CC1 : Groupes classiques et géométrie

Durée: 1h30 heures

Les documents ne sont pas autorisés Les réponses doivent être justifiées

Exercice 1 Soit G un groupe topologique.

1. Montrer que pour tout $g \in G$, l'appplication $L_g : G \to G$ définie pour $x \in G$ par $L_g(x) = gx$ est un homéomorphisme de G sur lui-même.

Solution. L'application $L_g: G \to G$ est continue car c'est une application partielle de la loi de composition de G. Puisque $L_gL_{g^{-1}}=L_{g^{-1}}L_g$ est l'identité, L_g est bijective de bijection réciproque $L_{g^{-1}}$ continue; c'est donc un homéomorpphisme de G sur G.

- 2. Montrer que pour tous x, y dans G, il existe un homéomorphisme de G sur lui-même qui envoie x sur y. Solution. L'homéomorphisme L_g pour $g = yx^{-1}$ convient.
- 3. En déduire que [0,1] n'est homéomorphe à aucun groupe topologique. **Solution.** S'il l'était, par la question précédente, il existerait un homéomorphisme de [0,1] sur lui-même envoyant 0 sur 1/2. Mais c'est impossible puisque $[0,1] \setminus \{0\}$ est connexe alors que $[0,1] \setminus \{1/2\}$ n'est pas connexe, et que l'image continue d'un connexe est connexe.

Exercice 2 Soit G un groupe topologique et H un sous-groupe de G, muni de la topologie induite. On rappelle que H est dit discret si tout singleton de H est ouvert dans H.

- 1. Montrer l'équivalence entre les assertions suivantes :
 - (a) H est discret,
 - (b) il existe un $g \in H$ tel que $\{g\}$ est ouvert dans H,
 - (c) toute partie de H est fermée.

Solution. Remarquons que (c) équivaut à dire "toute partie de H est ouverte" en passant au complémentaire. L'implications (c) \Rightarrow (b) est évidente. L'implication (a) \Rightarrow (c) résulte de la remarque que toute partie est réunion de singletons et qu'une réunion d'ouverts est ouverte. Montrons (b) \Rightarrow (a). Si $\{g\}$ est ouvert, alors $\{\phi(g)\}$ est ouvert pour tout homéomorphisme $\phi: H \to H$, et on conclut d'après la question 2 de l'exercice 1.

2. Soit $G = \mathbb{R}^n$ muni de la topologie usuelle, c'est-à-dire la topologie induite par la norme euclidienne $\|\cdot\|$. (Rappelons que toutes les normes sur \mathbb{R}^n sont équivalentes.) Soient $x_1, \ldots, x_r \in \mathbb{R}^n$ des vecteurs linéairement indépendants sur \mathbb{R} et $H = \mathbb{Z}x_1 + \cdots + \mathbb{Z}x_r$. Montrer que H est un sous-groupe discret de \mathbb{R}^n .

Solution. D'après la question 1, il suffit de montrer que $\{0\}$ est ouvert dans H. Complétons (x_1, \ldots, x_r) en une base (x_1, \ldots, x_n) de \mathbb{R}^n . Si (e_1, \ldots, e_n) est la base canonique de \mathbb{R}^n , on note $f: \mathbb{R}^n \to \mathbb{R}^n$ la bijection linéaire vérifiant $f(x_i) = e_i$; c'est un homéomoprhisme de \mathbb{R}^n . Soit B la boule-unité ouverte de \mathbb{R}^n . Alors $f(H) = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_r$ et on a donc $f(H) \cap B = \{0\}$ puis $H \cap f^{-1}(B) = \{0\}$, ce qui montre que $\{0\}$ est ouvert dans H.

- 3. On se propose de montrer que la réciproque du 2. est vraie. Soit H un sous-groupe discret de \mathbb{R}^n .
 - (a) Si n = 1, montrer que $H = \mathbb{Z}x_1$ pour $x_1 \in \mathbb{R}^*$. Solution. L'ensemble $H \cap \mathbb{R}_+^*$ est non vide (H contient un élément non nul ainsi que son opposé, et l'un des deux est strictement positif) donc admet une borne inférieure que l'on note x_1 . On a néssairement $x_1 > 0$ (car $\{0\}$ est ouvert dans H) et $x_1 \in H$ (sinon, il existerait une suite (y_n) strictement décroissante

