.

⊃ Si x appartient au membre de droite, alors pour tout k il existe nk tel que fnk
(x) ∈

Ok, donc d(fnk
(x), F ) < 2−k. En prenant la limite k → ∞, on obtient d(f(x), F ) = 0

et donc f(x) ∈ F .

Preuve du théorème. Soit (Vn)n∈N une base dénombrable d’ouverts de R, c’est-à-dire que
tout ouvert de R s’écrit comme réunion d’un sous-ensemble de la famille (Vn)n∈N. (Par
exemple, considérer l’ensemble des intervalles à extrémités rationnelles). On remarque que
f est continue en x si et seulement si, pour tout Vn contenant f(x), l’ensemble f−1(Vn)
est un voisinage de x.

Soit C l’ensemble des points de continuité de f . Alors

x ∈ C ⇐⇒ ∀n, f(x) ∈ Vn =⇒ f−1(Vn) est un voisinage de x

et donc
R \ C =

⋃
n∈N

f−1(Vn) \ int[f−1(Vn)].

Par le lemme, f−1(Vn) est un Fσ. Remarquons que si A est un Fσ, alors A \ int(A) est un
Fσ d’intérieur vide, donc est maigre. Ainsi, on a écrit R\C comme réunion dénombrable de
parties maigres. Par le théorème de Baire, l’ensemble R\C est maigre et donc l’ensemble
C est comaigre.
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Chapitre 2

Les grands théorèmes sur les espaces
de Banach

Il s’agit de plusieurs théorèmes qui sont des conséquences de la complétude et dont la
preuve utilise le théorème de Baire. Dans le cours tous les espaces de Banach seront sur
le corps K = R ou K = C (on rappelle qu’un espace de Banach est un espace vectoriel
normé complet). Un cas particulier important est le cas des espaces de Hilbert : ce sont
les espaces de Banach pour lesquels la norme peut s’écrire à partir d’un produit scalaire.

2.1 Le théorème de Banach–Steinhaus

Si X et Y sont des espaces de Banach, on note L(X,Y ) l’espace vectoriel des applica-
tions linéaires continues de X dans Y . Rappelons qu’une application linéaire T : X → Y
est continue si et seulement si elle est bornée sur la boule-unité de X. On définit sa norme
d’opérateur par la formule

∥T∥op = sup{∥Tx∥Y : ∥x∥X ⩽ 1}.
= inf{C > 0 : ∀x ∈ X, ∥Tx∥Y ⩽ C∥x∥X}.

L’espace L(X,Y ) muni de la norme d’opérateur, est alors un espace de Banach.
Dans le cas particulier ou Y = K, on trouve l’espace dual de X, noté X∗. La norme sur

X∗ = L(X,K) est appelée norme duale (c’est un cas particulier de la norme d’opérateur) ;
si f ∈ X∗ alors

∥f∥X∗ = sup
x∈X,∥x∥X⩽1

|f(x)|.

Théorème (Théorème de Banach–Steinhaus). Soient X et Y des espaces de Banach
et Φ ⊂ L(X,Y ). Les deux propriétés suivantes sont équivalentes :

1. Φ est borné, c’est-à-dire
sup
T∈Φ

∥T∥op < +∞

2. Φ est ponctuellement borné, c’est-à-dire

∀x ∈ X, sup
T∈Φ

∥Tx∥Y < +∞

De plus, si Φ n’est pas borné, l’ensemble {x ∈ X : supT∈Φ ∥Tx∥Y = +∞} est comaigre
dans X.
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En anglais, ce théorème s’appelle « uniform boundedness principle ».

Démonstration. L’implication 1 =⇒ 2 est évidente.
Supposons Φ non borné et considérons pour un entier n

Fn = {x ∈ X : ∀T ∈ Φ, ∥Tx∥Y ⩽ n}.

Alors Fn est un fermé de X (intersection de fermés...) qui est d’intérieur vide [en effet, si Fn

contient une boule B(x0, ε), étant symétrique et convexe il contiendrait B(0, ε), d’où pour
tout T ∈ Φ l’implication ∥x∥X ⩽ ε =⇒ ∥Tx∥Y ⩽ n et donc ∥T∥op ⩽ n/ε, contredisant le
caractère borné].

Par le théorème de Baire,
⋃
Fn est maigre dans X, donc non égal à X, ce qui montre

que Φ n’est pas ponctuellement borné puisque⋃
n∈N

Fn = {x ∈ X : sup
T∈Φ

∥Tx∥Y < +∞}.

On a également la dernière partie du théorème.

On va donner une application du théorème de Banach–Steinhaus aux séries de Fou-
rier. On note X l’espace des fonctions continues et 2π-périodiques, muni de ∥ · ∥∞. C’est
un espace de Banach. Pour f ∈ X et k ∈ Z, on considère les coefficients de Fourier

f̂(k) =
1

2π

∫ π

−π
f(t)e−ikt dt

et si n ∈ N et t ∈ R, la série de Fourier de f

(Snf)(t) =

n∑
k=−n

f̂(k)eikt.

Rappelons deux résultats classiques sur la convergence des séries de Fourier
— Théorème de Dirichlet : si f est de classe C1, alors (Snf) converge uniformément

vers f
— Théorème de Parseval : comme X ⊂ L2(0, 2π), on a convergence de (Snf) vers f

dans L2(0, 2π).
Il n’est pas vrai que (Snf) converge simplement vers f (un théorème très difficile est que

(Snf) converge vers f presque partout ! Notons qu’il découle du théorème de Parseval
qu’une sous-suite de (Snf) converge presque partout). En effet, on a

Théorème. L’ensemble

{f ∈ X : lim
n→∞

(Snf)(0) = f(0)}

est maigre dans X.

Il existe donc (une partie comaigre de X n’étant pas vide) des fonctions continues dont
la série de Fourier ne converge pas en 0.

Démonstration. Pour f ∈ X, posons Λn(f) = Snf(0). Nous allons montrer le résultat
suivant

Lemme. Pour tout n, Λn : X → R est une forme linéaire continue. De plus, on a
limn→∞ ∥Λn∥X∗ = +∞.
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Admettons pour l’instant le lemme. Puisque la suite (Λn) n’est pas bornée dans X∗, le
théorème de Banach–Steinhaus permet de conclure que l’ensemble

{f ∈ X : la suite (Λn(f)) est bornée}

est comaigre dans X. Le théorème en découle puisque cet ensemble contient toute fonction

{f ∈ X : limΛn(f) = f(0)}

(car si la suite (Λn(f)) converge, elle est bornée).
Pour démontrer le lemme, on introduit le noyau de Dirichlet, pour t ∈ R (et t ̸∈ 2πZ

après la seconde égalité)

Dn(t) =

n∑
k=−n

eikt

= e−int 1− e(2n+1)it

1− eit

=
e(n+

1
2
)it − e−(n+ 1

2
)it

eit/2 − e−it/2

=
sin(n+ 1

2)t

sin t
2

La fonction Dn est paire. Par ailleurs, on a pour tout t ∈ R

(Snf)(t) =
n∑

k=−n

f̂(k)eikt

=

n∑
k=−n

∫ π

−π
f(s)eik(t−s) ds

=
1

2π

∫ π

−π
f(s)Dn(t− s) ds

On en déduit l’inégalité

|Λn(0)| ⩽ ∥f∥∞
1

2π

∫ π

−π
|Dn(s)|ds

qui montre que la forme linéaire Λn est continue et que

∥Λn∥X∗ ⩽
1

2π

∫ π

−π
|Dn(s)| ds.

Montrons qu’il y a égalité. Pour tout ε > 0, posons fε(t) =
Dn(t)

|Dn(t)|+ε qui est un élément de
X de norme ⩽ 1. On a donc

∥Λn∥X∗ ⩾ Λn(fε) = (Snfε)(0) =
1

2π

∫ π

−π

Dn(t)
2

|Dn(t)|+ ε
dt

et on conclut par convergence dominée en faisant tendre ε vers 0. Finalement, on calcule∫ π

−π
|Dn(t)| dt ⩾ 4

∫ π

0
| sin(n+ 1/2)t| dt

t

= 4

∫ (n+1/2)π

0
| sin t|dt

t

qui tend vers +∞ quand n tend vers l’infini (exercice).
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2.2 Le théorème de l’application ouverte

Soient X, Y deux espaces métriques. On dit qu’une application f : X → Y est ouverte
si pour tout ouvert U de X, l’image f(U) est un ouvert de Y .

Théorème (Théorème de l’application ouverte). Soient X, Y deux espaces de Banach
et T ∈ L(X,Y ) une application linéaire surjective continue. Alors T est ouverte.

En particulier, il existe r > 0 telle que T (B(0, 1)) ⊃ B(0, r).

Réciproquement, une application linéaire ouverte entre espaces normés est surjective
puisque son image est un sous-espace vectoriel ouvert.

Fin cours # 1 du 13 janvier
Observons que si T est une application linéaire entre espaces de Banach et si r > 0,

alors pour tout λ > 0 la condition

T (B(0, 1)) ⊃ B(0, r)

équivaut à la condition
T (B(0, λ)) ⊃ B(0, λr).

De même, la condition
T (B(0, 1)) ⊃ B(0, r)

équivaut à la condition
T (B(0, λ)) ⊃ B(0, λr).

