Examen: Groupes classiques et géométrie

Durée: 3 heures

L'énoncé comporte deux pages.

Les documents ne sont pas autorisés.

Les réponses doivent être justifiées.

Un barème est donné à titre indicatif. (Il est donc susceptible de changer.)

on satellie est deline a state marcati. (If est delic susceptible de changer.)

Exercice 1. (7 points) On munit l'espace $\mathcal{M}_n(\mathbb{R})$ de la norme N_2 définie pour $M=(m_{ij})_{1\leq i,j\leq n}$ par

$$N_2(M)^2 = \sum_{1 \le i, j \le n} m_{ij}^2.$$

On veut prouver que si $M \in \mathrm{SL}_n(\mathbb{R})$, alors $N_2(M) \geq \sqrt{n}$, avec égalité si et seulement si $M \in \mathrm{SO}_n(\mathbb{R})$.

- 1. (a) Montrer que pour toute matrice M, on a $N_2(M)^2 = \operatorname{tr}({}^t M M)$.
 - (b) En déduire que si $M \in \mathcal{O}_n(\mathbb{R}), N_2(M) = \sqrt{n}$.
- 2. Rappeler le théorème de décomposition de Cartan.

Rappel: L'inégalité arithmético-géométrique exprime que pour toute famille $(x_i)_{1 \le i \le n}$ de réels strictement positifs, on a $(x_1 \cdots x_n)^{1/n} \le (x_1 + \cdots + x_n)/n$, avec égalité si et seulement si tous les x_i sont égaux.

- 3. À l'aide de l'inégalité arithmético-géométrique montrer que si $D \in SL_n(\mathbb{R})$ et diagonale à coefficients positifs alors $N_2(D) \geq \sqrt{n}$ et l'égalité est atteinte si et seulement si $D = I_n$.
- 4. Utiliser la décomposition de Cartan pour conclure, c'est-à-dire démontrer que si $M \in \mathrm{SL}_n(\mathbb{R})$, alors $N_2(M) \geq \sqrt{n}$ et l'égalité est atteinte si et seulement si $M \in \mathrm{SO}_n(\mathbb{R})$. (Indication : exprimer la norme $N_2(M)$ en fonction des matrices qui interviennent dans la décomposition de Cartan de M.)

Exercice 2. (9 points) Soit n un entier strictement positif et soient p et q deux entiers positifs tels que $p+q \leq n$. On note $I_{p,q}$ la matrice diagonale diag $(1,\ldots,1,-1,\ldots,-1,0,\ldots,0)$ avec p (resp. q) coefficients égaux à 1 (resp. -1). Soit $\mathcal{O}_{p,q}$ l'orbite de $I_{p,q}$ pour l'action suivante de $\mathrm{GL}_n(\mathbb{R})$ sur $\mathscr{M}_n(\mathbb{R})$: si $P \in \mathrm{GL}_n(\mathbb{R})$ et $S \in \mathscr{M}_n(\mathbb{R})$ alors $P \cdot S = PS({}^tP)$.

- 1. Montrer que les valeurs propres de chaque $M \in \mathcal{O}_{p,q}$ sont toutes réelles et que parmi elles, le nombre (compté avec multiplicité) de celles qui sont strictement positives (resp. strictement négatives) est égal à p (resp. q).
- 2. Donner l'interprétation la plus cohérente possible selon vous (en une ou deux phrases maximum) de l'ensemble $\mathcal{O}_{p,q}$ en termes de formes quadratiques réelles sur \mathbb{R}^n .
- 3. Montrer que l'adhérence de $\mathscr{O}_{p,q}$ est stable par $\mathrm{GL}_n(\mathbb{R})$. En déduire que l'adhérence de $\mathscr{O}_{p,q}$ est une réunion d'orbites.
- 4. Soient p > 0 et r un entier compris entre 0 et p 1.
 - (a) Soit $\varepsilon > 0$. On note P_{ε} la matrice diagonale $P_{\varepsilon} = \operatorname{diag}(\underbrace{1,\ldots,1}_r,\underbrace{\varepsilon,\ldots,\varepsilon}_{p-r},\underbrace{1,\ldots,1}_{n-p})$ avec r coefficients 1, suivis de p-r coefficients égaux à ε et de n-p coefficients égaux à 1. Calculer $P_{\varepsilon}I_{p,q}{}^tP_{\varepsilon}$.
 - (b) En déduire que $I_{r,q}$ appartient à l'adhérence de l'orbite $\mathcal{O}_{p,q}$.

5. Démontrer que pour tout couple (r,s) tel que $r \leq p$ et $s \leq q$, on a $\mathscr{O}_{r,s} \subset \overline{\mathscr{O}}_{p,q}$.

Exercice 3. (16 points) Si $A \in \mathcal{M}_n(\mathbb{C})$ on note χ_A le polynôme caractéristique de A et m_A le polynôme minimal de A. Soit $L = \{A \in \mathcal{M}_n(\mathbb{C}) : \chi_A = m_A\}$. On se propose de montrer que L est un sousensemble non vide, ouvert et connexe de $\mathcal{M}_n(\mathbb{C})$.

- 1. Montrer que $L \neq \emptyset$.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice quelconque. Pour chaque vecteur $v \in \mathbb{C}^n$ notons m_v un polynôme unitaire (i.e. avec coefficient dominant 1) et de degré ≥ 1 minimal tel que $m_v(A)(v) = 0$.
 - (a) Montrer que m_v existe.
 - (b) Montrer que m_v est unique. (Indication : on se rappelle la division euclidienne.)
 - (c) Montrer que m_v divise les polynômes m_A et χ_A .
 - (d) Montrer que $m_v = m_A = \chi_A$ si et seulement si $(v, Av, \dots, A^{n-1}v)$ est une base de \mathbb{C}^n .
- 3. Soit $A \in L$. On se propose de montrer que l'ensemble de vecteurs $v \in \mathbb{C}^n$ tels que $m_v = \chi_A$ est ouvert et non vide.
 - (a) Pour chaque diviseur unitaire f de χ_A de degré < n on note $V_f = \ker f(A)$. Montrer que $V_f \neq \mathbb{C}^n$.
 - (b) Avec les notations de (a), montrer que $\bigcup_f V_f \neq \mathbb{C}^n$. (Indication : D'abord, on peut justifier l'existence pour chaque f d'une forme linéaire non-nulle sur \mathbb{C}^n , notée ℓ_f , qui s'annule sur V_f . Après, on peut considerer le produit de toutes ℓ_f et utiliser le resultat algébrique (bien connu) que le 0 est le seul polynôme en n variables qui s'annule sur \mathbb{C}^n . Une autre façon, completement topologique, à montrer (b) est d'utiliser le lemme de Baire vu en CM.)
 - (c) Montrer que $\mathbf{m}_v = \chi_A$ si et seulement si $v \in \mathbb{C}^n \setminus \bigcup_f V_f$.
 - (d) Conclure.
- 4. Montrer que L est ouvert.
- 5. Soit (e_1, \ldots, e_n) la base canonique de \mathbb{C}^n . À chaque vecteur $a = (a_0, a_1, \ldots, a_{n-1}) \in \mathbb{C}^n$ on associe la matrice A_a telle que $A_a e_1 = e_2, \ldots, A_a e_{n-1} = e_n$ et $A_a e_n = -a_0 e_1 a_1 e_2 \cdots a_{n-1} e_n$. Montrer que $A \in L$ si et seulement si A conjuguée à une matrice A_a .
- 6. En déduire que L est connexe. (Indication : Est-ce que $GL(n,\mathbb{C})$ un groupe connexe?)