
Chapter 1

Convexity: the Brunn–Minkowski
theory

1.1 Basic facts on convex bodies

We work in the Euclidean space (Rn, | · |), where |x| =
(
x2

1 + · · ·+ x2
n

)1/2. We denote by
〈 · , · 〉 the corresponding inner product. We say that a subset K ⊂ Rn is convex if for every
x, y ∈ K and λ ∈ [0, 1], we have λx+ (1− λ)y ∈ K. We say that K ⊂ Rn is a convex body
if K is convex, compact, with non-empty interior.

It is convenient to define a distance on the set of convex bodies in Rn. First, given
K ⊂ Rn and ε > 0, we denote by Kε the ε-enlargement of K, defined as

Kε = {x ∈ Rn : ∃y ∈ K, |x− y| 6 ε}.

In other words, Kε is the union of closed balls of radius ε with centers in K. The Hausdorff
distance between two non-empty compact subsets K, L ⊂ Rn is then defined as

δ(K,L) = inf{ε > 0 : K ⊂ Lε and L ⊂ Kε}.

We check (check!) that δ is a proper distance on the space of non-empty compact subsets
of Rn.

Some basic but important examples of convex bodies in Rn are

1. The unit Euclidean ball, defined as Bn
2 = {x ∈ Rn : |x| 6 1}.

2. The (hyper)cube Bn
∞ = [−1, 1]n.

3. The (hyper)octahedron Bn
1 = {x ∈ Rn : |x1|+ · · ·+ |xn| 6 1}.
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These examples are unit balls for the `p norm on Rn for p = 2,∞, 1. The `p norm ‖ · ‖p
is defined for 1 6 p <∞ and x ∈ Rn by

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

and for p =∞ by ‖x‖∞ = limp→∞ ‖x‖p = max{|xi| : 1 6 i 6 n}.
More generally, the following proposition characterizes symmetric convex bodies as the

unit balls for some norm.

Proposition 1. Let K ⊂ Rn. The following are equivalent

1. K is a convex body which is symmetric (i.e. satisfies K = −K),

2. there is a norm on Rn for which K is the closed unit ball.

To prove Proposition 1 (check!), we may recover the norm from K by the formula

‖x‖K = inf{t > 0 :
x

t
∈ K}.

A basic geometric fact about convex bodies is given by the Hahn–Banach separation
theorem. We give two versions.

Theorem 2. Let K, L be two convex bodies in Rn such that K ∩ L = ∅. Then there exist
u ∈ Rn and α ∈ R such that

max
x∈K
〈x, u〉 < α < min

y∈L
〈y, u〉.

Here is the geometric meaning of Theorem 2: the hyperplane H = {〈 · , u〉 = α} sepa-
rates K from L, in the sense that each convex body lies in a separate connected component
of Rn \H, which is an open half-plane.

Theorem 3. Let K be a convex body in Rn and x ∈ ∂K. Then there exists u ∈ Rn, u 6= 0,
such that

max
y∈K
〈y, u〉 = 〈x, u〉.

The hyperplane H = {〈 · , u〉 = 〈x, u〉 is said to be a support hyperplane for K at the
boundary point x. One can give a geometric proof of Theorem 2 (check!) as follows:
choose a couple of points (x, y) ∈ K ×L which minimizes |x− y|, and take as a separating
hyperplane the set of points equidistant from x and y. We can then obtain Theorem 3 as
a corollary by separating K from {xk}, where (xk) is a sequence in Rn \K converging to
x (check!).
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1.2 The Brunn–Minkowski inequality

Given sets K, L in Rn and a nonzero real number λ, we may define

λK = {λx : x ∈ K},

K + L = {x+ y : x ∈ K, y ∈ L},

which we call the Minkowski sum of K and L. We denote by vol( · ) the Lebesgue measure,
or volume, defined on Borel subsets of Rn. We may write voln instead of vol if we want to
precise the dimension. The volume is n-homogeneous, i.e. satisfies vol(λA) = |λ|n vol(A),
for λ ∈ R. The behaviour of the volume with respect to Minkowski addition is governed
by the Brunn–Minkowski inequality.