Démonstration. Il suffit de prouver le « en particulier ». En effet, pour tout x ∈ X et
ε > 0, on a alors

B(x, ε) = x+ εB(0, 1)

et, T étant linéaire,

T (B(x, ε)) = T (x) + εT (B(0, 1)) ⊃ T (x) + εB(0, r) = B(T (x), εr).

Prouvons le « en particulier ». Posons Fn = T (B(0, n)). Puisque T est surjective,
Y =

⋃
n∈N Fn. Par le théorème de Baire, il existe donc n tel que Fn est d’intérieur non

vide, donc contient une boule B(y, ε). Puisque Fn est symétrique et convexe, il contient la
boule B(0, ε). Par homogénéité, on a alors pour λ = n/ε > 0

B(0, 1) ⊂ T (B(0, λ)).

Nous allons prouver que cela implique B(0, 1) ⊂ T (B(0, 2λ))). Soit z ∈ B(0, 1).
— Il existe x1 ∈ B(0, λ) tel que ∥z − Tx1∥ < 1/2.
— Il existe x2 ∈ B(0, λ/2) tel que ∥z − Tx1 − Tx2∥ < 1/4.

—
...

— Par récurrence, pour tout n ⩾ 1, il existe xn ∈ B(0, λ/2n−1) tel que ∥z − Tx1 −
Tx2 − · · · − Txn∥ < 1/2n.

—
...

La série
∑
xn converge normalement et (T étant continue) sa somme x vérifie z = Tx.

Puisque ∥x∥ < 2λ, on a bien montré B(0, 1) ⊂ T (B(0, 2λ))). Ceci équivaut à B(0, r) ⊂
T (B(0, 1))) pour r = 1/2λ.
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Corollaire (Théorème d’isomorphisme de Banach). Soient X, Y des espaces de Banach
et T ∈ L(X,Y ) une application linéaire continue bijective. Alors T−1 est une application
linéaire continue de Y dans X.

Démonstration. La linéarité de T−1 est un résultat élémentaire d’algèbre linéaire. Puisque
T est surjective, par le théorème de l’application ouverte, elle est ouverte, ce qui revient à
dire que T−1 est continue.

Corollaire. Soit X un espace vectoriel muni de deux normes ∥ · ∥1 et ∥ · ∥2 telles que
(X, ∥ · ∥1) et (X, ∥ · ∥2) soient complets. S’il existe un réel C tel que ∥ · ∥1 ⩽ C∥ · ∥2, alors
il existe un réel C ′ tel que ∥ · ∥2 ⩽ C ′∥ · ∥1.

Démonstration. On applique le théorème d’isomorphisme de Banach à l’application id :
(X, ∥ · ∥2) → (X, ∥ · ∥1).

2.3 Le théorème du graphe fermé

Si T : X → Y est une application entre des ensemblesX et Y , son grapheG(T ) ⊂ X×Y
est défini par

G(T ) = {(x, Tx) : x ∈ X}.

On a le résultat suivant.

Proposition. Soient X et Y des espaces métriques et T : X → Y continue. Alors G(T )
est fermé dans X × Y .

Démonstration. Montrons que (X × Y ) \ G(T ) est ouvert. Soit (x, y) ̸∈ G(T ). Alors y ̸=
T (x) donc il existe des ouverts disjoints U et V tels que y ∈ U et T (x) ∈ V . Posons
W = T−1(V ) ; c’est un ouvert contenant x. Puisque T (W ) ⊂ V , l’ensemble W × U est
un ouvert de X × Y disjoint de G(T ). Nous avons bien montré que (X × Y ) \ G(T ) est
ouvert.

La réciproque de la proposition n’est pas vraie en général : par exemple, la fonction
f : R → R définie par f(x) = 1/x si x ̸= 0 et f(0) = 0 a un graphe fermé bien qu’elle ne
soit pas continue.

Si X et Y sont des espaces vectoriels et si T : X → Y est linéaire, alors G(T ) est un
sous-espace vectoriel de X × Y .

Théorème (Théorème du graphe fermé). Soient X et Y des espaces de Banach et T :
X → Y une application linéaire. Alors T est continue si et seulement si G(T ) est fermé
dans X × Y .

Démonstration. Une implication est couverte par la proposition. Pour l’autre implication,
supposons G(T ) fermé. Considérons sur X les normes

∥x∥1 = ∥x∥X , ∥x∥2 = ∥x∥X + ∥Tx∥Y

L’espace (X, ∥ · ∥2) est complet. En effet, soit (xn) une suite de Cauchy pour ∥ · ∥2. Alors
les suites de Cauchy (xn) (pour ∥ · ∥X) et (Txn) (pour ∥ · ∥Y ) convergent ; notons x et y
leurs limites respectives. Puisque (xn, Txn) est une suite de G(T ) qui converge vers (x, y),
on a (x, y) ∈ G(T ), c’est-à-dire y = Tx. Il s’ensuit que (xn) converge x pour ∥ · ∥2.

Puisque ∥ · ∥1 ⩽ ∥ · ∥2, par le corollaire du théorème d’isomorphisme de Banach, il
existe une constante C telle que ∥ · ∥2 ⩽ C∥ · ∥1. On a donc l’inégalité ∥Tx∥Y ⩽ C∥x∥X
qui montre que T est continue.
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Chapitre 3

Les espaces de Banach classiques

Dans l’ensemble du cours, on va considérer des espaces de Banach sur R ou C. Pour
simplifier, on présente les preuves dans le cadre réel. Les résultats s’étendent au cadre
complexe mais cela n’est pas forcément immédiat.

3.1 Les espaces de Hilbert

Un espace de Hilbert est un espace de Banach (X, ∥ · ∥) tel qu’il existe un produit
scalaire ⟨·, ·⟩ vérifiant la relation

∥x∥ =
√

⟨x, x⟩

pour tout x ∈ X. Remarquons que dans ce cas, le produit scalaire est uniquement déterminé
par la norme, via la formule de polarisation

4⟨x, y⟩ = ∥x+ y∥2 + ∥x− y∥2.

On peut montrer (c’est un exercice plutôt difficile) qu’un espace de Banach X est un
espace de Hilbert si et seulement si il vérifie l’identité du parallélogramme : pour tous
x, y dans X on a

∥x+ y∥2 + ∥x− y∥2 = 2
(
∥x∥2 + ∥y∥2

)
On dit qu’une application linéaire T : X → Y entre espaces de Banach est isométrique

si elle vérifie ∥Tx∥ = ∥x∥. Si de plus T est surjective, on peut alors identifier les espaces
de Banach X et Y par l’intermédiaire de T . On rappelle le résultat suivant qui permet
d’identifier canoniquement un espace de Hilbert à son dual.

Théorème (Théorème de Riesz–Fréchet). Soit X un espace de Hilbert. L’application
de X dans X∗ qui à x associe

y 7→ ⟨x, y⟩

est isométrique et surjective.

Un autre point important est qu’il existe toujours une application isométrique surjective
entre deux espaces de Hilbert séparables de dimension infinie. On utilise le fait que tout
espace de Hilbert séparable de dimension infinie admet une base hilbertienne (xn)n∈N.

Théorème. Soit H un espace de Hilbert admettant une base hilbertienne (xn) et ℓ2(N)
l’espace de Hilbert formé des suites de carré sommable. L’application linéaire de H dans
ℓ2(N) qui à x ∈ H associe la suite (⟨x, xn⟩)n∈N est isométrique et surjective.
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Démonstration. Cette application est isométrique par l’égalité de Parseval. Montrons
qu’elle est surjective. Soit une suite (λn)n ∈ ℓ2(N). Puisque pour p ⩽ q∥∥∥∥∥

q∑
n=p

λnxn

∥∥∥∥∥ =

(
q∑

n=p

λ2n

)1/2

,

la suite des sommes partielles de la série
∑
λnxn est de Cauchy, donc converge. On peut

donc définir un élément x ∈ H comme x =
∑
λnxn (on prendra garde au fait qu’il n’y a

pas forcément convergence normale). Par continuité de y 7→ ⟨y, x⟩, on a ⟨x, xn⟩ = λn. On
a obtenu la surjectivité voulue.

La notion d’orthogonalité entre vecteurs a un sens dans un espace de Hilbert et permet
de définir la notion de projection orthogonale. Si Y ̸= {0} est un sous-espace fermé d’un
espace de Hilbert, il existe une projection d’image Y qui est continue et de norme 1 : la
projection orthogonale sur Y . Ce n’est pas le cas dans un espace de Banach général.

3.2 Les espaces Lp(µ)

Soit (Ω,F , µ) un espace mesuré. Pour 1 ⩽ p < +∞, on note Lp(µ) l’ensemble des
fonctions mesurables f : Ω → R telles que

∫
Ω |f |p dµ < +∞, et Lp(µ) l’ensemble des

classes d’équivalences de fonctions de Lp(µ) pour la relation d’équivalence donnée par
l’égalité µ-presque partout. Muni de la norme

∥f∥Lp =

(∫
Ω
|f |p dµ

)1/p

,

l’espace Lp(µ) est un espace de Banach. L’espace L2(µ) est un espace de Hilbert.
On définit L∞(µ) comme l’ensemble des classes d’équivalence de fonctions mesurables

dont un représentant est borné. Muni de la norme

∥f∥L∞ = inf{M > 0 : |f | ⩽M µ-p.p.},

l’espace L∞(µ) est un espace de Banach.

