Examen: Groupes classiques et géométrie

Durée: 3 heures

L'énoncé comporte deux pages. Les documents ne sont pas autorisés. Les réponses doivent être justifiées.

Exercice 1. On munit l'espace $\mathcal{M}_n(\mathbb{R})$ de la norme N_2 définie pour $M=(m_{ij})_{1\leq i,j\leq n}$ par

$$N_2(M)^2 = \sum_{1 \le i, j \le n} m_{ij}^2.$$

On veut prouver que si $M \in \mathrm{SL}_n(\mathbb{R})$, alors $N_2(M) \geq \sqrt{n}$, avec égalité si et seulement si $M \in \mathrm{SO}_n(\mathbb{R})$.

1. (a) Montrer que pour toute matrice M, on a $N_2(M)^2 = \operatorname{tr}({}^t M M)$.

Solution. Soit $M = (m_{ij})_{1 \leq i,j \leq n}$. Le coefficient d'indice (i,j) de tMM est $\sum_{k=1}^n m'_{ik} m_{kj} = \sum_{k=1}^n m_{ki} m_{kj}$, d'où

$$\operatorname{tr}(^{t}MM) = \sum_{i=1}^{n} \sum_{k=1}^{n} m_{ki} m_{ki} = \sum_{1 \le i, k \le n} m_{ki}^{2} = N_{2}(M)^{2}.$$

(b) En déduire que si $M \in \mathcal{O}_n(\mathbb{R})$, $N_2(M) = \sqrt{n}$.

Solution. Si $M \in \mathcal{O}_n(\mathbb{R})$, alors ${}^tMM = \mathcal{I}_n$ donc $N_2(M)^2 = \operatorname{tr} \mathcal{I}_n = n$ et $N_2(M) = \sqrt{n}$. \square

2. Rappeler le théorème de décomposition de Cartan.

Solution. Pour toute matrice inversible M, il existe deux matrices orthogonales Q_1 et Q_2 et une matrice diagonale dont les valeurs propres sont positives D telle que $M = Q_1DQ_2$.

Si on note $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, la famille $(\lambda_i^2)_{1 \leq i \leq n}$ est le spectre de tMM . Elle (la matrice D ou, ce qui revient au même, la famille $(\lambda_i)_{1 \leq i \leq n}$) est unique à l'ordre près.

Rappel: L'inégalité arithmético-géométrique exprime que pour toute famille $(x_i)_{1 \le i \le n}$ de réels strictement positifs, on a $(x_1 \cdots x_n)^{1/n} \le (x_1 + \cdots + x_n)/n$, avec égalité si et seulement si tous les x_i sont égaux.

3. À l'aide de l'inégalité arithmético-géométrique montrer que si $D \in \mathrm{SL}_n(\mathbb{R})$ et diagonale à coefficients positifs alors $N_2(D) \geq \sqrt{n}$ et l'égalité est atteinte si et seulement si $D = \mathrm{I}_n$.

Solution. Soient $\lambda_1, \ldots, \lambda_n$ les coefficients diagonaux de D. On a $\mathbb{N}_2(D)^2 = \lambda_1^2 + \cdots + \lambda_n^2$. Comme $D \in \mathrm{SL}_n(\mathbb{R})$, on a l'égalité $\lambda_1 \cdots \lambda_n = 1$. Par l'inégalité arithmético-géométrique appliquée à $x_i = \lambda_i^2$ (pour $1 \le i \le n$), on a

$$1 = (\lambda_1 \cdots \lambda_n)^{2/n} \le \frac{\lambda_1^2 + \cdots + \lambda_n^2}{n} = \frac{N_2(D)^2}{n},$$

c'est-à-dire que $N_2(D) \ge \sqrt{n}$. De plus, il y a égalité si et seulement si tous les λ_i^2 sont égaux. Comme leur produit vaut 1, cela se produit si et seulement si $\lambda_i^2 = 1$ pour tout i, et comme $\lambda_i > 0$, si $\lambda_i = 1$ pour tout i.