borne inferieure que l'on note x_1 . On a nessairement $x_1 > 0$ (car $\{0\}$ est ouvert dans H) et $x_1 \in H$ (sinon, il existerait une suite (y_n) strictement décroissante tendant vers x_1 , et $(y_{n+1}-y_n)$ serait une suite d'éléments de $H \setminus \{0\}$ convergeant vers 0, contredisant le fait que $\{0\}$ est ouvert dans H). On a donc $\mathbb{Z}x_1 \subset H$. Réciproquement, tout élément $y \in H$ s'écrit $y = x_1(\lfloor y/x_1 \rfloor + \{y/x_1\})$ (parties entière et fractionnaire), donc $\{y/x_1\} \in H \cap [0, 1[=\{0\}]$. Ainsi y est bien multiple entier de x_1 .

(b) Dans le cas général où $n \ge 1$, montrer l'existence d'un vecteur $x_1 \in H \setminus \{0\}$ tel que $||x_1|| \le ||x||$ pour tout $x \in H \setminus \{0\}$.

Solution. Soit $\alpha = \inf\{\|x\| : x \in H \setminus \{0\}\}$. Il faut montrer que la borne inférieure est atteinte. Soit (y_n) une suite d'éléments de $H \setminus \{0\}$ telle que $\lim \|y_n\| = \alpha$. Comme (y_n) est bornée, il existe une sous-suite convergente $y_{\sigma(n)}$; notons y sa limite. La suite $(y_{\sigma(n+1)} - y_{\sigma(n)})$ est une suite d'éléments de H qui tend vers 0; comme $\{0\}$ est ouvert dans H, elle est stationnaire. On a donc $y \in H \setminus \{0\}$.

(c) Avec x_1 comme ci-dessus, soit $\mathbb{R}^n = \mathbb{R} x_1 \oplus (\mathbb{R} x_1)^{\perp}$ et $\pi : \mathbb{R}^n \to (\mathbb{R} x_1)^{\perp}$ la projection. En utilisant que $(\mathbb{R} x_1)^{\perp}$ est homéomorphe à \mathbb{R}^{n-1} , montrer que $\pi(H)$ est un sous-groupe discret de $(\mathbb{R} x_1)^{\perp}$. (Indication : raisonner par l'absurde.) **Solution.** Puisque l'application π est linéaire, c'est un morphisme de groupes et donc $\pi(H)$ est un sous-groupe de $\pi(\mathbb{R}^n) = (\mathbb{R} x_1)^{\perp}$. Montrons que $\pi(H)$ est discret ; d'après la première question il suffit de montrer que $\{0\}$ est ouvert dans $\pi(H)$. Soit $x \in H$ tel que $y := \pi(x) \neq 0$. Posons $z = x - \pi(x) \in \mathbb{R} x_1$. On peut l'écrire $z = \lambda x_1$ pour un réel $\lambda \in \mathbb{R}$. Soit $\mu \in \mathbb{Z}$ l'entier le plus proche de λ ; il vérifie $|\lambda - \mu| \leq 1/2$. Puisque $\mu x_1 \in H$, on a $x - \mu x_1 = y + (\lambda - \mu)x_1 \in H \setminus \{0\}$, et donc

 $||x_1|| \le ||y + (\lambda - \mu)x_1|| \le ||y|| + \frac{1}{2}||x_1||$

(la première inégalité est par définition de x_1 , la seconde par inégalité triangulaire). On conclut que $||y|| \ge ||x_1||/2$. Ainsi l'intersection de $\pi(H)$ avec la boule ouverte de centre 0 et de rayon $||x_1||/2$ est réduite à $\{0\}$, ce qui montre que $\{0\}$ est ouvert dans $\pi(H)$.