3.2.1 Compléments de théorie de la mesure : le théorème de Radon–
Nikodym

Soit (Ω,F) un espace mesurable et µ, ν deux mesures sur (Ω,F). On dit que ν est
absolument continue par rapport à µ et on écrit ν ≪ µ si tout ensemble A ∈ F tel que
µ(A) = 0 vérifie ν(A) = 0.

Soit f ∈ L1(µ) une fonction positive. La formule

ν(A) =

∫
A
f dµ (3.1)

définit une mesure ν sur (Ω,F) (pour la σ-additivité, utiliser le théorème de convergence
monotone) qui est absolument continue par rapport à µ. Lorsque la relation (3.1) est
vérifiée, on écrira « dν = f dµ ». Cette notation est motivée par la formule suivante : pour
toute fonction mesurable positive (resp. ν-intégrable) h, on a∫

hdν =

∫
hf dµ.
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Si h est étagée, cela se déduit par linéarité de (3.1) ; pour le cas général, utiliser le théorème
de convergence monotone (resp. dominée).

Le théorème de Radon–Nikodym affirme que les mesures absolument continues sont
toujours de cette forme. Pour simplifier, on l’énonce dans le cas de mesures finies ; il est
également vrai pour des mesures σ-finies (un espace mesuré (Ω,F , µ) est dit σ-fini si l’espace
Ω peut s’écrire comme réunion dénombrable de parties mesurables de mesure finie).

Théorème (Théorème de Radon–Nikodym). Soit (Ω,F) un espace mesurable et µ, ν
deux mesures finies sur (Ω,F) telles que ν ≪ µ. Il existe une unique fonction positive
f ∈ L1(µ) telle que dν = f dµ.

On va déduire ce résultat d’un théorème plus général.

Théorème (Théorème de décomposition de Lebesgue). Soit (Ω,F) un espace mesurable
et µ, ν deux mesures finies sur (Ω,F). Il existe une fonction positive f ∈ L1(µ) et un
ensemble B ∈ F avec µ(B) = 0, tels que, pour tout A ∈ F

ν(A) =

∫
A
f dµ+ ν(A ∩B).

Si on applique le théorème de décomposition de Lebesgue sous l’hypothèse ν ≪ µ,
alors puisque µ(B) = 0 on a ν(B) = 0 et donc ν(A ∩ B) = 0 pour tout A ∈ F . On
obtient alors la partie «existence» de la conclusion du théorème de Radon–Nidokym.
Pour l’unicité : soit g ∈ L1(µ) telle que dν = fdµ = gdµ. Si on pose A = {x ∈ Ω : g(x) >
f(x)}, alors ∫

A
(g − f) dµ = ν(A)− ν(A) = 0

et donc g ⩽ f µ-p.p. ; on montre de même que g ⩾ f µ-p.p..

Démonstration du théorème de décomposition de Lebesgue. Considérons la mesure π =
µ+ ν. Définissons une forme linéaire L sur L2(π) par la formule L(g) =

∫
g dν. On a par

l’inégalité de Cauchy–Schwarz

|L(g)| ⩽ ν(Ω)1/2
(∫

|g|2 dν
)1/2

⩽ ν(Ω)1/2∥g∥L2(π),

ce qui montre que L est continue. Par le théorème de Riesz–Fréchet, il existe h ∈ L2(π)
telle que pour tout g ∈ L2(π) on ait L(g) = ⟨g, h⟩, c’est à dire

L(g) =

∫
Ω
g dν =

∫
Ω
ghdπ =

∫
Ω
ghdµ+

∫
Ω
ghdν,

ce qui se réécrit en ∫
Ω
g(1− h) dν =

∫
Ω
ghdµ. (3.2)

On cherche f telle que dν = fdµ. En injectant cela dans (3.2) cela suggère que (1 −
h)f = h et donc f = h

1−h . Nous allons vérifier cela rigoureusement.

Lemme. L’inégalité h ⩾ 0 est vraie ν-presque partout et µ-presque partout. L’inégalité
h < 1 est vraie µ-presque partout.
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Démonstration. En prenant g = 1A pour A ∈ F , on a

ν(A) =

∫
A
hdπ =

∫
A
hdµ+

∫
A
hdν.

Posons N = {h < 0}. On a 0 ⩽ ν(N) =
∫
N hdπ ⩽ 0, d’où on tire π(N) = 0 donc

µ(N) = ν(N) = 0. Posons B = {h ⩾ 1}. On a ν(B) =
∫
B hdµ +

∫
B hdν ⩾ µ(B) + ν(B),

d’où on dire µ(B) = 0.

Soit Gn = {0 ⩽ h < 1− 1/n} et posons G =
⋃
Gn = Ω \ (N ∪ B) = {0 ⩽ h < 1}. On

définit une fonction mesurable f : Ω → R en posant f(x) = h(x)
1−h(x) si x ∈ G et f(x) = 0 si

x ̸∈ G. On a, en utilisant (3.2) pour g =
1A∩Gn
1−h puis le théorème de convergence monotone

ν(A ∩G) = lim ν(A ∩Gn) = lim

∫
Ω

1− h

1− h
1A∩Gn dν = lim

∫
Ω
f1A∩Gn dµ =

∫
Ω
f1A dµ

et le résultat voulu en découle puisque ν(A) = ν(A ∩G) + ν(A ∩B).

3.2.2 La dualité des espaces Lp(µ)

Une fonction étagée est une combinaison linéaire de fonctions indicatrices d’éléments
de F . Pour tout p ∈ [1,∞], les fonctions étagées sont denses dans Lp(Ω). On dit que deux
nombres réels p, q ∈ [1,∞] sont conjugués si 1/p+ 1/q = 1.

Lemme. Soient (Ω,F , µ) un espace mesuré σ-fini et p, q des exposants conjugués. Pour
toute fonction g ∈ Lq(µ), on a

∥g∥Lq = sup
∥h∥Lp⩽1

∫
Ω
ghdµ.

De plus, la borne supérieure ne change pas si on la restreint aux fonctions h étagées telles
que ∥h∥Lp ⩽ 1.

L’hypothèse de σ-finitude peut être allégée en demandant que toute partie mesurable
de mesure infinie contient un sous-ensemble mesurable de mesure finie non nulle (ce sera
clair dans la preuve ci-dessous). Il faut éviter certains cas très dégénérés : par exemple si
Ω = {x} est un singleton et µ est la mesure telle que µ({x}) = +∞, on a Lp(µ) = {0} si
1 ⩽ p <∞ mais L∞(µ) ̸= {0}, donc la conclusion du lemme est fausse quand p = 1.

Démonstration. On peut supposer ∥g∥Lq = 1. L’inégalité ⩾ découle de l’inégalité de Höl-
der. Pour montrer l’autre inégalité, On distingue plusieurs cas

1. Si 1 < q < ∞, on peut choisir h telle que gh ⩾ 0 et |g|q = |h|p ; on a alors
gh = |g|q = |h|p et donc ∫

ghdµ = ∥g∥Lq = ∥h∥Lp = 1

et ce choix de h montre l’égalité voulue.
2. Si q = 1 et p = ∞, c’est pareil en choisissant h = signe(g).
3. Le cas q = ∞ et p = 1 est un peu plus compliqué. Soit ε > 0. Par définition de

la norme ∥ · ∥∞, l’ensemble {|g| ⩾ 1 − ε} est de mesure non nulle et contient donc
un sous-ensemble A ∈ F tel que 0 < µ(A) < ∞—c’est là où on utilise l’hypothèse
de σ-finitude. Soit h = signe(g)1A

µ(A) ; on a alors ∥h∥L1 = 1 et
∫
ghdµ ⩾ 1− ε, donc le

membre de droite est ⩾ 1− ε. Il suffit de faire tendre ε vers 0.
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Pour le dernier point, considérer une suite de fonctions étagées hn telles que |hn| ⩽ |h| et
limhn = h, et appliquer le théorème de convergence dominée.

Fin cours #2 du 23 janvier
Soit g ∈ Lq(µ). Le lemme dit que la forme linéaire ℓg : Lp(µ) → R définie par

ℓg(f) =

∫
Ω
fg dµ

est continue et de norme ∥g∥Lq . Ainsi g 7→ ℓg est une application linéaire isométrique de
Lq(µ) dans Lp(µ)∗. Nous allons démontrer que si l’espace mesuré (Ω,F , µ) est σ-fini et si
1 ⩽ p <∞, cette application est surjective. On peut alors identifier Lp(µ)∗ avec Lq(µ).

Théorème. Soient (Ω,F , µ) un espace mesuré σ-fini, p ∈ [1,∞[ et q son exposant conju-
gué. Alors l’application g 7→ ℓg de Lq(µ) dans Lp(µ)∗ est surjective.

Pour p = 2, on retrouve le théorème de Risez–Fréchet. Lorsque 1 < p < ∞, ce
résultat est vrai sans l’hypothèse de σ-finitude.

Démonstration. Traitons d’abord le cas où µ(Ω) < ∞ et d’une forme linéaire ϕ ∈ Lp(µ)∗

qui prend des valeurs positives sur les fonctions positives. Pour A ∈ F , on pose

ν(A) = ϕ(1A).