Ainsi, $N_2(D) \geq \sqrt{n}$, avec égalité si et seulement si $D = I_n$.

4. Utiliser la décomposition de Cartan pour conclure, c'est-à-dire démontrer que si $M \in \mathrm{SL}_n(\mathbb{R})$, alors $N_2(M) \geq \sqrt{n}$ et l'égalité est atteinte si et seulement si $M \in \mathrm{SO}_n(\mathbb{R})$.

(Indication : exprimer la norme $N_2(M)$ en fonction des matrices qui interviennent dans la décomposition de Cartan de M.)

Solution. Soit $M \in \mathrm{SL}_n(\mathbb{R})$. Soient $Q_1, Q_2 \in \mathrm{O}_n(\mathbb{R})$ et D diagonale positive telles que $M = Q_1 D Q_2$. Alors Avec les notations ci-dessus,

$$N_2(M)^2 = \operatorname{tr}({}^tQ_2D {}^tQ_1Q_1DQ_2) = \operatorname{tr}(Q_2^{-1}D^2Q_2) = \operatorname{tr}D^2 = N_2(D)^2,$$

si bien que $N_2(M)=N_2(D)$. Par la question 3, on a donc $N_2(M)\geq \sqrt{n}$, avec égalité si et seulement si $D=\mathrm{I}_n$.

Il est presque évident que l'égalité $D = I_n$ caractérise les éléments M du groupe orthogonal. Si $D = I_n$, alors $M = Q_1Q_2 \in O_n(\mathbb{R})$. Inversement, si $M \in O_n(\mathbb{R})$, on peut prendre comme décomposition de Cartan $Q_1 = M$, $D = I_n$ et $Q_2 = I_n$.

Remarque. On pouvait traiter le problème avec la décomposition polaire à la place de la décomposition de Cartan. En écrivant M = QS, où $Q \in O_n(\mathbb{R})$ et $S \in \mathscr{S}_n^{++}$, on voit que $N_2(M)^2 = \operatorname{tr}({}^tSS)$. On peut diagonaliser S, i.e. trouver P orthogonale telle que ${}^tSS = PD({}^tP)$ (oui, c'est bien le même D que ci-dessus), ce qui donne $N_2(M) = N_2(S) = N_2(D)$ et permet de conclure de la même façon : $N_2(D) \geq \sqrt{n}$ avec égalité si et seulement si $D = I_n$, i.e. $S = I_n$, i.e. $M \in O_n(\mathbb{R})$. (On a au passage $M = QPD({}^tP)$, qui est une décomposition de Cartan.)

Exercice 2. Soit n un entier strictement positif et soient p et q deux entiers positifs tels que $p+q \leq n$. On note $I_{p,q}$ la matrice diagonale diag $(1,\ldots,1,-1,\ldots,-1,0,\ldots,0)$ avec p (resp. q) coefficients égaux à 1 (resp. -1). Soit $\mathscr{O}_{p,q}$ l'orbite de $I_{p,q}$ pour l'action suivante de $\mathrm{GL}_n(\mathbb{R})$ sur $\mathscr{M}_n(\mathbb{R})$: si $P \in \mathrm{GL}_n(\mathbb{R})$ et $S \in \mathscr{M}_n(\mathbb{R})$ alors $P \cdot S = PS$ (P).

1. Montrer que les valeurs propres de chaque $M \in \mathcal{O}_{p,q}$ sont toutes réelles et que parmi elles, le nombre (compté avec multiplicité) de celles qui sont strictement positives (resp. strictement négatives) est égal à p (resp. q).

Solution. Soit $M \in \mathcal{O}_{p,q}$ et soit P inversible telle que $M = PI_{p,q}({}^tP)$.

D'après le théorème d'orthogonalisation simultanée ou le théorème spectral, il existe Q orthogonale telle et D diagonale telle que $M = QDQ^{-1} = QD(^tQ)$.

Cela entraı̂ne que D et $I_{p,q}$ sont congruentes : $D = Q^{-1}PI_{p,q}{}^t(Q^{-1}P)$. Autrement dit, D et $I_{p,q}$ représentent la même forme quadratique dans des bases différentes.