Theorem 4 (Brunn–Minkowski inequality). Let K, L be compact subsets of Rn, and λ ∈
(0, 1). Then

vol(λK + (1− λ)L) > vol(K)λ vol(L)1−λ. (1.1)

In other words, the function log vol is concave with respect to Minkowski addition.
Before proving the Brunn–Minkowski inequality, we point that there is an equivalent form:
for every nonempty compact sets A, B in Rn, we have

vol(A+B)1/n > vol(A)1/n + vol(B)1/n. (1.2)

We check the equivalence between (1.1) and (1.2) by taking advantage of the homo-
geneity of the volume. To show (1.2) from (1.1), consider the numbers a = vol(A)1/n and
b = vol(B)1/n. The case when a = 0 (and, similarly, b = 0) is easy: it suffices to notice
that A+B contains a translate of A (check!). If ab > 0, we may write

A+B = (a+ b)

[
a

a+ b

A

a
+

b

a+ b

B

b

]
,

and conclude from (1.1) that vol(A+B) > (a+b)n, as needed. For the converse implication,
we write

vol(λK + (1− λ)L)1/n > vol(λK)1/n + vol((1− λ)L)1/n

= λ vol(K)1/n + (1− λ) vol(L)1/n

>
[
vol(K)1/n

]λ [
vol(L)1/n

]1−λ
,

where the last step is the arithmetic mean-geometric mean (AM-GM) inequality (check!).
We present the proof of a functional version of the Brunn–Minkowski inequality.
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Theorem 5 (Prékopa–Leindler inequality). Let λ ∈ (0, 1). Assume that f , g, h : Rn →
[0,∞] are measurable functions such that,

for every x, y ∈ Rn, h(λx+ (1− λ)y) > f(x)λg(y)1−λ. (1.3)

Then, ˆ
Rn

h >

(ˆ
Rn

f

)λ(ˆ
Rn

g

)1−λ
.

Before proving Theorem 5, we notice that it immediately implies Theorem 4 by choosing
f = 1K , g = 1L and h = 1λK+(1−λ)L.

Proof of Theorem 5. The proof is by induction on the dimension n. We first consider the
base case n = 1. By monotone convergence, we may reduce to the case where f , g are
bounded, and by homogeneity to the case when ‖f‖∞ = ‖g‖∞ = 1 (check!). We also use
the following formula which relates integrals with measures of level sets (check!): whenever
φ : X → Rn is a measurable function defined on a measure space (X,µ), then

ˆ
X
φ =

ˆ ∞
0

µ({φ > t}) dt. (1.4)

Another information we need is that the Brunn–Minkowski inequality holds in dimension
1: for nonempty measurable sets A, B in R such that A + B is measurable, we have
vol(A + B) > vol(A) + vol(B). To prove this, reduce to the case when supA < +∞ and
inf B > −∞, and show that A+B contains disjoint translates of A and B (check!).

The proof goes as follows: for 0 6 a < 1, we have

{h > a} ⊃ λ{f > a}+ (1− λ){g > a},

which by the one-dimensional Brunn–Minkowski implies

vol({h > a}) > λ vol({f > a}) + (1− λ) vol({g > a}).

We then integrate this inequality when a ranges over [0, 1), and use (1.4) 3 times to obtain
ˆ
R
h > λ

ˆ
R
f + (1− λ)

ˆ
R
g

>

(ˆ
Rn

f

)λ(ˆ
Rn

g

)1−λ

by the AM-GM inequality.
We now explain the induction step, assuming the result in dimension n. We decompose

Rn+1 as Rn × R. Let f, g, h : Rn+1 → R satisfying (1.3). For y ∈ R, we define 3
functions on Rn by the formulas fy(t) = f(t, y), gy(t) = g(t, y), hy(t) = h(t, y). Whenever
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real numbers y, y1, y2 are such that y = λy1 + (1 − λ)y2, we have hy(λs1 + (1 − λ)s2) >
fy1(s1)λgy2(s2)1−λ for s1, s2 ∈ Rn. In other words, the functions fy1 , gy2 , hy satisfy the
hypothesis (1.3). By the induction step, it follows that

ˆ
Rn

hy >

(ˆ
Rn

fy1

)λ(ˆ
Rn

gy2

)1−λ
.