Ceci définit une mesure (pour la σ-additivité : si (An) est une suite de parties deux à deux
disjointes, par le théorème de convergence dominée la série

∑
1An converge vers 1⋃An

dans
Lp(µ)— c’est là où l’hypothèse p < ∞ est utilisée). De plus, ν est absolument continue
par rapport à µ. Par le théorème de Radon–Nikodym, il existe une fonction positive
g ∈ L1(µ) telle que dν = g dµ. On a

ϕ(1A) =

∫
Ω
g1A dµ

puis par linéarité, pour toute fonction h étagée∫
Ω
ghdµ = ϕ(h) ⩽ ∥ϕ∥Lp(µ)∗∥h∥Lp(µ).

Cette majoration implique que g ∈ Lq(µ) (par exemple : poser gn = min(n, g) et utiliser
le lemme pour déduire que ∥gn∥Lq ⩽ ∥ϕ∥Lp(µ)∗ , puis utiliser le théorème de convergence
monotone pour obtenir ∥g∥Lq ⩽ ∥ϕ∥Lp(µ)∗). Puisque les formes linéaires continues ℓg et ϕ
coïncident sur les fonctions étagées qui forment une partie dense de Lp(µ), elles sont égales.

Toujours dans le cas µ(Ω) < ∞, soit maintenant ψ ∈ Lp(µ)∗ quelconque. Pour une
fonction positive f de Lp(µ), on pose

ψ(f) = sup{ψ(h) : h mesurable telle que 0 ⩽ h ⩽ f} ⩾ 0

puis pour une fonction quelconque f de Lp(µ) décomposée en f = f+ − f−

ϕ(f) = ψ(f+)− ψ(f−).

Lemme. L’application ϕ ainsi définie est une forme linéaire continue sur Lp(µ).

Admettons le lemme. Puisque ϕ et ϕ− ψ sont des formes linéaires continues positives
sur Lp(µ), elle sont de la forme ϕ = ℓg1 , ϕ − ψ = ℓg2 pour g1, g2 dans Lq(µ). On a bien
ψ = ℓg1−g2 .
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Preuve du lemme. Soit f ∈ Lp(µ). Puisque (−f)+ = f− et (−f)− = f+, on a ϕ(−f) =
−ϕ(f). On vérifie sans difficulté que ϕ(λf) = λϕ(f) pour λ > 0.

Soit f1, f2 dans Lp(µ) positives. Montrons que

ψ(f1 + f2) = ψ(f1) + ψ(f2).

⩾ Soit ε > 0 et hi mesurables positives telle que hi ⩽ fi et ψ(hi) ⩾ ψ(fi) − ε. Alors
ψ(f1 + f2) ⩾ ψ(h1 + h2) = ψ(h1) + ψ(h2) ⩾ ψ(f1) + ψ(f2)− 2ε.

⩽ Soit ε > 0 et h mesurable positive telle que h ⩽ f1 + f2 et ψ(h) ⩾ ψ(f1 + f2) − ε.
Considérons les fonctions mesurables positives h1 = min(f1, h) et h2 = h − h1 =
max(h−f1, 0). Alors ψ(f1+f2) ⩽ ψ(h)+ε = ψ(h1)+ψ(h2)+ε ⩽ ψ(f1)+ψ(f2)+ε.

Si f et g sont des fonctions quelconques de Lp(µ), on a

f + g = (f + g)+ − (f + g)− = f+ − f− + g+ − g−

donc
(f + g)+ + f− + g− = (f + g)− + f+ + g+.

On déduit du cas positif que

ψ((f + g)+) + ψ(f−) + ψ(g−) = ψ((f + g)−) + ψ(f+) + ψ(g+)

et donc ϕ(f + g) = ϕ(f) + ϕ(g).
Il reste enfin à voir que ϕ est continue. Tout d’abord, si 0 ⩽ h ⩽ f , alors ∥h∥Lp ⩽ ∥f∥Lp ;

on en déduit que |ψ(f)| ⩽ ∥ψ∥ · ∥f∥Lp . Pour une fonction f ∈ Lp(Ω) quelconque, on écrit

|ϕ(f)| ⩽ |ψ(f+)|+ |ψ(f−)| ⩽ ∥ψ∥ ∥f+∥Lp + ∥ψ∥ ∥f−∥Lp ⩽ 2 ∥ψ∥ ∥f∥Lp ,

ce qui montre que ϕ est continue.

Enfin, le cas d’un espace mesuré σ-fini se déduit du cas fini par un changement de
mesure (cf. TD).

3.3 Les espaces ℓp

Pour 1 ⩽ p ⩽ ∞, on note ℓp l’espace Lp(µ) où µ est la mesure de comptage sur N. De
manière plus explicite, la norme ℓp d’une suite x = (xn) de réels est

∥x∥p =

(∑
n∈N

|xn|p
)1/p

.

∥x∥∞ = sup
n∈N

|xn|

et ℓp est l’espace des suites x telles que ∥x∥p <∞.
Comme cas particulier du cas des espaces Lp, lorsque p et q sont conjugués avec 1 ⩽ p <

∞, on peut identifier les espaces (ℓp)
∗ et ℓq. On introduit également c0 comme l’ensemble

des suites qui convergent vers 0. C’est un sous-espace fermé de ℓ∞. De la même manière,
on peut identifier les espaces (c0)

∗ et ℓ1.
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3.4 Les espaces C(K)

Soit K un espace métrique compact et C(K) l’espace des fonctions continues de K
dans R. C’est un espace de Banach pour la norme

∥f∥ = max
x∈K

|f(x)|.

Si µ est une mesure borélienne finie sur K, alors l’application Iµ : C(K) → R définie par

Iµ(f) =

∫
K
f dµ

est une forme linéaire continue sur C(K). Réciproquement, on a le résultat suivant

Théorème (Théorème de représentation de Riesz). Soit K un espace métrique compact.

1. Si φ ∈ C(K)∗ prend des valeurs positives sur les fonctions positives, alors il existe
une mesure borélienne finie µ sur K telle que ϕ = Iµ.

2. Si φ ∈ C(K)∗, il existe deux mesures boréliennes finies µ et ν sur K telles que
φ = Iµ − Iν .

La preuve est longue mais la récompense est de taille. En effet, soit I la fonction définie
sur C([0, 1]) par

I(f) =

∫ 1

0
f(x) dx

au sens de l’intégration de Riemann. Comme c’est une forme linéaire continue positive
sur C([0, 1]), on a I = Iµ pour une mesure borélienne µ sur [0, 1], qui est nécessairement la
mesure de Lebesgue ! Le théorème de représentation de Riesz permet donc de construire
la mesure de Lebesgue.
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Chapitre 4

Le théorème de Hahn–Banach

4.1 Le théorème de prolongement de Hahn–Banach

Commençons par donner un énoncé général d’algèbre linéaire.

Théorème. Soit X un K-espace vectoriel, M ⊂ X un sous-espace vectoriel et f :M → K
une forme linéaire. Alors il existe une forme linéaire g : X → K qui prolonge f , c’est-à-dire
telle que g|M = f .

Démonstration. Soit (eα)α∈A une base de M . Complétons-la en une base (eα)α∈B de X.
Pour tout choix d’éléments (λα)α∈B\A de K, la formule

g(eα) =

{
f(eα) si α ∈ A,

λα si α ∈ B \A

définit une unique forme linéaire g : X → K. Par construction, g prolonge f .

Si X est un espace vectoriel normé et si f est continue, le prolongement g ainsi construit
n’est pas nécessairement continu (par exemple, si sup{|λα|/∥eα∥ : α ∈ B \ A} = +∞,
alors g n’est pas continue ; mais ce n’est pas la seule obstruction). Dans cette situation,
le théorème de Hahn–Banach affirme qu’on peut trouver un prolongement continu et de
même norme.

Énonçons d’abord une forme plus générale.

Théorème (Théorème de prolongement de Hahn–Banach, cas général). Soit X un es-
pace vectoriel, p : X → R une fonction convexe, M ⊂ X un sous-espace vectoriel et
f : M → R une forme linéaire vérifiant f ⩽ p sur M . Alors il existe une forme linéaire
g : X → R qui prolonge f et vérifie g ⩽ p sur X.

On applique souvent le résultat au cas où X est un espace vectoriel normé et p est un
multiple de la norme. Soit t > 0. Remarquons qu’une forme linéaire f : X → R vérifie
l’inégalité f ⩽ t∥·∥ si et seulement elle est continue et de norme ⩽ t. On a donc le corollaire
suivant.

Corollaire (Théorème de prolongement de Hahn–Banach, cas continu). Soit X un es-
pace vectoriel normé, M ⊂ X un sous-espace vectoriel et f : M → R une forme linéaire
continue. Alors il existe une forme linéaire continue g : X → R qui prolonge f et telle que

∥g∥X∗ = ∥f∥M∗ .
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Le corollaire est facile si M est un sous-espace fermé d’un espace de Hilbert X : il
suffit de prendre g nulle sur M⊥. Dans le cas d’un espace normé quelconque, la preuve va
contourner l’absence d’une notion de supplémentaire orthogonal.

Nous allons donner deux preuves : une preuve du corollaire dans le cas séparable et
une preuve du théorème dans le cas général basée sur l’axiome du choix. Les deux preuves
reposent sur le lemme suivant qui permet de «gagner une dimension» et que l’on va ensuite
itérer.