Par le théorème d'inertie de Sylvester, le nombre de coefficients diagonaux strictement positifs (resp. négatifs) de D et de $I_{p,q}$ sont égaux. Comme les valeurs propres de M sont justement les coefficients diagonaux de D, on en déduit que M admet p valeurs propres strictement positives et q strictement négatives.

2. Donner l'interprétation la plus cohérente possible selon vous (en une ou deux phrases maximum) de l'ensemble $\mathscr{O}_{p,q}$ en termes de formes quadratiques réelles sur \mathbb{R}^n .

Solution. L'ensemble $\mathcal{O}_{p,q}$ est, au choix,

- l'ensemble des matrices dans la base canonique de toutes les formes quadratiques de signature (p,q) sur \mathbb{R}^n ,
- ou l'ensemble des matrices dans n'importe quelle base de la forme quadratique définie sur \mathbb{R}^n par $q(x_1,\ldots,x_n)=\sum_{i=1}^p x_i^2-\sum_{j=1}^q x_{p+j}^2$.
- 3. Montrer que l'adhérence de $\mathcal{O}_{p,q}$ est stable par $\mathrm{GL}_n(\mathbb{R})$. En déduire que l'adhérence de $\mathcal{O}_{p,q}$ est une réunion d'orbites.

Solution. Il s'agit de montrer que si M est dans l'adhérence de $\mathcal{O}_{p,q}$ et si N est dans l'orbite de M, alors N est dans l'adhérence de $\mathcal{O}_{p,q}$. Cela résulte de la continuité de l'action.

En effet, il existe une suite $(A_k)_{k\in\mathbb{N}}$ à valeurs dans $\mathscr{O}_{p,q}$ et une matrice $P\in \mathrm{GL}_n(\mathbb{C})$ telles que $M=\lim_{k\to+\infty}$ et $N=PM({}^tP)$. Par continuité de l'application $A\mapsto PA({}^tP)$, on a $N=\lim_{k\to\infty}PA_k({}^tP)$ et, pour tout k, $PA_k({}^tP)$ est dans $\mathscr{O}_{p,q}$.

- 4. Soient p > 0 et r un entier compris entre 0 et p 1.
 - (a) Soit $\varepsilon > 0$. On note P_{ε} la matrice diagonale $P_{\varepsilon} = \operatorname{diag}(\underbrace{1,\ldots,1}_r,\underbrace{\varepsilon,\ldots,\varepsilon}_{p-r},\underbrace{1,\ldots,1}_{n-p})$ avec r coefficients 1, suivis de p-r coefficients égaux à ε et de n-p coefficients égaux à 1. Calculer $P_{\varepsilon}I_{p,q}{}^tP_{\varepsilon}$.

Solution. Bien sûr, ${}^tP_{\varepsilon} = P_{\varepsilon}$. Multiplier à gauche (resp. à droite) par une matrice diagonale, c'est multiplier la *i*-ème ligne (resp. colonne) par le *i*-ème coefficient diagonal ¹. On en déduit que

$$P_{\varepsilon}I_{p,q}{}^{t}P_{\varepsilon} = \operatorname{diag}(\underbrace{1,\ldots,1}_{r},\underbrace{\varepsilon^{2},\ldots,\varepsilon^{2}}_{p-r},\underbrace{-1,\ldots,-1}_{q},\underbrace{0,\ldots,0}_{n-p-q}).$$

(b) En déduire que $I_{r,q}$ appartient à l'adhérence de l'orbite $\mathscr{O}_{p,q}$.

