Contrôle final du lundi 19 mai

Durée: 3 heures

Exercice 1

Soient X, Y des espaces de Banach et $T \in \mathcal{L}(X,Y)$.

- 1. Donner la défintion de l'adjoint T^* de T.
- 2. Montrer que si T est compact, alors T^* est compact.

Exercice 2

On note c_0 l'espace de Banach formé des suites réelles tendant vers 0, muni de la norme donnée par

$$\|(x_n)_{n\in\mathbf{N}}\| = \sup_{n\in\mathbf{N}} |x_n|$$

1. Soit K la boule unité fermée de c_0 . Montrer que K ne possède aucun point extrémal.

Solution. Soit $x = (x_n)_{n \in \mathbb{N}}$ dans K. Puisque $\lim x_n = 0$, il existe un entier N tel que $|x_N| \le 1/2$. Si l'on définit deux suites $y = (y_n)$ et $z = (z_n)$ par

$$y_n = \begin{cases} x_n & \text{si } n \neq N \\ x_N + \frac{1}{2} & \text{si } n = N \end{cases} \quad z_n = \begin{cases} x_n & \text{si } n \neq N \\ x_N - \frac{1}{2} & \text{si } n = N \end{cases},$$

On vérifie alors que y et z sont des éléments de K qui vérifient $y \neq z$ et $x = \frac{y+z}{2}$. Ceci montre que x est n'est pas un point extrémal de K. Ainsi, K ne possède aucun point extrémal.

2. En déduire qu'il existe pas d'espace de Banach X tel que X^* et c_0 sont isométriques (c'est-à-dire qu'il existe une bijection linéaire isométrique entre X^* et c_0).

Solution. Supposons par l'absurde qu'il existe un espace de Banach X et une bijection linéaire isométrique $u:c_0\to X^*$. Puisque u préserve la norme, u(K) est la boule unité B_{X^*} de X^* . Soit x un point extrémal de B_{X^*} . On peut écrire $x=u(x_0)$ pour $x_0\in K$. Alors x_0 est un point extrémal de K (preuve: si $x_0=\lambda y+(1-\lambda)z$ pour $0<\lambda<1$ et $y,z\in K$, alors puisque u est linéaire on a $x=\lambda u(y)+(1-\lambda)u(z)$. Commme x est extrémal dans B_{X^*} et puisque u(y) et u(z) sont dans B_{X^*} , on en déduit u(y)=u(z)=x puis $y=z=x_0$). Ceci montre que B_{X^*} n'a pas de point extrémal. Or, par le théorème de Banach-Alaoglu, B_{X^*} est compact pour la topologie préfaible; cette topologie étant localement convexe, le théorème de Krein-Milman implique que B_{X^*} est l'enveloppe convexe fermée de ses points extrémaux. On arrive à la conclusion absurde $B_{X^*}=\emptyset$.

Exercice 3

Soit $(X, \|\cdot\|_X)$ un espace de Banach complexe.

1. Pour $(x_1, x_2) \in X^2$, on pose

$$||(x_1, x_2)|| = ||x_1||_X + ||x_2||_X.$$

Montrer que $(X^2, \|\cdot\|)$ est un espace de Banach.

Solution. Il est élémentaire de montrer que cette formule définit une norme sur X^2 . Soit $z_n = (x_n, y_n)$ une suite de Cauchy dans $(X^2, \|\cdot\|)$. Les inégalités $\|x_p - x_q\|_X \leqslant \|z_p - z_q\|$ et $\|y_p - y_q\|_X \leqslant \|z_p - z_q\|$ montrent que (x_n) et (y_n) sont de Cauchy dans X, donc convergent respectivement vers des éléments x et y de X. Si on pose $z = (x, y) \in X^2$, alors $\|z_n - z\| = \|x_n - x\|_X + \|y_n - y\|_X$ tend vers 0 quand n tend vers l'infini. On a montré que l'espace normé $(X^2, \|\cdot\|)$ est complet.

2. Soient T_1 et T_2 dans $\mathcal{L}(X)$. Montrer que la formule

$$S:(x_1,x_2)\mapsto (T_1(x_1),T_2(x_2))$$

définit un opérateur sur X^2 .