Lemme. Soit X un espace vectoriel réel, p : X → R une fonction convexe, M ⊂ X un
sous-espace vectoriel et z ∈ X. Si f : M → R est une forme linéaire vérifiant f ⩽ p sur
M , il existe une forme linéaire g : M + Rz → R prolongeant f et vérifiant g ⩽ p sur
M +Rz.

Démonstration. Si z ∈M , il suffit de considérer g = f . Supposons donc z ̸∈M . Pour tout
choix de α ∈ R, il existe une unique forme linéaire gα :M +Rz prolongeant f et vérifiant
gα(z) = α. Pour x ∈M et t ∈ R, elle est donnée par

gα(x+ tz) = f(x) + αt

L’inégalité gα ⩽ p sur M +Rz équivaut donc à

∀x ∈M,∀t ∈ R f(x) + αt ⩽ p(x+ tz)

Cette inégalité est vérifiée si t = 0. Traitant séparément les cas t > 0 et t = −s < 0, cette
condition équivaut à

sup
y∈M,s>0

f(y)− p(y − sz)

s
⩽ α ⩽ inf

x∈M,t>0

p(x+ tz)− f(x)

t

Pour voir qu’un choix de α vérifiant ces conditions est possible, il suffit de montrer pour
tous x, y ∈M et s, t > 0 l’inégalité

f(y)− p(y − sz)

s
⩽
p(x+ tz)− f(x)

t
(4.1)

On peut alors écrire

(4.1) ⇐⇒ tf(y)− tp(y − sz) ⩽ sp(x+ tz)− sf(x)

⇐⇒ f

(
s

s+ t
x+

t

s+ t
y

)
⩽

s

s+ t
p(x+ tz) +

t

s+ t
p(y − sz)

Cette égalité est vraie : elle découle de la convexité de p puisque

f

(
s

s+ t
x+

t

s+ t
y

)
⩽ p

(
s

s+ t
x+

t

s+ t
y

)
= p

(
s

s+ t
(x+ tz) +

t

s+ t
(y − sz)

)
Dans le cas d’un espace vectoriel normé, le lemme implique que toute forme linéaire

continue sur M peut être prolongée en une forme linéaire continue de même norme sur
M+Rz. On peut alors donner une preuve «constructive» du corollaire dans le cas séparable.

Preuve du corollaire dans le cas cas séparable. Supposons X séparable et soit (xn)n⩾1 une
suite dense dans X. On considère la famille croissante (Mn) de sous-espaces vectoriels
définie en posant M0 = M et Mn+1 = Mn + Rxn+1. Posons aussi f0 = f . À l’aide du
lemme, on construit par récurrence, pour tout entier n ⩾ 1, une forme linéaire continue
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fn : Mn → R qui prolonge fn−1 et telle que ∥fn∥M∗
n
= ∥f∥M∗ . Soit Y le sous-espace⋃

n∈NMn. On définit une fonction g : Y → R en posant g(x) = fn(x) lorsque x ∈ Mn.
(Cette fonction est bien définie puisque si x ∈ Mp et x ∈ Mq alors fp(x) = fq(x)). La
fonction g est une forme linéaire sur Y et vérifie ∥g∥Y ∗ = ∥f∥M .

Puisque Y est dense dans X, on peut prolonger de manière unique g en une forme
linéaire continue g̃ : X → R de même norme. (Preuve : pour tout x ∈ X, soit (yp)
une suite de Y telle que limxp = x. Puisque g est lipschitzienne, (g(yp)) est une suite
de Cauchy, donc convergente, et on pose g̃(x) = limp→∞(g(yp)). On vérifie que cette
définition ne dépend pas du choix de la suite (yp) et que la fonction g̃ a toutes les propriétés
voulues.

Avant de donner la preuve du théorème de Hahn–Banach dans le cas général, faisons
quelques préliminaires autour du lemme de Zorn.

Soit E un ensemble muni d’une relation d’ordre ⩽ (c’est-à-dire une relation réflexive,
transitive et antisymétrique). On dit qu’une partie A ⊂ E est majorée s’il existe m ∈ E tel
qu’on ait x ⩽ m pour tout x de A . On dit qu’une partie A ⊂ E est totalement ordonnée
si pour tous les éléments x, y de A , on a x ⩽ y ou y ⩽ x. On dit que E est inductif si
toute partie totalement ordonnée est majorée. On dit que x ∈ E est maximal si tout y ∈ E
tel que y ⩾ x vérifie y = x.

Lemme (Lemme de Zorn). Tout ensemble ordonné inductif possède (au moins) un élé-
ment maximal.

Le lemme de Zorn est équivalent à l’axiome du choix (ces questions seront évoquées
en TD).

Preuve du théorème de prolongement de Hahn–Banach. Appelons prolongement partiel
la donnée d’un couple (Y, g) où Y est un sous-espace vectoriel de X tel que M ⊂ Y , et
g : Y → R est une forme linéaire qui prolonge f et telle que g ⩽ p sur M .

Soit E l’ensemble des prolongements partiels. On le munit de la relation d’ordre ≺
définie par

(Y, g) ≺ (Y ′, g′) si Y ⊂ Y ′ et g′ prolonge g

L’ensemble E ainsi ordonné est inductif. En effet, si A = {(Yi, gi) : i ∈ I} est une
partie totalement ordonnée de E, un majorant de A est donnée par (Y, g), où Y est le
sous-espace

⋃
i∈I Yi et g : Y → R est la forme linéaire définie par g(y) = gi(y) lorsque

y ∈ Yi. (L’argument qui précède suppose A ̸= ∅ ; il faut aussi remarquer que (M,f) est
un majorant de la partie vide.)

Par le lemme de Zorn, l’ensemble E admet donc un élément maximal (G, g). Il suffit
maintenant de montrer que G = X. Raisonnons par l’absurde : si G ⊊ X, il existe x ∈ X\G
et le lemme fournit un prolongement g̃ de g tel que (G + Rx, g̃) ∈ E , contredisant la
maximalité.

Fin cours # 3 du 30 janvier
Voici des corollaires du théorème de Hahn–Banach.

Corollaire. Soit X un espace de Banach et x ∈ X \ {0}. Il existe f ∈ X∗ telle que
∥f∥ = 1 et f(x) = ∥x∥.

Démonstration. Prolonger la forme linéaire de norme 1 définie sur Rx par λx 7→ λ∥x∥.

Exercice. Si X est un espace de Hilbert, montrer que pour tout x ∈ X non nul il existe
un unique f ∈ X∗ vérifiant ∥f∥ = 1 et f(x) = 1. Montrer que ce n’est pas le cas si X = ℓ1.
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Il est instructif de comparer les deux formules suivantes, pour f ∈ X∗ et x ∈ X

∥f∥X∗ = sup
x∈BX

f(x) ∥x∥X = max
f∈BX∗

f(x)

La formule de gauche est la définition de la norme sur X∗ ; la borne supérieure n’y est
pas nécessairement atteinte. La formule de droite et le fait que la borne supérieure y est
atteinte se déduisent du corollaire précédant.

Corollaire (« le dual sépare les points »). Soit X un espace de Banach et x1 ̸= x2 deux
vecteurs de X. Il existe f ∈ X∗ telle que f(x1) ̸= f(x2)

Démonstration. Appliquer le résultat précédent à x = x1 − x2.

Pour terminer, voici un théorème utile pour montrer qu’un sous-espace est dense, qui
doit vous rappeler un énoncé analogue pour les espaces de Hilbert. Si X est un espace
de Banach, on définit l’annihilateur d’une partie M ⊂ X comme

M⊥ = {f ∈ X∗ : ∀x ∈M, f(x) = 0}

Théorème. Soit X un espace de Banach et M ⊂ X un sous-espace vectoriel. Alors

M est dense ⇐⇒ M⊥ = {0}.

Démonstration. Une forme linéaire continue nulle sur M est nulle sur M . Ceci montre le
sens direct.

Supposons que M n’est pas dense et soit x ∈ X \M . Définissons une forme linéaire
g :M +Rx→ R par les conditions g(M) = 0 et g(x) = 1.

Posons r = d(x,M) > 0. Pour y ∈M et λ ∈ R∗, on a ∥y+λx∥ = |λ| · ∥x− (−λ−1y)∥ ⩾
|λ|r et donc

|g(y + λx)| = |λ| ⩽ r−1∥y + λx∥,

ce qui montre que g est continue. Par le théorème de prolongement de Hahn–Banach, il
existe une forme linéaire continue f ∈ X∗ qui prolonge g. La forme linéaire f appartient à
M⊥ et n’est pas identiquement nulle puisque f(x) = 1.

4.2 Espaces vectoriels topologiques

Le cadre des espaces vectoriels normés est trop restreint : il va être nécessaire de consi-
dérer des topologies sur un espace vectoriel qui ne sont pas induites par une norme, ni même
par une distance. Faisons tout d’abord des rappels de topologie générale (non métrique).

4.2.1 Espaces topologiques

Définition. Soit X un ensemble. On appelle topologie sur X un ensemble T ⊂ P(X) tel
que

(a) l’ensemble T est stable par union quelconque,
(b) l’ensemble T est stable par intersection finie.