Solution. Pour tout $\varepsilon \neq 0$, puisque P_{ε} est inversible, la matrice $P_{\varepsilon}I_{p,q}{}^{t}P_{\varepsilon}$ appartient à $\mathcal{O}_{p,q}$. Par ailleurs, soit

$$M_0 = \lim_{\varepsilon \to 0} P_{\varepsilon} I_{p,q} {}^t P_{\varepsilon} = \operatorname{diag}(\underbrace{1, \dots, 1}_r, \underbrace{0, \dots, 0}_{p-r}, \underbrace{-1, \dots, -1}_q, \underbrace{0, \dots, 0}_{n-p-q}).$$

Cela montre que M_0 appartient à l'adhérence de $\mathcal{O}_{p,q}$. Or la matrice M_0 est congruente à $I_{r,q}$: il suffit de permuter les vecteurs de base convenablement. Plus précisément, si on considère la matrice de permutation suivante, qui est orthogonale,

$$Q = \begin{pmatrix} \mathbf{I}_r & 0 & 0 & 0 \\ 0 & 0 & \mathbf{I}_q & 0 \\ 0 & \mathbf{I}_{p-r} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{I}_{n-p-q} \end{pmatrix},$$

on voit que $I_{r,q} = QM_0Q^{-1} = QM_0({}^tQ)$.

On en déduit avec la question 3 que $I_{r,q}$ appartient à l'adhérence de $\mathcal{O}_{p,q}$.

5. Démontrer que pour tout couple (r,s) tel que $r \leq p$ et $s \leq q$, on a $\mathscr{O}_{r,s} \subset \overline{\mathscr{O}}_{p,q}$.

Solution. Fixons (r, s) avec $r \leq p$ et $s \leq q$. Pour $\varepsilon \neq 0$, on introduit la matrice diagonale

$$Q_{\varepsilon} = \operatorname{diag}(\underbrace{1, \dots, 1}_{r}, \underbrace{\varepsilon, \dots, \varepsilon}_{p-r}, \underbrace{1, \dots, 1}_{s}, \underbrace{\varepsilon, \dots, \varepsilon}_{q-s}, \underbrace{1, \dots, 1}_{n-p-q}).$$

La limite $N_0 = \lim_{\varepsilon \to 0} Q_{\varepsilon} I_{p,q}({}^tQ_{\varepsilon})$ appartient à l'adhérence de $\mathscr{O}_{p,q}$ et un calcul analogue à ce qui précède montre que N_0 est congruente à $I_{r,s}$. Par la question 3, $I_{r,s}$ appartient à l'adhérence de $\mathscr{O}_{p,q}$ et, plus globablement, l'orbite $\mathscr{O}_{r,s}$ est toute entière contenue dans l'adhérence de $\mathscr{O}_{p,q}$. \square

Exercice 3. Si $A \in \mathcal{M}_n(\mathbb{C})$ on note χ_A le polynôme caractéristique de A et \mathbf{m}_A le polynôme minimal de A. Soit $L = \{A \in \mathcal{M}_n(\mathbb{C}) : \chi_A = \mathbf{m}_A\}$. On se propose de montrer que L est un sous-ensemble non vide, ouvert et connexe de $\mathcal{M}_n(\mathbb{C})$.

^{1.} Ici, ce n'est pas l'argument le plus économique puisque les trois matrices sont diagonales. Néanmoins, tel quel, il doit rappeler des manipulations réalisées avec les matrices triangulaires.

1.	Montrer	que	L	\neq	Ø.
----	---------	-----	---	--------	----

Solution. Toute matrice diagonale admettant n valeurs propres distinctes appartient à L. On a vu en TD que la matrice compagnon d'un polynôme appartient à L – cf. A_a dans la question 5. \square

- 2. Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice quelconque. Pour chaque vecteur $v \in \mathbb{C}^n$ notons m_v un polynôme unitaire (i.e. avec coefficient dominant 1) et de degré ≥ 1 minimal tel que $m_v(A)(v) = 0$.
 - (a) Montrer que m_v existe.