(d) Montrer qu'il existe des vecteurs x_1, \ldots, x_r , linéairement indépendants sur \mathbb{R} , tels que $H = \mathbb{Z}x_1 + \cdots + \mathbb{Z}x_r$. (Indication : raisonner par récurrence sur n.) **Solution.** Comme $\pi(H)$ est un sous-groupe discret de $(\mathbb{R}x_1)^{\perp}$ (qui est un groupe topologique homéomorphe à \mathbb{R}^{n-1}), par hypothèse de récurrence, il est soit $\{0\}$ soit de la forme $\mathbb{Z}y_2 + \cdots + \mathbb{Z}y_r$ pour y_2, \ldots, y_r dans $\pi(H)$. Choisissons x_2, \ldots, x_r dans H tels que $\pi(x_i) = y_i$. On a alors

$$\mathbb{Z}x_1 + \cdots + \mathbb{Z}x_r \subset H$$

et on pourra conclure si on montre que cette inclusion est une égalité. Soit $z \in H$. Comme $\pi(z) \in \pi(H)$, il peut s'écrire $\pi(z) = \lambda_2 y_2 + \cdots + \lambda_r y_r$ avec $\lambda_2, \ldots, \lambda_n$ dans \mathbb{Z} . Le vecteur $w = z - \lambda_2 x_2 - \cdots - \lambda_r x_r$ est dans le noyau de π , donc de la forme λx_1 pour $\lambda_1 \in \mathbb{R}$. Comme par ailleurs $w \in H$, on a nécessairement $\lambda_1 \in \mathbb{Z}$ (sinon, le vecteur non nul $(\lambda_1 - \lfloor \lambda_1 \rfloor) x_1$ serait de norme strictement inférieure à celle de x_1 , contredisant le (b).)

Exercice 3 Soit $G = SL_n(\mathbb{R})$, $n \geq 2$. Soit $i \neq j$ et $U_{ij} = \{u_{ij}(t) : t \in \mathbb{R}\}$ où $u_{ij}(t)$ est la matrice triangulaire dans G de coefficients 1 sur la diagonale principale, dont le coefficient de i-ème ligne et j-ème colonne est égal à t et dont les coefficients restants sont égaux à 0.

- 1. Montrer que U_{ij} est un sous-groupe fermé de G, isomorphe à $(\mathbb{R}, +)$. Solution. Un calcul élémentaire montre que $u_{ij}(s)u_{ij}(t) = u_{ij}(s+t)$, donc U_{ij} est un sous-groupe de G isomorphe à $(\mathbb{R}, +)$. Il est fermé car c'est un sous-espace affine de $M_n(\mathbb{R})$.
- 2. Montrer que G est engendré par les U_{ij} .

Solution. Multiplier une matrice A à gauche/droite par $U_{ij}(t)$ revient à ajouter à la ième ligne/colonne t fois la jème ligne/colonne. Il faut donc montrer que toute matrice $(a_{ij}) \in SL_n(\mathbb{R})$ peut être transformée en l'identité par des opérations de ce type. Voici un algorithme possible, par récurrence sur n

- (a) Si $a_{12} = 0$, choisir j tel que $a_{ij} \neq 0$ et ajouter la colonne j à la colonne i pour se ramener au cas $a_{12} \neq 0$,
- (b) Soustraire $(a_{11} 1)a_{21}^{-1}$ fois la colonne 2 à la colonne 1 pour se ramener au cas $a_{11} = 1$.
- (c) Pour tout j > 1, soustraire a_{1j} fois la colonne 1 à la colonne j pour se ramener au cas $a_{1j} = 0$, puis a_{j1} fois la ligne 1 à la ligne j pour se ramener au cas $a_{j1} = 0$.
- (d) Comme la sous-matrice $(a_{ij})_{2 \leq i,j \leq n}$ est dans $SL_{n-1}(\mathbb{R})$, elle s'écrit par hypothèse de récurrence sous la forme voulue.
- 3. Montrer que G est connexe.

Solution. Chaque sous-groupe U_{ij} est connexe puisque homéomorphe à \mathbb{R} . Puisque la réunion des sous-groupes (U_{ij}) engendre G, on peut par un théorème du cours en déduire que G est connexe.

4. Est-ce que G est connexe par arcs?

Solution. Oui. Soient g, h dans G; d'après la question 2 on peut écrire gh^{-1} comme produits d'éléments de U_{ij} , c'est-à-dire que pour un entier N,

$$g = u_{i_1j_1}(t_1)u_{i_2j_2}(t_2)\cdots u_{i_Nj_N}(t_N)h$$

La fonction $\gamma:[0,1]\to G$ définie par

$$s \mapsto u_{i_1j_1}(st_1)u_{i_2j_2}(st_2)\cdots u_{i_Nj_N}(st_N)h$$

est une fonction continue (c'est un polynôme en s) vérifiant $\gamma(0) = h$ et $\gamma(1) = g$, donc G est connexe par arcs.