On dit que (X, T ) est un espace topologique. Les éléments de T s’appellent les ouverts.
Il découle des axiomes que T contient nécessairement les éléments ∅ (en considérant dans
(a) la réunion de la famille vide) et X (en considérant dans (b) l’intersection de la famille
vide).
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Exemple. Soit (X, d) un espace métrique. Rappelons qu’une partie A de X est un ouvert
si ∀x ∈ A, ∃ε > 0 : B(x, ε) ⊂ A. L’ensemble des ouverts ainsi définis forme une topologie
sur X, dite topologie associée à d.

Une topologie sur X telle qu’il existe une distance à laquelle elle est associée est dite
métrisable.

Exemple. Pour tout ensemble X, l’ensemble P(X) est une topologie. Est-elle métrisable ?
Oui, par la distance discrète d(x, y) = 1x=y. On dit que P(X) est la topologie discrète.

Exemple. Pour tout ensemble X, l’ensemble {∅, X} est une topologie dite topologie gros-
sière. Est-elle métrisable ? Non dès que X contient au moins deux points.

Une topologie T est dite séparée si pour tous x ̸= y dans X, on peut trouver deux
ouverts disjoints Ox et Oy tels que x ∈ Ox, y ∈ Oy. La topologie grossière sur un ensemble
de cardinal ⩾ 2 n’est pas séparée, alors que toute topologie métrisable est séparée (choisir
Ox = B(x, r) et Oy = B(y, r) pour r = d(x, y)/2).

Remarque. Si une topologie est métrisable, il existe plusieurs distances différentes à qui
elle est associée. Par exemple, une topologie associée à la distance d est aussi associée à la
distance 2d, mais aussi à la distance d′ définie par

d′(x, y) = min(d(x, y), 1).

Si (X, T ) est un espace topologique et si Y ⊂ X, l’ensemble {O ∩ Y : O ∈ T } est une
topologie sur Y dite topologie induite par T .

On étend au cadre des espaces topologiques le vocabulaire usuel du cadre métrique.
Soit (X, T ) un espace topologique.

— On dit que A ⊂ X est fermé (pour T ) si X \A ∈ T .
— On dit que que A ⊂ X est un voisinage de x ∈ X si il existe un ouvert V tel que

x ∈ V ⊂ A.
— L’intérieur de A ⊂ X, noté Å, est l’ensemble des points dont A est un voisinage ;

c’est aussi la réunion des ouverts inlcus dans A.
— L’adhérence de A ⊂ X, notée Ā, est {x ∈ X : tout voisinage de x intersecte A} ;

c’est aussi l’intersection des fermés contenant A.
— Une partie A ⊂ X est dense si Ā = X. Une partie est dense si et seulement si elle

intersecte tout ouvert non vide.
— Un espace topologique est dit compact s’il est séparé et si tout recouvrement ouvert

admet un sous-recouvrement fini.
Soit (X, TX) et (Y, TY ) deux espaces topologiques et f : X → Y une fonction
— On dit que f est continue si, pour tout O ∈ TY on a f−1(O) ∈ TX .
— On dit que f est continue en x ∈ X si, pour tout voisinage V de f(x) pour TY ,

l’image réciproque f−1(V ) est un voisinage de x pour TX . On vérifie que f est
continue si et seulement si elle est continue en tout point.

— On dit que f est un homéomorphisme si (1) f est bijective et (2) f et f−1 sont
continues.

On prendra garde au fait que les notions d’adhérence et de compacité ne sont pas
définies à l’aide de limites de (sous-)suites comme dans le cas métrique.

Si X est un espace topologique séparé et K ⊂ X une partie compacte, alors K est un
fermé dans X. (Preuve. Soit y ∈ X \K. Pour tout x ∈ K, il existe des ouverts disjoints
Ux et Vx contenant respectivement x et y. Par compacité, il existe un sous-ensemble fini
F ⊂ K tel que K ⊂

⋃
x∈F Ux. L’ouvert

⋂
x∈F Vx est un voisinage de y disjoint de K. Cet

argument montre que X \K est ouvert, donc K est fermé.)
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4.2.2 Produit fini d’espaces topologiques

Soient (X1, T1), . . . , (Xp, Tp) des espaces topologiques. On note X le produit cartésien
X1 × · · · ×Xp. On appelle pavé ouvert un ensemble de la forme O1 × · · · × Op, où Oi est
un élément de Ti. On note T l’ensemble des réunions quelconques de pavés ouverts. C’est
une topologie sur X, que l’on appelle topologie produit.

Si A ⊂ X, on a A ∈ T si et seulement si, pour tout x = (x1, . . . , xp) ∈ A, il existe
O1 ∈ T1, . . . , Op ∈ Tp tels que xi ∈ Oi et O1 × · · · ×Op ⊂ A.

De plus, pour tout i, l’application de ième projection pri : X → Xi définie par

pri(x1, . . . , xn) = xi

est continue de (X, T ) vers (X, Ti). La topologie produit est la topologie la moins fine
sur X qui rend continues les applications pri : si une topologie sur X a cette propriété, elle
contient les pavés ouverts puisque

O1 × · · · ×Op =

p⋂
i=1

pr−1
i (Oi)

et contient donc T .
Si on suppose que pour tout i, la topologie Ti est métrisable et associée à une distance di

sur Xi, alors la topologie produit est associée à la distance d sur X définie par

d((x1, . . . , xp), (y1, . . . , yp)) = max
1⩽i⩽p

d(xi, yi)

4.2.3 Espaces vectoriels topologiques

Définition. On appelle espace vectoriel topologique la donnée d’un R-espace vectoriel X
muni d’une topologie telle que

1. les applications de somme et de multiplication scalaire

s : X ×X → X, m : R×X → X

(x, y) 7→ x+ y, (λ, x) 7→ λx

sont continues. (On munit X ×X et R×X de la topologie produit.)

2. {0} est fermé

Un espace vectoriel normé, muni de la topologie associée, est un espace vectoriel topolo-
gique. Dans tout espace vectoriel topologique, les translations sont des homéomorphismes.
Les voisinages d’un point a sont donc les ensembles de la forme a+V où V est un voisinage
de 0.

On utilisera la conséquence suivante de la continuité de l’addition, qui correspond à
« couper ε en deux » dans le cas métrique : si V est un voisinage de 0 dans un espace
vectoriel topologique, il existe W un voisinage de 0 tel que W +W ⊂ V . [Preuve : puisque
s−1(V ) est un voisinage de (0, 0) dans X × X par continuité de s en (0, 0), il existe un
pavé ouvert O1 ×O2 tel que (0, 0) ∈ O1 ×O2 ⊂ s−1(V ), et W = O1 ∩O2 convient.]

Exercice. Tout espace vectoriel topologique est séparé.

Exercice. Soit X un espace vectoriel topologique et f : X → R une forme linéaire. Alors
f est continue si et seulement si f est continue en 0.
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Lemme (Jauge de Minkowski d’un convexe). Soit X un espace vectoriel topologique et
W ⊂ X un ouvert convexe contenant 0. Pour x ∈ X, on pose

jW (x) = inf{t > 0 : x ∈ tW}.

Alors la fonction jW est à valeurs finies, continue et convexe. De plus,

W = {x ∈ X : jW (x) < 1}.

Si X est un espace vectoriel normé et si W = B(0, 1), alors jW est la norme.

Démonstration. Soit x ∈ X. La fonction f : R → X donnée par f(λ) = λx est continue,
donc f−1(W ) est un ouvert de R contenant 0 et il existe ε > 0 tel que εx ∈ W , ce qui
montre que jW est à valeurs finies.

La convexité de W (ou plus précisément le fait que W soit étoilé par rapport à 0)
implique que l’on a sW ⊂ tW pour tous 0 < s < t. En particulier, si x ∈ X et t > 0 sont
tels que jW (x) < t, alors x ∈ tW .

Montrer que pour tous x, y ∈ X et λ > 0 on a

1. jW (λx) = λjW (x),

2. jW (x+ y) ⩽ jW (x) + jW (y),

ces deux propriété impliquant ensemble la convexité de la fonction jW . La première relation
est élémentaire (x ∈ tW équivaut à λx ∈ λtW ). Pour montrer la seconde, soient x, y dans
X. Pour s > jW (x) et t > jW (y), on a

x+ y ∈ sW + tW = (s+ t)W

(la dernière égalité découlant de la convexité de W ). On a donc jW (x + y) ⩽ s + t, et
l’inégalité 2. en découle en prenant la borne inférieure sur s et t.

Si jW (x) < 1, il existe t < 1 tel que x ∈ tW , ce qui implique x ∈W . Réciproquement,
si x ∈ W , alors par continuité de la multiplication scalaire, on a λx ∈ W pour λ dans un
voisinage de 1 et donc jW (x) < 1.

Pour ε > 0, on a donc {jW < ε} = εW , ce qui montre que jW est continue en 0.
Puisque |jW (x) − jW (x + h)| ⩽ max(jW (h), jW (−h)), il s’ensuit que jW est continue en
tout x ∈ X.

4.3 Les théorèmes de séparation de Hahn–Banach

Soient A et B deux parties non vides d’un R-espace vectoriel X, et g : X → R une
forme linéaire non nulle. On dit que

— la forme linéaire g sépare A de B au sens large si pour tout x ∈ A et y ∈ B on a
g(x) ⩽ g(y) ; ceci équivaut à dire que

sup
x∈A

g(x) ⩽ inf
y∈B

g(y).