Solution. Première version. Soit d minimal tel que la famille (v, Av, \ldots, A^dv) est liée. Un tel d existe car pour $d \geq n$, la famille contient strictement plus de vecteurs qu'une base de \mathbb{C}^n . Par ailleurs, la famille (v) est libre donc $d \geq 1$. Écrivons une relation de dépendance linéaire pour (v, Av, \ldots, A^dv) , disons $a_0v + a_1Av + \cdots + a_dA^dv$, avec $(a_0, \ldots, a_d) \in \mathbb{C}^{d+1}$. Par minimalité de d, le coefficient a_d n'est pas nul. Posons $m_v = X^d + \sum_{j=0}^{d-1} \frac{a_j}{a_d} X^j$, alors m_v est unitaire et l'on a $m_v(A)(v) = A^dv + \sum_{j=0}^{d-1} \frac{a_j}{a_d} A^j v = 0$.

Deuxième version. Considérons l'application $\mathbb{C}[X] \to \mathbb{C}^n$, $f \mapsto f(A)(v)$. C'est une application linéaire. La dimension de l'espace d'arrivée est strictement plus petite que celle, infinie, de l'espace de départ donc le noyau de ev n'est pas réduit à $\{0\}$. On vérifie que son noyau est un idéal dont le générateur unitaire convient.

(b) Montrer que m_v est unique. (Indication : on se rappelle la division euclidienne.)

Solution. Première version. Soit \mathbf{m}'_v un deuxième polynôme satisfaisant aux mêmes conditions que \mathbf{m}_v . Écrivons la division euclidienne de \mathbf{m}'_v par \mathbf{m}_v , disons $\mathbf{m}'_v = q\mathbf{m}_v + r$ avec $q, r \in \mathbb{C}[X]$ et deg $r < \deg \mathbf{m}_v$. En évaluant en A puis en v, on trouve

$$0 = m'_v(A)(v) = q(A)(m_v(A)(v)) + r(A)(v) = r(A)(v).$$

Par minimalité de $\deg m_v$, il vient r=0. Par minimalité de $\deg m'_v$, il vient $\deg m'_v = \deg m_v$, c'est-à-dire que q est une constante. Puisque m_v et m'_v sont tous deux unitaires, q=1 et finalement, $m'_v = m_v$.

Deuxième version. Le noyau de ev est un idéal et dans un idéal de $\mathbb{C}[X]$, un élément de degré minimal est un générateur. On conclut car un idéal de $\mathbb{C}[X]$ possède un unique générateur unitaire.

(c) Montrer que m_v divise les polynômes m_A et χ_A .

Solution. Par définition de m_A , on a $m_A(A) = 0$ donc en particulier $m_A(A)v = 0$. En reprenant l'argument de division euclidienne ci-dessus, si on écrit $m_A = qm_v + r$, on obtient r(A)v = 0 puis, par minimalité de $deg(m_v)$, que r = 0. Autrement dit, m_v divise m_A . Ensuite, le théorème de Cayley-Hamilton exprime que $\chi_A(A) = 0$. Soit on en déduit que $m_v \mid m_A \mid \chi_A$, soit on reprend l'argument précédent pour montrer directement que m_v divise χ_A .

(d) Montrer que $m_v = m_A = \chi_A$ si et seulement si $(v, Av, \dots, A^{n-1}v)$ est une base de \mathbb{C}^n .

Solution. Comme on l'a vu, si d est le degré de m_v , c'est l'entier minimal tel que $(v, \ldots, A^d v)$ est liée, de sorte que $(v, Av, \ldots, A^{d-1}v)$ est libre.

Si $\mathbf{m}_v = \chi_A$, alors d = n et la famille libre $(v, Av, \dots, A^{n-1}v)$ a n vecteurs : c'est une base. Réciproquement, si $(v, Av, \dots, A^{n-1}v)$ est libre, alors $d \geq n$. Du fait que \mathbf{m}_v divise χ_A , qu'ils sont tous deux unitaires et de même degré n, ils sont égaux : $\mathbf{m}_v = \chi_A$. Comme $\mathbf{m}_v \mid \mathbf{m}_A \mid \chi_A$ et que \mathbf{m}_A est également unitaire, on a aussi $\mathbf{m}_v = \mathbf{m}_A$.