If we define functions F,G,H on R by F (y) =
´
Rn fy, G(y) =

´
Rn gy and H(y) =

´
Rn hy,

this means that the functions F , G, H also satisfy (1.3). By using the case n = 1, and
Fubini theorem, it follows that

ˆ
Rn+1

h >

(ˆ
Rn+1

f

)λ(ˆ
Rn+1

g

)1−λ
.

A remarkable corollary of the Brunn–Minkowski theorem is the isoperimetric inequality.
One may define the surface area of a subset K ⊂ Rn by

a(K) = lim sup
ε→0

vol(Kε)− vol(K)

ε
. (1.5)

This is a simple way to define the (n− 1)-dimensional measure of ∂K.

Theorem 6 (Isoperimetric inequality). Let K ⊂ Rn be a compact set with vol(K) > 0,
and B a Euclidean ball with radius chosen so that vol(K) = vol(B). Then, for every ε > 0,
we have vol(Kε) > vol(Bε), and therefore a(K) > a(B).

Proof. We may take B = rBn
2 , for r =

(
vol(K)
vol(Bn2 )

)1/n
. We have then Bε = (r + ε)Bn

2 . Note
that Kε = K + εBn

2 . By (1.2), we have

vol(Kε)
1/n > vol(K)1/n + vol(εBn

2 )1/n

= (r + ε) vol(Bn
2 )1/n

= vol(Bε)

as needed.

Theorem 6 can be rephrased as follows: at fixed volume, Euclidean balls minimize the
surface area.

1.3 The Blaschke–Santalò inequality

We introduce now polarity. The polar of a set K ⊂ Rn is defined as

K◦ = {x ∈ Rn : ∀y ∈ K, 〈x, y〉 6 1}.
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We emphasize that polarity depends on the choice of a inner product. Polarity at the level
of unit balls corresponds to duality for normed spaces. Indeed, given a norm ‖ ·‖ on Rn, we
may (using the standard inner product of Rn) identify the normed space dual to (Rn, ‖ · ‖)
with (Rn, ‖ · ‖∗). If K is the unit ball for ‖ · ‖, then (check!) K◦ is the unit ball for ‖ · ‖∗.

We list basic properties of polarity (check!)

• If K is a symmetric convex body, then (K◦)◦ = K, a statement known as the bipolar
theorem.

• (Bn
1 )◦ = Bn

∞, (Bn
2 )◦ = Bn

2 and (Bn
∞)◦ = Bn

1 .

• If K ⊂ L, then K◦ ⊃ L◦.

• Whenever T ∈ GLn(R) is an invertible linear map, then T (K)◦ = (T ∗)−1(K◦), where
T ∗ is the transpose (or adjoint) of T . In particular, (αK)◦ = α−1K◦ whenever
α ∈ R∗.

A consequence of the last property is that, for K a convex body and T ∈ GLn(R),

vol(TK) vol((TK)◦) = vol(K) vol(K◦).

In other words, the quantity vol(K) vol(K◦), sometimes called the volume product of K,
is invariant under the action of the linear group. The Blaschke–Santalò inequality shows
that, among symmetric convex bodies, this quantity is maximal for the Euclidean ball.

Theorem 7 (Blaschke–Santalò inequality). If K ⊂ Rn is a symmetric convex body, then

vol(K) vol(K◦) 6 vol(Bn
2 )2.