— la forme linéaire g sépare A de B au sens strict si

sup
x∈A

g(x) < inf
y∈B

g(y).

Si on choisit α ∈ R telle que supA g ⩽ α ⩽ infB g, on dit aussi que l’hyperplan affine
{g = α} sépare A de B au sens large.

22



Théorème (Théorème de séparation large de Hahn–Banach). Soit X un espace vectoriel
topologique, A ⊂ X un convexe non vide et B ⊂ X un ouvert convexe non vide, tels que
A ∩ B = ∅. Il existe une forme linéaire continue non nulle g : X → R qui sépare A de B
au sens large.

Démonstration. Fixons x0 ∈ A, y0 ∈ B et posons z0 = y0 − x0. On introduit

W = (A− x0)− (B − y0) = {x− x0 − (y − y0) : x ∈ A, y ∈ B}.

C’est un ouvert (on l’a écrit comme réunion de translatés d’ouverts) convexe contenant 0.
Soit jW sa jauge de Minkowski. Par le lemme précédent, la fonction jW est continue,
convexe et vérifie W = {jW < 1}.

Par ailleurs on a z0 ̸∈W (puisque A et B sont disjoints) et donc jW (z0) ⩾ 1. Définissons

f : Rz0 → R

λz0 7→ λ

C’est une forme linéaire sur Rz0 telle que f ⩽ jW . Par le théorème de prolongement de
Hahn–Banach, on peut prolonger f en une forme linéaire g : X → R telle que g ⩽ jW .
Puisque |g(z)| ⩽ max(jW (z), jW (−z)), la forme linéaire g est continue en 0, donc continue.
Enfin, pour tout x ∈ A et y ∈ B, on a

g(x)− g(y) + g(z0) ⩽ g(x− y + z0) ⩽ jW (x− y + z0) < 1 ⩽ g(z0),

d’où on tire comme voulu que g(x) < g(y).

On dit qu’un espace vectoriel topologique est localement convexe si pour tout voisi-
nage V de 0, il existe un ouvert convexe symétrique W tel que 0 ∈ W ⊂ V . Un espace
vectoriel normé est localement convexe.

Théorème (Théorème de séparation stricte de Hahn–Banach). Soit X un espace vec-
toriel topologique localement convexe, A ⊂ X un convexe fermé non vide et B ⊂ X
un convexe compact non vide, tels que A ∩B = ∅. Il existe une forme linéaire non nulle
continue f : X → R qui sépare A de B au sens strict.

Lemme. Il existe un voisinage V de 0 tel que A ∩ (B + V ) = ∅.

Démonstration. L’ensemble X \A est ouvert. Soit y ∈ X \A. Il existe un voisinage ouvert
Vy de 0 tel que y + Vy + Vy ⊂ X \ A. L’ensemble {y + Vy : y ∈ B} est un recouvrement
ouvert du compact B ; il existe donc un ensemble fini F ⊂ B tel que

B ⊂
⋃
y∈F

y + Vy.

Soit V =
⋂

y∈F Vy ; c’est un voisinage de 0 et

B + V ⊂
⋃
y∈F

(y + Vy + V ) ⊂
⋃
y∈F

(y + Vy + Vy) ⊂ X \A

On a ainsi A ∩ (B + V ) = ∅.
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Démonstration du théorème de séparation stricte. Puisque X est localement convexe, on
peut supposer que le voisinage V produit par le lemme est convexe symétrique. Les en-
sembles A et B + V sont alors des convexes disjoints non vides, et B + V est ouvert. Par
le théorème de séparation large, il existe une forme linéaire non nulle f telle que

sup
x∈B+V

f(x) ⩽ inf
y∈A

f(y).

On conclut en remarquant que

sup
B+V

f = sup
B
f + sup

V
f > sup

B
f.

Pour la dernière inégalité : puisque V est symétrique, si f était ⩽ 0 sur V , elle serait aussi
⩾ 0, donc nulle. Mais X =

⋃
n∈N nV (en effet, pour x dans X, la suite (n−1x) converge

vers 0 par continuité de la multiplication par un scalaire, donc ses termes de rang assez
grand sont dans V ) et donc f serait nulle.

Fin cours #4 du 6 février

4.4 Dual réel vs dual complexe

Sot X un espace de Banach complexe. C’est aussi un espace de Banach réel. On
peut définir a priori

X∗
C = {f : X → C : f continue et C-linéaire}

X∗
R = {f : X → R : f continue et R-linéaire}

On peut en fait identifier ces deux espaces.

Proposition. L’application φ : f 7→ Re f est une bijection R-linéaire et isométrique de
X∗

C sur X∗
R.

Démonstration. Il est immédiat que φ est R-linéaire.
— Montrons d’abord que φ est isométrique. Si f ∈ X∗

C, alors ∥Re f∥X∗
R

⩽ ∥f∥X∗
C

puisque tout nombre complexe λ vérifie |Reλ| ⩽ |λ|. Soit x ∈ X vérifiant ∥x∥ ⩽ 1.
Il existe un complexe λ vérifiant |λ| = 1 et λf(x) = |f(x)|. On a alors

|f(x)| = λf(x) = f(λx) = Re f(λx) ⩽ ∥Re f∥X∗
R
∥x∥

et l’inégalité ∥f∥X∗
C

⩽ ∥Re f∥X∗
R

s’ensuit en prenant la borne supérieure sur x.
Ainsi φ est isométrique et donc injective.

— Montrons que φ est surjective. Si ℓ ∈ X∗
R, la formule f : x 7→ ℓ(x) − iℓ(ix) définit

une forme R-linéaire continue sur X. On a de plus

f(ix) = ℓ(ix)− iℓ(−x) = i[ℓ(x)− iℓ(ix)] = if(x)

et donc f est C-linéaire. Comme ℓ = Re f = φ(f), on obtient la surjectivité de φ.

A l’aide de cette proposition, il est facile de déduire que le théorème de prolongement
de Hahn–Banach (énoncé et démontré dans le cas réel) s’étend avec exactement le même
énoncé au cas des espaces vectoriels normés sur C.
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4.5 Le théorème de Krein–Milman

Soit X un espace vectoriel réel et C une partie convexe de X. On montre par récurrence
sur n que si λ1, . . . , λn sont des réels positifs vérifiant λ1 + · · · + λn = 1, alors pour tous
x1, . . . , xn dans C on a

λ1x1 + · · ·+ λnxn ∈ C.

Une telle expression est appelé une combinaison convexe d’éléments de C.
On appelle enveloppe convexe de A, et on note conv(A), le plus petit ensemble convexe

qui contient A. On peut le définir par l’une ou l’autre des équations suivantes

conv(A) = intersection de la famille des convexes contenant A
= {combinaisons convexes d’éléments de A},

=

{
N∑
i=1

λixi, N ∈ N, λi ⩾ 0,
N∑
i=1

λi = 1, xi ∈ A

}

Définition. Soit X un espace vectoriel réel et C ⊂ X une partie convexe. On dit qu’un
point x ∈ C est un point extrémal de C si, dès que y, z ∈ C et λ ∈]0, 1[ vérifient λy+ (1−
λ)z = x, alors y = z = x.

Autrement dit, x est un point extrémal de C s’il ne peut pas être écrit de manière non
triviale comme combinaison convexe d’éléments de C. On peut aussi remarquer que x est
extrémal si et seulement si C \ {x} est convexe.

Exercice. Pour p = 1, 2,∞, déterminer les points extrémaux de la boule unité de (Rn, ∥·∥p).

Lemme. Dans un espace vectoriel topologique X, l’adhérence C d’une partie convexe C
est convexe.

Démonstration. On a d’abord C × C = C × C (exercice). Soit λ ∈ [0, 1] et fλ : X2 → X
l’application continue (x, y) 7→ λx + (1 − λ)y. Il faut montrer que pour tous x, y dans C,
on a λx+(1−λ)y ∈ C. On doit donc vérifier que tout voisinage ouvert V de λx+(1−λ)y
intersecte C. Mais f−1

λ (V ) est un ouvert de X×X contenant (x, y) ∈ C × C : il existe donc
(x′, y′) ∈ (C×C)∩ f−1

λ (V ). Le point λx′+(1−λ)y′ est dans C ∩V , comme recherché.

En particulier, pour toute partie A de X, la partie conv(A) est convexe ; c’est aussi
l’intersection de tous les convexes fermés contenant A.

Théorème (Théorème de Krein–Milman). Soit X un espace vectoriel topologique loca-
lement convexe, K ⊂ X un convexe compact et E l’ensemble des points extrémaux de K.
Alors

K = conv(E).

Pour démontrer le théorème de Krein–Milman, il est utile de disposer du concept
suivant. On dit qu’une partie convexe fermée non vide F ⊂ K est une face extrémale si,
dès lors que x, y dans K vérifient λx+ (1− λ)y ∈ F pour un 0 < λ < 1, alors on a x ∈ F
et y ∈ F . Un élément x ∈ K est un point extrémal de K si et seulement si {x} est une
face extrémale de K.

Il est facile de vérifier que l’intersection d’une famille quelconque de faces extrémales
de K, dès lors qu’elle est non vide, est encore une face extrémale de K.