3.	Soit $A \in L$. On se propose de montrer q	que l'ensemble de	vecteurs $v \in \mathbb{C}$	n tels que m_v	$=\chi_A$ est
	ouvert et non vide.				

(a) Pour chaque diviseur unitaire f de χ_A de degré < n on note $V_f = \ker f(A)$. Montrer que $V_f \neq \mathbb{C}^n$.

Solution. Si on avait $V_f = \mathbb{C}^n$, alors f serait un polynôme annulateur de A. On aurait alors $\mathrm{m}_A \mid f \mid \chi_A$, d'où, avec l'hypothèse sur le degré de f, l'inégalité stricte deg $\mathrm{m}_A < \deg \chi_A$, qui entraîne $\mathrm{m}_A \neq \chi_A$. Par contraposée, si $\mathrm{m}_A = \chi_A$, alors $V_f \neq \mathbb{C}^n$.

(b) Avec les notations de (a), montrer que $\bigcup_f V_f \neq \mathbb{C}^n$. (Indication : D'abord, on peut justifier l'existence pour chaque f d'une forme linéaire non-nulle sur \mathbb{C}^n , notée ℓ_f , qui s'annule sur V_f . Après, on peut considerer le produit de toutes ℓ_f et utiliser le resultat algébrique (bien connu) que le 0 est le seul polynôme en n variables qui s'annule sur \mathbb{C}^n . Une autre façon, completement topologique, à montrer (b) est d'utiliser le lemme de Baire vu en CM.)

Solution. Première solution. Soit f un diviseur strict de m_A . Vérifions que V_f est contenu dans un hyperplan. Soit (v_1, \ldots, v_d) une base de V_f , avec $d = \dim V_f < n$. On la complète en une base (v_1, \ldots, v_n) de \mathbb{C}^n . Soit (ϕ_1, \ldots, ϕ_n) la base duale (i.e. $\phi_i(v_j) = \delta_{i,j}$ pour $1 \le i, j \le n$ – le delta de Kronecker). Alors $\phi_n(V_f) = \{0\}$. En posant $\ell_f = \phi_n$, on a exhibé une forme linéaire non nulle qui s'annule sur V_f (et V_f est contenu dans l'hyperplan ker ℓ_f). Par intégrité de l'algèbre des polynômes, le produit $\prod_f \ell_f$ est un polynôme non nul sur \mathbb{C}^n . Il existe un point v en lequel $\prod_f \ell_f(v) \ne 0$, c'est-à-dire que v n'appartient à aucun des V_f .

Deuxième solution. Chaque V_f est fermé (en tant que sous-espace d'un espace vectoriel de dimension finie) et, comme $V_f \neq \mathbb{C}^n$, il est d'intérieur vide (en effet, si l'intérieur d'un sous-espace n'est pas vide, il contient une boule et donc par translation il contient une boule centrée en 0 et donc un multiple de la base canonique et donc c'est \mathbb{C}^n entier). Comme χ_A n'admet qu'un nombre fini de diviseurs stricts f, la réunion des V_f est d'intérieur vide d'après le théorème de Baire et donc ce n'est pas \mathbb{C}^n entier.

(c) Montrer que $\mathbf{m}_v = \chi_A$ si et seulement si $v \in \mathbb{C}^n \setminus \bigcup_f V_f$.

Solution. Supposons que $v \in \bigcup_f V_f$. Alors f(A)(v) = 0, de sorte que m_v divise f et que $m_v \neq \chi_A$.

Réciproquement, supposons que $v \in \mathbb{C}^n \setminus \bigcup_f V_f$. Alors, pour tout diviseur strict f de χ_A , on a $f(A)(v) \neq 0$, de sorte que m_v , qui est un diviseur de χ_A , n'est pas un diviseur strict de χ_A . Cela signifie que m_v et χ_A sont associés et, comme ils sont unitaires, que $m_v = \chi_A$.

(d) Conclure.

