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Exercice 1. Montrer que l’espace topologique [0, 1] ne peut pas être muni d’une structure de groupe qui en
fait un groupe topologique.

Solution. Supposons qu’il existe un produit µ : [0, 1] → [0, 1] qui fasse de [0, 1] un groupe topologique. On
note, pour g ∈ [0, 1], on note Lg : [0, 1] → [0, 1], x 7→ µ(g, x). Alors L0 ◦ L−11/2 est un homéomorphisme d’un
voisinage de 1/2 sur un voisinage de 0, ce qui entraîne qu’il existe un intervalle ouvert autour de 0 dans
[0, 1].

Exercice 2. Soit G un groupe agissant sur un ensemble X et soit H un sous-groupe de G. On suppose
que H agit transitivement sur X et contient le stabilisateur Gx d’un élément x de X. Démontrer que H = G.

Solution. Soit g ∈ G. Comme H agit transitivement sur X, il existe h ∈ H tel que g · x = h · x. Mais alors,
h−1g ∈ Gx ⊂ H, si bien que g = hh−1g ∈ H.

Exercice 3. Soit G un groupe topologique agissant continûment sur un espace métrique X [cette précision
est uniquement destinée à pouvoir utiliser les suites pour tester la fermeture]. Démontrer que si K est un
sous-groupe compact de G et Y est un fermé de X, alors KY = {k · y : k ∈ K, y ∈ Y } est fermé.

Solution. Soit y dans l’adhérence de KY . Il existe des suites (kn)n∈N et (yn)n∈N à valeurs dans K et Y telles
que y = limn→∞ kn ·yn. Quitte à extraire une sous-suite, on peut supposer que la suite (kn) converge vers un
élément k de K. Alors, limn→∞ yn = limn→∞ k

−1
n · (kn · yn) = k−1 · y (par continuité du passage à l’inverse

et de l’action) donc, puisque Y est fermé, k−1y ∈ Y . Enfin, y = k · (k−1 · y) qui est bien dans KY .

Exercice 4. Soit n un entier naturel. Pour p et q entiers tels que p + q ≤ n, on note Op,q l’ensemble des
matrices symétriques qui définissent une forme quadratique de signature (p, q).

1. Soit GL+ le groupe des matrices n× n réelles de déterminant strictement positif. On rappelle qu’il est
connexe. On fait agitGL+ sur l’espace Sn des matrices symétriques réelles par congruence : g·A = gAgT

pour g ∈ GL+ et A ∈ Sn.
(a) Démontrer que les parties Op,q sont les orbites de GL+.

Solution. D’après le théorème d’inertie de Sylvester, les parties Op,q sont les orbites de GLn(R).
Puisque GL+

n est un sous-groupe de GLn, l’orbite sous GL+
n d’une matrice appartenant à Op,q

est tout entière contenue dans Op,q. Il suffit de montrer que réciproquement, si deux matrices
sont dans la même orbite Op,q, alors elles sont dans la même orbite sous GL+

n . Pour cela, il
suffit de montrer que toute matrice de Op,q est dans l’orbite de Dp,q sous GL+

n , où Dp,q =
diag(1, . . . , 1,−1, . . . ,−1, 0, . . . , 0), avec p coefficients égaux à 1 et q coefficients égaux à −1.
Soit A une matrice symétrique de signature (p, q). Il existe une matrice inversible P telle que
P ·Dp,q = A. Si le déterminant de P est strictement positif, A et B sont dans la même orbite sous
GL+

n . Sinon, posons P ′ = P diag(−1, 1, . . . , 1) : P ′ est une matrice de déterminant strictement
positif et P ·D = A. Ainsi, A et D sont dans la même orbite sous GL+

n .

(b) En déduire que pour tout (p, q), la partie Op,q est connexe.

Solution. On vient de démontrer que l’application GL+
n → Op,q, P 7→ P · Dp,q est surjective.

Comme GL+
n est connexe, il en est de même de Op,q.



2. Dans cette question, on suppose que n = 2. Démontrer que O1,1 est ouverte mais pas fermée.

Solution. Deux réels sont non nuls et de signe contraire si, et seulement si leur produit est strictement
négatif. Appliquant cette remarque aux valeurs propres d’une matrice symétrique A de taille 2 × 2,
on voit que A appartient à O1,1 si, et seulement si detA < 0. Par continuité du déterminant, cette
condition définit un ouvert de l’espace des matrices symétriques.
En revanche, O1,1 n’est pas fermée car la suite des matrices diag(1/k,−1/k) (k ∈ N∗) est à valeurs
dans O1,1 mais elle converge vers la matrice nulle, qui appartient à O0,0.