Solution. Il est élémentaire de montrer que S est linéaire. Montrons que S est continu. Pour (x_1, x_2) dans X^2 , on a

$$||S(x_1, x_2)|| = ||(T_1x_1, T_2x_2)||$$

$$= ||T_1x_1||_X + ||T_2x_2||_X$$

$$\leq ||T_1|| \cdot ||x_1||_X + ||T_2|| \cdot ||x_2||_X$$

$$\leq \max(||T_1||, ||T_2||)(||x_1||_X + ||x_2||_X)$$

$$\leq C||(x_1, x_2)||$$

pour $C = \max(||T_1||, ||T_2||)$, ce qui montre la continuité de S.

3. Déterminer ||S|| en fonction de $||T_1||$ et $||T_2||$.

Solution. Le calcul de la question précédente montre que $||S|| \leq \max(||T_1||, ||T_2||)$. Si x est dans B_X , alors (x,0) est dans B_{X^2} et donc

$$||S|| \ge ||S(x,0)|| = ||T_1x||_X$$

En prenant la borne supérieure pour x dans B_X , on a donc $||S|| \ge ||T_1||$. On montre de même $||S|| \ge ||T_2||$ donc $||S|| = \max(||T_1||, ||T_2||)$.

4. Déterminer $\sigma(S)$ en fonction de $\sigma(T_1)$ et $\sigma(T_2)$.

Solution. Il est élémentaire de vérifier que si f_1 et f_2 sont deux fonctions de X dans X, alors la fonction (f_1, f_2) de X^2 dans X^2 définie par $(x_1, x_2) \mapsto (f_1(x_1), f_2(x_2))$ est bijective si et seulement si f_1 et f_2 sont bijectives. On a alors (en utilisant le théorème d'isomorphisme de Banach), pour $\lambda \in \mathbf{C}$

$$\lambda \notin \sigma(S) \iff (T_1 - \lambda \operatorname{Id}, T_2 - \lambda \operatorname{Id}) \text{ bijective}$$
 (1)

$$\iff T_1 - \lambda \text{Id bijective et } T_2 - \lambda \text{Id bijective}$$
 (2)

$$\iff \lambda \notin \sigma(T_1) \text{ et } \lambda \notin \sigma(T_2)$$
 (3)

d'où on déduit que $\sigma(S) = \sigma(T_1) \cup \sigma(T_2)$.

Exercice 4

Soient X, Y des espaces de Banach et $T \in \mathcal{L}(X,Y)$. Montrer l'équivalence entre

- 1. Il existe $\alpha > 0$ tel que, pour tout $x \in X$, on ait $||Tx|| \ge \alpha ||x||$.
- 2. L'opérateur T est injectif et d'image fermée.

Solution. Supposons la condition 1 vérifiée. Si $x \in \ker T$, alors $\alpha ||x|| \leq 0$ puis x = 0, et donc T est injectif. Soit (y_n) une suite dans $\operatorname{Im} T$ qui converge vers $y \in X$. Pour tout entier n, soit $x_n \in X$ tel que $y_n = Tx_n$. Pour des entiers p, q, l'inégalité

$$||x_p - x_q|| \le \alpha^{-1} ||T(x_p - x_q)|| = \alpha^{-1} ||y_p - y_q||$$

montre que la suite (x_n) est de Cauchy. Elle converge donc vers un élément x de X; puisque T est continue, on en déduit que la suite $(y_n) = (Tx_n)$ converge vers Tx. On a ainsi Tx = y, d'où $y \in \text{Im}T$. On a montré que T est d'image fermée.

Supposons la condition 2 vérifiée. Considérons l'application linéaire $S: X \to \operatorname{Im}(T)$ définie par $x \mapsto Tx$. Cette application est bijective. De plus, $(\operatorname{Im}(T), \|\cdot\|_Y)$ est un espace de Banach puisque T est d'image fermée. Le théorème d'isomorphisme de Banach implique qut S^{-1} est continue : il existe une constante C telle que, pour tout y dans $\operatorname{Im}(T)$ on ait $\|S^{-1}(y)\| \leqslant C\|y\|$. Cette inégalité appliquée à y = Tx (pour $x \in X$) donne $\|x\| \leqslant C\|Tx\|$, d'où l'inégalité voulue avec $C = \alpha^{-1}$.

Exercice 5

Soit X un espace de Banach réflexif, $F \subset X$ une partie convexe fermée et $x \in X$. Le but de cet exercice est de montrer qu'il existe un point $y \in F$ tel que

$$||x - y|| = d(x, F)$$

1. Soit (y_n) une suite d'éléments de F telle que $\lim_n ||x - y_n|| = d(x, F)$. Montrer qu'il existe une sous-suite $(y_{\sigma(n)})$ qui converge faiblement vers un point $y \in X$.