Solution. L'ensemble des diviseurs f de χ_A est fini et pour chacun d'entre eux, l'ensemble V_f est fermé. On en déduit que $\mathbb{C}^n \setminus \bigcup_f V_f$ est ouvert. D'après (b), cet ouvert n'est pas vide. Enfin, d'après (c), cet ouvert non vide est l'ensemble des v tels que $m_v = \chi_A$.

4. Montrer que L est ouvert.

Solution. Soit $A \in L$. Soit v un vecteur tel que $m_v = \chi_A$. Cela signifie que $\det(v, Av, \dots, A^{n-1}v) \neq 0$. Or, v étant fixé, l'application $F : \mathcal{M}_n(\mathbb{C}) \to \mathbb{C}$, $M \mapsto \det(v, Mv, \dots, M^{n-1}v)$ est continue puisqu'elle est polynomiale en les coefficients de A. Il existe donc un voisinage de A sur laquelle F ne s'annule pas. Pour M dans ce voisinage, on a $m_v = \chi_M$ et donc M appartient à L. \square

5. Soit (e_1, \ldots, e_n) la base canonique de \mathbb{C}^n . À chaque vecteur $a = (a_0, a_1, \ldots, a_{n-1}) \in \mathbb{C}^n$ on associe la matrice A_a telle que $A_a e_1 = e_2, \ldots, A_a e_{n-1} = e_n$ et $A_a e_n = -a_0 e_1 - a_1 e_2 - \cdots - a_{n-1} e_n$. Montrer que $A \in L$ si et seulement si A conjuguée à une matrice A_a .

Solution. Soit A dans L. Soit $v_1 \in \mathbb{C}^n$ tel que $\mathbf{m}_{v_1} = \chi_A$. Par minimalité du degré de \mathbf{m}_{v_1} , qui vaut n, la famille $(v_1, Av_1, \dots, A^{n-1}v_1)$ est libre et donc c'est une base. Dans cette base, la matrice de $w \mapsto Aw$ est A_a , où $a = (a_0, \dots, a_{n-1}) \in \mathbb{C}^n$ est défini par $A^nv_1 = \sum_{i=0}^{n-1} a_i A^i v_1$. Cela signifie que A est semblable à A_a .

Réciproquement, soit $a \in \mathbb{C}^n$. Pour $A = A_a$, on a $A_a^k e_1 = e_{k+1}$ pour $0 \le k \le n-1$. Ensuite, remarquons que $\mathbf{m}_{e_1} = X^n + \sum_{i=0}^{n-1} a_i X^i$ puisque la famille $(e_1, A_a e_1, \dots, A_a^{n-1} e_1) = (e_1, \dots, e_n)$ est libre, donc deg $\mathbf{m}_{e_1} \ge n$, et que

$$A_a^n e_1 + \sum_{i=0}^{n-1} a_i A_a^i e_1 = A_a^n e_1 + \sum_{i=0}^{n-1} a_i e_{i+1} = 0.$$

On en déduit avec la question 2(c) que $m_{e_1} = \chi_{A_a}$ et, avec 2(d), que $m_{A_a} = \chi_{A_a}$. Ainsi, A_a appartient à L pour tout a.

Comme le polynôme minimal et le polynôme caractéristique sont invariants par conjugaison, toute matrice conjuguée à une matrice A_a appartient à L.

6. En déduire que L est connexe. (Indication : Est-ce que $GL(n,\mathbb{C})$ un groupe connexe?)

Solution. L'ensemble T des matrices A_a où a parcourt \mathbb{C}^n est un sous-espace affine de $\mathcal{M}_n(\mathbb{C})$ et donc T est connexe. On a montré en 5 que L est l'image de $F: \mathrm{GL}(n,\mathbb{C}) \times T \to \mathcal{M}_n(\mathbb{C})$, $(P,A) \mapsto PAP^{-1}$. L'application F est continue puisque les coefficients de PAP^{-1} sont des polynômes en ceux de A et P divisés par le déterminant de P, qui est lui-même polynomial donc continu et non nul. Comme F est continue et $\mathrm{GL}(n,\mathbb{C}) \times T$ est connexe en tant que produit de connexes, L est connexe.