3. Dans cette question, n est quelconque. Démontrer que Op,q est fermée si et seulement si p = q = 0.

Solution. Puisque O0,0 = {0}, c’est une orbite fermée. Si p ou q est strictement positif, la suite de
matrices diag(1/k, . . . , 1/k,−1/k, . . . ,−1/k, 0, . . . , 0), où il y a p coefficients > 0 et q coefficient < 0 et
où k ∈ N∗, est à valeurs dans Op,q alors que sa limite, la matrice nulle, appartient à O0,0 6= Op,q.

Exercice 5. Soit q une forme quadratique anisotrope (sans vecteurs isotropes) sur un espace vectoriel réel E
de dimension finie. Démontrer de deux façons différentes que q est soit définie positive, soit définie positive :

a) en utilisant l’existence de bases orthogonales ;

b) sans utiliser l’existence de bases orthogonales.

Solution. a) Soit (e1, . . . , en) une base orthogonale de E et soit ai = q(ei) (1 ≤ i ≤ n). Si tous les ai
sont de même signe, alors q est définie positive ou définie négative. Sinon, si ai < 0 et aj > 0, alors,
comme ei et ej sont orthogonaux,

q

(
1√
|ai|

ei +
1
√
aj
ej

)
=

1

−ai
q(ei) +

1

aj
q(ej) = 0,

contradiction.

b) Supposons qu’il existe deux vecteurs v et v′ tels que q(v) > 0 et q(v′) < 0. Comme q(λv) = λ2q(v)
pour tout scalaire λ, on sait que v et v′ ne sont pas colinéaires. Par suite, le vecteur tv+ (1− t)v′ ne
s’annule pour aucun t de [0, 1]. Comme la fonction f : t 7→ q

(
tv + (1 − t)v′

)
est continue et change

de signe entre 0 et 1, par le théorème des valeurs intermédiaires, il existe t0 tel que f(t0) = 0, ce qui
fournit un vecteur isotrope et une contradiction.

Exercice 6. Soit E un espace vectoriel de dimension finie sur R et soit q une forme quadratique non
dégénérée sur q.

1. Montrer que si q admet des vecteurs isotropes non nuls, tout réel non nul est la valeur propre d’une
isométrie :

∀λ ∈ R∗, ∃g ∈ O(q), ∃v ∈ E \ {0}, g(v) = λv.

Première solution. Comme q(v) = 0 = q(λv), l’application Rv → Rv, v 7→ λv est une isométrie. D’après
le théorème de Witt, elle se prolonge en une isométrie g : E → E pour laquelle v est un vecteur propre
associé à la valeur propre λ.
Deuxième solution. Soit ϕ la forme bilinéaire associée à q. Comme q est non dégénérée, il existe v′ ∈ E
tel que ϕ(v, v′) 6= 0. Quitte à remplacer v′ par v′/ϕ(v, v′), on peut supposer ϕ(v, v′) = 0. La restriction
de q à F = Rv⊕Rv′ est non dégénérée (son discriminant est −ϕ(v, v′)2) donc F⊥ est un supplémentaire
de F . L’application définie par g(v) = λv, g(v′) = λ−1v′ et g|F⊥ = idF⊥ est une isométrie de q. �

2. Montrer que si q est anisotrope, les seules valeurs propres des isométries sont −1 et 1 :

∀λ ∈ R∗,
[
∃g ∈ O(q), ∃v ∈ E \ {0}, g(v) = λv

]
=⇒ λ = ±1.

Solution. Soit λ ∈ R∗, soit g une isométrie et soit v un vecteur propre de g associé à la valeur propre λ.
Comme g est une isométrie, on a : q(v) = q

(
g(v)

)
= q(λv) = λ2q(v). Comme q est anisotrope, on a

q(v) 6= 0. Par suite, λ2 = 1 et λ = ±1.



Exercice 7. Soit n un entier non nul. Sur l’espace Mn(R), soit q la forme quadratique définie par

∀A ∈Mn(R), q(A) = tr(A2).

1. Écrire la forme bilinéaire associée à q.