Solution. La suite (y_n) est bornée puisque $||y_n|| \le ||x|| + ||x - y_n||$. Dans un espace de Banach réflexif, toute suite bornée admet une sous-suite faiblement convergente (corollaire du théorème de Banach-Alaoglu). Il exsite donc une sous suite $(y_{\sigma(n)})$ qui converge faiblement vers un point $y \in X$.

2. Montrer que $y \in F$.

Solution. Puisque la partie F est convexe et fermée pour la topologie forte, elle est aussi fermée pour la topologie faible, et donc $y \in F$.

3. Montrer que ||x - y|| = d(x, F).

Solution. On a l'inégalité $||x-y|| \ge d(x,F)$ par définition de la disance à F. Pour tout $f \in B_{X^*}$ et pour tout entier n, on a

$$|f(x - y_{\sigma(n)})| \le ||x - y_{\sigma(n)}||$$

En faisant $n \to \infty$, cela donne (puisque $(x - y_{\sigma(n)})$ converge faiblement vers x - y)

$$|f(x-y)| \leqslant d(x,F)$$

et donc

$$||x - y|| = \sup_{f \in B_{X^*}} |f(x - y)| \le d(x, F)$$

Exercice 6

Dans cet exercice, on se donne X un espace de Banach réflexif, $T:X\to X$ une application linéaire continue vérifiant $\|T\|\leqslant 1$. Pour tout entier $n\geqslant 1$, on pose

$$S_n = \frac{1}{n} \sum_{k=0}^{n-1} T^k,$$

avec la convention que $T^0 = \text{Id}$.

1. Montrer que pour tout $x \in X$, il existe une sous-suite $(S_{n_k}x)_k$ de la suite $(S_nx)_n$ qui converge faiblement; on note y sa limite. Montrer que $\lim_{k\to\infty} ||TS_{n_k} - S_{n_k}|| = 0$, et en déduire que Ty = y.

Solution. Soit $x \in X$. Puisque $||T|| \le 1$, on a $||T^k x|| \le ||x||$ pour tout entier k. On en déduit que pour tout entier n on a $||S_n x|| \le \frac{1}{n} \sum_{k=0}^{n-1} ||T^k x|| \le ||x||$. Puisque la suite $(S_n x)$ est bornée dans un espace de Banach réflexif, elle admet une sous-suite faiblement convergente.

On a (somme téléscopique) $TS_n - S_n = \frac{1}{n}(T^n - \text{Id})$ et donc $||TS_n - S_n|| \leq \frac{2}{n}$. Ceci implique que $\lim_{k \to \infty} ||TS_{n_k} - S_{n_k}|| = 0$.

Pour montrer que Ty = y, il suffit par un corollaire du théorème de Hahn-Banach de montrer que f(Ty) = f(y) pour tout $f \in X^*$. Soit $f \in X^*$, on a $f(y) = \lim_{k \to \infty} f(S_{n_k}x)$ et (puisque $f \circ T \in X^*$) également $f(Ty) = \lim_{k \to \infty} f(TS_{n_k}x)$. Puisque

$$|f(S_{n_k}x) - f(TS_{n_k}x)| \le ||f||_{X^*} ||TS_{n_k} - S_{n_k}||_{op} ||x||_X$$

on a $\lim_{k\to\infty} f(S_{n_k}x) - f(TS_{n_k}x) = 0$ et donc f(Ty) = f(y).

2. En déduire qu'il existe une sous-suite $(A_k)_k$, avec $A_k \in \text{conv}\{S_n : n \in \mathbb{N}\}$ telle que $(A_k x)_k$ converge fortement vers y.

Solution. Le vecteur y est dans l'adhérence faible de la partie $B = \{S_n x : n \in \mathbb{N}\}$. Par le lemme de Mazur, il est dans l'adhérence forte de conv B, d'où le résultat

3. Montrer que pour tout $A \in \text{conv}\{T^n \text{ t.q. } n \in \mathbf{N}\}$, on a $\lim_{n \to \infty} (S_n Ax - S_n x) = 0$.