We will present a proof of the Blaschke–Santalò by symmetrization: we explicit a ge-
ometric process which bring any symmetric body “closer” to the Euclidean ball, while
increasing the volume product.

Given a convex body K ⊂ Rn and a direction u ∈ Sn−1 (the unit sphere), we define
the Steiner symmetrization of K in the direction u, denoted SuK, as follows. For every
x ∈ u⊥, we define

SuK ∩ (x+ Ru) =

{
∅ if K ∩ (x+ Ru) = ∅
[x− α

2u, x+ α
2u] otherwise, where α = vol1(K ∩ (x+ Ru)).

The geometric meaning is the following: we write K as a union of segments parallel to
u, and translate each of these segments along u such that each midpoint belongs to the
hyperplane u⊥. One may check (check!) the formula

SuK =

{
x+

s− t
2

u : x ∈ u⊥, s, t ∈ R are such that x+ su ∈ K and x+ tu ∈ K
}
.

Some properties of the Steiner symmetrization are
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• It preserves volume: vol(SuK) = vol(K), as a consequence of Fubini theorem (check!).

• It is increasing: K ⊂ L implies SuK ⊂ SuL.

• It preserves convexity: if K is a convex body, then SuK is a convex body, as a
consequence of the 1-dimensional Brunn–Minkowski inequality (check!).

In order to prove Blaschke–Santalò inequality using Steiner symmetrizations, we are
going to need more sophisticated properties.

Proposition 8. If K ⊂ Rn is a symmetric convex body, then for every u ∈ Sn−1,

vol(K◦) 6 vol((SuK)◦))

and therefore vol(K) vol(K◦) 6 vol(SuK) vol((SuK)◦)).

Proposition 9. Let K ⊂ Rn be a symmetric convex body, and denote by A the set of convex
bodies obtained by applying to K finitely many Steiner symmetrizations, in any directions.
Then there is a sequence (Kk) in A which converges, in Hausdorff distance, towards rBn

2 ,

where r =
(

vol(K)
vol(Bn2 )

)1/n
.

In order to derive Theorem 7 for Propositions 8 and 9, it suffices to check that the
function L 7→ vol(L◦) (defined on the set of symmetric convex bodies) is continuous for the
Hausdorff distance (check!).

Proof of Proposition 8. Without loss of generality (check!), we may assume that u = (0, . . . , 0, 1).
We identify Rn with Rn−1 ×R. We have

SuK =

{(
x,
s− t

2

)
: (x, s) ∈ K, (x, t) ∈ K

}
,

(SuK)◦ =

{
(y, r) : 〈x, y〉+

r(s− t)
2

6 1 ∀(x, s), (x, t) ∈ K
}
.

We use the following notation: given A ⊂ Rn and r ∈ R, we set A[r] = {x ∈ Rn−1 :
(x, r) ∈ A}. We claim that

1

2
(K◦[r] +K◦[−r]) ⊂ (SuK)◦[r]. (1.6)

The left hand-side of (1.6) is equal to{
y + z

2
: 〈y, x〉+ rs 6 1 and 〈z, w〉 − rt 6 1 whenever (x, s) ∈ K, (w, t) ∈ K

}
,
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which is a subset of (we have a larger set since we ask for fewer constraints by requiring
w = x){

y + z

2
: 〈y, x〉+ rs 6 1 and 〈z, x〉 − rt 6 1 whenever (x, s) ∈ K, (x, t) ∈ K

}
,

and further a subset of (requiring the sum of two inequality is true is less demanding than
requiring each inequality){

v : 〈v, x〉+
(s− t)r

2
6 1 whenever (x, s) ∈ K, (x, t) ∈ K

}
,

which is the right hand-side of (1.6).
SinceK a symmetric convex body, we haveK◦[r] = −K◦[−r]. In particular, this implies

that vol(K◦[r]) = vol(K◦[−r]). By the Brunn–Minkowski inequality, we have therefore
vol((SuK)◦[r]) > vol(K◦[r]). Since this holds for every r ∈ R, we obtain the inequality
vol((SuK)◦) > vol(K◦) using the Fubini theorem.