Solution. Elle est définie par b(A,A′) = tr(AA′).

2. Déterminer la signature de q et en déduire l’indice de q.
On pourra calculer tr(A2) en fonction des coefficients (aij) de A.

Solution. On a, pour A = (aij)1≤i,j≤n,

tr(A2) =
n∑

i,j=1

aijaji =
n∑

i=1

a2ii +
∑

1≤i<j≤n
2aijaji =

n∑
i=1

a2ii +
∑

1≤i<j≤n

(aij + aji)
2 − (aij − aji)2

2
.

On en déduit que la signature est
(
n+ n(n−1)

2 , n(n−1)2

)
=
(n(n+1)

2 , n(n−1)2

)
et l’indice de q est n(n−1)

2 .

3. Calculer q(A) lorsque A est une matrice nilpotente.

Solution. Si A est nilpotente, sa seule valeur propre est 0 donc son polynôme caractéristique est Xn, qui
est scindé, si bien qu’elle est trigonalisable avec des 0 sur la diagonale. On en déduit que tr(A2) = 0.

4. Déterminer un sous-espace totalement isotrope de dimension n(n − 1)/2 contenu dans l’ensemble N
des matrices nilpotentes.

Solution. L’espace des matrices triangulaire supérieures nilpotentes convient. Comme sa dimension est
l’indice de q, il est maximal.

Exercice 8. Soit E un espace vectoriel réel de dimension n finie et soit q une forme quadratique non
dégénérée sur E ; on note ϕ la forme bilinéaire associée. Soit D une droite non isotrope, engendrée par un
vecteur u. Soit s la réflexion par rapport à D, définie par :

∀v ∈ E, s(v) = v − 2
ϕ(v, u)

ϕ(u, u)
u.

1. Vérifier que E = D ⊕D⊥.

Solution. Comme D n’est pas isotrope, D ∩ D⊥ = {0}. Par ailleurs, comme q n’est pas dégénérée,
dimD + dimD⊥ = dimE. Par suite, D ⊕D⊥ = E.

2. Préciser les sous-espaces propres et les valeurs propres de s.

Solution. On a s(u) = −u et, si v ∈ D⊥, s(v) = v. Comme D et D⊥ sont supplémentaires, s est
diagonalisable et on a ker(s+ idE) = D et ker(s− idE) = D⊥.

3. Vérifier que s est une involution et montrer que c’est une isométrie.

Solution. On a, pour v ∈ E :

s2(v) = s(v)− 2
ϕ(s(v), u)

ϕ(u, u)
u

= v − 2
ϕ(v, u)

ϕ(u, u)
u− 2

ϕ
(
v − 2ϕ(v,u)

ϕ(u,u)u, u
)

ϕ(u, u)
u

= v − 4
ϕ(v, u)

ϕ(u, u)
+ 4

ϕ(v, u)ϕ(u, u)

ϕ(u, u)
u

= v.

Par ailleurs, les restrictions de s à D et D⊥ sont des isométries. Comme ces deux sous-espaces sont
supplémentaires et orthogonaux, l’application globale s est une isométrie.



4. Soit g une isométrie et soit t = gsg−1. Vérifier que t est une réflexion et que ker(t+idE) est isométrique
à ker(s+ idE).

Solution. Par principe de conjugaison ou par vérification directe, on a ker(t+ idE) = g
(
ker(s+ idE)

)
,

c’est-à-dire que l’isométrie g envoie D sur ker(t+ idE).

5. Montrer que la classe de conjugaison de s est l’ensemble des réflexions t par rapport à une droite D′

isométrique à D.

Solution. Vu la question précédente, il suffit de montrer que si D′ est une droite isométrique à D, la
réflexion t par rapport à D′ est dans la classe de conjugaison de D. Pour cela, on part d’une isométrie
σ : D → D′. Par le théorème de Witt, on peut prolonger σ en une isométrie g de E entier (g(D) = D′).
Vérifions que gsg−1 = t. Pour u′ ∈ D′, on a gsg−1(u′) = −gg−1(u′) = −u′ puisque g−1(u′) ∈ D =
ker(s + idE). Pour v′ ∈ D′⊥, on a gsg−1(v′) = gg−1(v′) = v′ puisque g−1(v′) ∈ D⊥ = ker(s − idE).
Cela caractérise la réflexion t.