Soit f : X → R une forme linéaire continue et m = sup{f(x) : x ∈ K}. Alors
l’ensemble {x ∈ K : f(x) = m} est une face extrémale de K.
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Preuve du théorème de Krein–Milman. On utilise le lemme suivant.

Lemme. Toute face extrémale contient un point extrémal.

Preuve du lemme. Soit F une face extrémale et soit F l’ensemble des faces extrémales de
K incluses dans F . Définissons une relation d’ordre sur F en posant F1 ≺ F2 si F1 ⊃ F2.
Montrons que l’ensemble (F ,≺) est inductif. Soit A = {Fi : i ∈ I} une partie totalement
ordonnée de F ; on a donc Fi ⊂ Fj ou Fj ⊂ Fi pour tout i, j dans I. Alors la partie de K
définie par

⋂
i∈I Fi est un majorant de (Fi)i∈I (elle est convexe fermée comme intersection

de convexes fermés et non vide par compacité de K, car l’intersection de toute sous-famille
finie est non vide ; enfin, il est facile de vérifier que c’est une face extrémale incluse dans
F ). Par le lemme de Zorn, il existe un élément maximal G de F . Montrons que G est
un singleton. Si x ̸= y sont deux éléments de G, par le théorème de séparation stricte
de Hahn–Banach, il existe une forme linéaire continue non nulle φ : X → R telle que
φ(x) ̸= φ(y). Soit M le maximum de φ sur G ; alors G0 := G ∩ {φ = M} est une face
extrémale vérifiant G0 ⊊ G, d’où contradiction.

Soit E l’ensemble des points extrémaux de K (par le lemme, puisque K est une face
extrémale, E est non vide) et L = conv(E) ; c’est un convexe fermé non vide. Montrons que
K = L. Si z ∈ L \K, par le théorème de séparation stricte de Hahn–Banach, il existe
une forme linéaire continue ψ : X → R telle que supL ψ < ψ(z). Soit M le maximum de
ψ sur K. Alors K ∩ {ψ = M} est une face extrémale disjointe de L. Par le lemme, elle
contient un point extrémal w ∈ E \ L, d’où contradiction.

En dimension finie, on peut remplacer l’utilisation du lemme de Zorn par une récur-
rence sur la dimension, et montrer le résultat plus précis suivant : si K ⊂ Rn est un convexe
compact et si E est l’ensemble de ses points extrémaux, alors K = conv(E).
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Chapitre 5

Dualité ; topologies faible et préfaible

Dans tout ce chapitre, on désigne par X un espace de Banach. Commençons par
quelques compléments. On note X∗∗ le dual de X∗ ; c’est le bidual de X. L’application
canonique JX (ou simplement J) de X dans X∗∗ est donnée pour x ∈ X et f ∈ X∗

par JX(x)(f) = f(x). Autrement dit, JX(x) est la forme linéaire f 7→ f(x). Cette forme
linéaire est continue puisque :

∥x∥X = sup
f∈X∗, ∥f∥⩽1

f(x) = sup
f∈X∗, ∥f∥⩽1

JX(x)(f) = ∥JX(x)∥X∗∗ ,

ce qui montre aussi que JX est isométrique, donc injective.

5.1 La topologie faible sur un espace de Banach

C’est la «topologie sur X la moins fine rendant continus tous les éléments de X∗». De
manière plus explicite, on appelle ouvert faible élémentaire un ensemble du type

V (x, ε,A) = {y ∈ X : ∀f ∈ A, |f(y)− f(x)| < ε}

où A est une partie finie de X∗, x est un point de X (le «centre» de V (x, ε,A)) et ε un réel
> 0 ; on appelle ouvert faible une partie de X qui peut s’écrire comme réunion quelconque
d’ouverts faibles élémentaires.

Proposition. L’ensemble σ(X,X∗) des ouverts faibles forme une topologie sur X, appe-
lée topologie faible. De plus, (X,σ(X,X∗)) est un espace vectoriel topologique localement
convexe.

Démonstration. Si y ∈ V (x, ε,A), il existe η > 0 tel que V (y, η, A) ⊂ V (x, ε,A). En effet,
pour tout f ∈ A, puisque f(y) ∈]f(x)−ε, f(x)+ε[, il existe ηf > 0 tel que ]f(y)−ηf , f(y)+
ηf [⊂]f(x)− ε, f(x) + ε[ et il suffit de considérer alors η = min{ηf : f ∈ A}.

Il découle de cette remarque que σ(X,X∗) est stable par intersection finie. La stabilité
par réunion quelconque est évidente.

La continuité de l’addition et de la multiplication scalaire découlent du fait que

V (x, ε/2, A) + V (y, ε/2, A) ⊂ V (x+ y, ε, A)

et si λ ̸= 0
λV (x, ε/|λ|, A) = V (λx, ε,A).
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Si x ∈ X \{0}, par un corollaire de Hahn–Banach, il existe f ∈ X∗ tel que ε = f(x) > 0.
Alors V (x, ε, {f}) est un ouvert faible contenant x et non 0, ce qui montre que X \ {0} est
un ouvert faible.

On a ainsi montré que (X,σ(X,X∗) est un espace vectoriel topologique. Sa locale
convexité découle du fait que V (x, ε,A) est convexe.

On utilise les adjectifs «faible» et «fort» en relation respectivement avec la topologie
faible et la topologie (dite forte) de la norme. Tout ouvert faible est un ouvert fort, c’est-à-
dire un ouvert pour la topologie de la norme : il suffit de le vérifier pour les ouverts faibles
élémentaires, pour lesquels c’est immédiat.

Si X est de dimension finie, la topologie de la norme coïncide avec la topologie faible.
En effet, quitte à remplacer la norme par une norme équivalente, on peut considérer le cas
de (Rn, ∥ · ∥∞), pour lequel les boules ouvertes sont des ouverts faibles élémentaires.

Si X est de dimension infinie, tout ouvert faible non vide contient un sous-espace de
dimension infinie, puisque V (x, ε,A) contient le sous-espace affine x+

⋂
f∈A ker(f) qui est

de codimension finie. Par conséquent, la boule-unité ouverte n’est pas un ouvert faible.

Théorème. Soit C ⊂ X une partie convexe. Alors C est fermée si et seulement si C est
fermée pour la topologie faible.

Démonstration. On a déjà observé que toute partie faiblement fermée est fortement fermée.
Supposons C fermé et montrons que X \ C est un ouvert faible. Soit x ∈ X \ C. Par
le théorème de séparation stricte de Hahn–Banach, il existe f ∈ X∗ telle que ε :=
f(x)− supC f > 0. Ainsi, l’ouvert faible élémentaire V (x, ε, {f}) contient x et est disjoint
de C. Ceci montre que X \C est un ouvert faible et donc que C est fermé pour la topologie
faible.

Soit (xn)n et x dans X. On dit que la suite (xn) converge faiblement vers x si elle
converge au sens de la topologie faible, c’est-à-dire que pour tout voisinage faible V de x
on a xn ∈ V pour n assez grand. On vérifie (exercice) que c’est équivalent à

∀f ∈ X∗ lim
n→∞

f(xn) = f(x).

Corollaire (Lemme de Mazur). Soit (xn) une suite de X qui converge faiblement vers
x ∈ X. Il existe une suite (ym) d’éléments de conv{xn : n ∈ N} qui converge fortement
vers x.

Démonstration. On pose C = conv{xn}. Son adhérence forte C est convexe, donc faible-
ment fermée par le théorème précédent. On a donc x ∈ C, donc il existe une suite (ym)
qui converge vers x.

Il est instructif de considérer un cas concret. Soit (en)n⩾1 une base hilbertienne d’un
espace de Hilbert séparable X. La suite (en) converge faiblement vers 0 : par le théorème
de Riesz–Fréchet, toute forme linéaire continue sur X est de la forme f : x 7→ ⟨x, y⟩
pour y ∈ X ; puisque ∥y∥2 =

∑
n⟨en, y⟩2 =

∑
n f(en)

2, on a bien limn→∞ f(en) = 0. La
suite (en) ne converge pas fortement vers 0. Pour illustrer le lemme de Mazur, on peut
remarquer que la suite de ses moyennes de Cesaró converge fortement vers 0 puisque∥∥∥∥e1 + · · ·+ en

n

∥∥∥∥ =
1√
n
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5.2 La topologie préfaible sur le dual d’un espace de Banach

C’est la «topologie sur X∗ la moins fine rendant continues les applications d’évaluation
en des points de X». De manière plus explicite, on appelle ouvert préfaible élémentaire un
ensemble du type

W (f, ε,B) = {g ∈ X∗ : ∀x ∈ B, |g(x)− f(x)| < ε}

où B est une partie finie de X, f est un point de X∗ et ε un réel > 0 ; on appelle ouvert
préfaible une partie de X∗ qui peut s’écrire comme réunion quelconque d’ouverts préfaibles
élémentaires.

Proposition. L’ensemble σ(X∗, X) des ouverts préfaibles forme une topologie sur X∗,
appelée topologie préfaible ou topologie faible-*. De plus, (X∗, σ(X∗, X)) est un espace
vectoriel topologique localement convexe.

Démonstration. Similaire au cas de la topologie faible.

Fin cours #5 du 13 février
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