Solution. On peut écrire $A = \sum_{i=1}^{N} \lambda_i T^{k_i}$ pour des réels positifs $\lambda_1, \dots, \lambda_N$ de somme 1 et des entiers k_i . Par l'inégalité triangulaire, et en remarquant que $||S_n T^k - S_n|| \leq \frac{2k}{n}$ (série télescopique), on a

$$||S_n A - S_n|| \le \sum_{i=1}^N \lambda_i ||S_n T^{k_i} - S_n|| \le \sum_{i=1}^N \lambda_i \frac{2k_i}{n}$$

d'où le résultat.

4. En déduire que pout tout $x \in X$, la suite $(S_n x)_n$ converge fortement.

Solution. Pour $x \in X$, soit y donné par la question 1 et soit (A_k) une suite dans $\operatorname{conv}(S_n)$ telle que $(A_k x)$ converge fortement vers y (question 2). Pour tout $\varepsilon > 0$, il existe k tel que $||A_k x - y|| \le \varepsilon$. Puisque Ty = y, on a $S_n y = y$ pour tout n. On écrit alors

$$||S_n x - y|| \le ||S_n x - S_n A_k x|| + ||S_n A_k x - y|| = ||S_n x - S_n A_k x|| + ||S_n (A_k x - y)||$$

Le second terme est $\leq \varepsilon$ et le premier terme tend vers 0 par la question 3 (puisque $A_k \in \text{conv}(S_n)$, on a aussi $A_k \in \text{conv}(T^n)$). On a donc $||S_n x - y|| \leq 2\varepsilon$ pour n assez grand, d'où le résultat.

5. Pour $x \in X$, on pose $P(x) = \lim_{n \to \infty} S_n x$. Montrer que P est une application linéaire continue, qui est un projecteur (c'est-à-dire qu'elle vérifie $P^2 = P$). Déterminer l'image de P.

Solution. P est linéaire comme limite d'applications linéaires. De plus, pour tout $x \in X$, on a $||S_n x|| \le ||x||$ donc $||Px|| \le ||x||$, et donc P est continue de norme ≤ 1 . Il découle de la question 1 que TP = P, ce qui implique que $S_n P = P$ et donc $P^2 = P$. Enfin, on remarque que $P(X) = \ker(T - \mathrm{Id})$, l'ensemble des points fixes de T (l'inclusion \subset a été vue à la question 1, et l'inclusion \supset est évidente).

6. Application : soient X l'espace de Banach complexe $L^2([0,1])$ et T l'application linéaire définie par

$$(Tf)(x) = f(x + \theta \mod 1)$$

où θ est un nombre irrationnel. Pour $f \in X$, quelle est la limite de la suite $S_n f$? Indication. On pourra utiliser le fait que les fonctions $(e_n)_{n \in \mathbb{Z}}$ définies par $x \mapsto e^{2i\pi nx}$ forment une base hilbertienne de X.

Solution. L'espace X est réflexif (c'est un espace de Hilbert) donc on peut appliquer les résultats précédents.

Pour $n \in \mathbf{Z}$, on a $Te_n = e^{2i\pi n\theta}e_n$. Toute fonction $f \in L^2([0,1])$, s'écrit (la série convergent dans $L^2([0,1])$)

$$f = \sum_{n \in \mathbf{Z}} \alpha_n e_n$$

avec $\alpha_n = \int_0^1 f(x) \overline{e_n(x)} \, dx$. Puisque T est continu, on a (toujours au sens de la convergence L^2)

$$Tf(x) = \sum_{n \in \mathbf{Z}} \alpha_n Te_n = \sum_{n \in \mathbf{Z}} \alpha_n e^{2i\pi n\theta} e_n$$

Soit f dans l'image de P, c'est-à-dire telle que Tf = f. On a donc

$$\sum_{n \in \mathbf{Z}} \alpha_n e_n = \sum_{n \in \mathbf{Z}} \alpha_n e^{2i\pi n\theta} e_n$$

d'où on déduit que $\alpha_n = \alpha_n e^{2i\pi n\theta}$ pour tout $n \in \mathbf{Z}$. Puisque θ est irrationnel, on a donc $\alpha_n = 0$ pout tout $n \in \mathbf{Z}^*$. Ainsi l'image de P est formée uniquement des fonctions constantes. Par ailleurs, puisque $||P|| \leq 1$, la projection P est orthogonale (exercice classique...). En conclusion, P est la projection orthogonale sur le sous-espace de dimension 1 formé des fonctions constantes. Ainsi, pour tout $f \in L^2([0,1]]$, la suite $(S_n f)$ converge en norme vers la fonction constante égale à $\int_0^1 f(x) \, \mathrm{d}x$.