The proof of Proposition 9 uses a compactness argument on the set of convex bodies,
which is most easily discussed in terms of support functions. The support function of a
convex body K is the function hK : Rn → R defined as

hk(u) = max
x∈K
〈x, u〉.

If K is a symmetric convex body, then hK coincides with ‖ · ‖K◦ , the norm for which K◦

is the unit ball. Some properties of the support function are (for convex bodies K, L),

• K ⊂ L if and only if hK 6 hL (check!),

• we have the identity (check!)

δ(K,L) = sup
u∈Sn−1

|hK(u)− hL(u)|, (1.7)

• we can also recover K from hK by the formula (check!)

K =
⋂

u∈Sn−1

{〈 · , u〉 6 hK(u)}. (1.8)

Theorem 10 (Blaschke selection theorem). Let (Kk) be a sequence of convex bodies sat-
isfying rBn

2 ⊂ Kk ⊂ RBn
2 for some r, R. Then there exists a subsequence of (Kk) which

converges in Hausdorff distance to a convex body K.
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Proof. Consider the family of functions hKk , seen as a subset of the Banach space C(Sn−1)
of continuous functions on the sphere, equipped with the sup norm. For every k, the
function hKk is R-Lipschitz (check!). By Ascoli’s theorem, it follows that some subsequence
converges uniformly on Sn−1 to a function h ∈ C(Sn−1). The last step is to show that we
can find a convex body K such that h = hK (check!using formula (1.8)). By (1.7), uniform
convergence of the support functions towards hK is equivalent to convergence towards K
in Hausdorff distance.

Proof of Proposition 9. We denote by A the closure of A (inside the space of all convex
bodies) with respect to Hausdorff distance. Using Blaschke selection theorem, we check
that the continuous function

L 7→ vol(L ∩ rBn
2 )

achieves its maximum on A, say at L0. Assume now that vol(L0 ∩ rBn
2 ) < vol(rBn

2 ). Then
there exist x ∈ rBn

2 \ L0 and y ∈ L0 \ rBn
2 . Define now u = x−y

|x−y| ∈ S
n−1. We check that

(check! – consider the line going through x and y)

Su(L0 ∩ rBn
2 ) ( Su(L0) ∩ rBn

2 ,

and therefore vol(Su(L0 ∩ rBn
2 )) < vol(Su(L0)), contradicting the maximality of L0 (check!

– use the fact that volume for convex bodies is continuous with respect to the Hausdorff
distance). It follows that vol(L0 ∩ rBn

2 ) = vol(rBn
2 ), and therefore L0 = rBn

2 .

Finally we mention the following conjecture

Conjecture 11 (Mahler). If K ⊂ Rn is a symmetric convex body, then

vol(K) vol(K◦) > vol(Bn
1 ) vol(Bn

∞).

Mahler’s conjecture has been proved only in dimensions 2 and 3.
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Chapter 2

The Banach–Mazur compactum

2.1 Banach–Mazur distance, ellipsoids

In this chapter we study the set of normed spaces of dimension n. Any such space is
isometric to (Rn, ‖ · ‖) for some norm. The choice of norm is not unique: for any T ∈
GLn(R), the normed spaces X1 = (Rn, ‖ · ‖) and X2 = (Rn, ‖T ( · )‖) are isometric. If K is
the unit ball for X1, then T−1(K) is the unit ball for X2. Studying n-dimensional normed
spaces up to isometry is equivalent to studying symmetric convex bodies in Rn up to the
action of GLn(R).

If X and Y are n-dimensional normed space, define their Banach–Mazur distance as

dBM (X,Y ) = inf
{
‖T : X → Y ‖ · ‖T−1 : Y → X‖ : T : X → Y linear bijection

}
.

Here ‖T : X → T‖ is the operator norm of T , i.e. sup{‖Tx‖Y : ‖x‖X 6 1}. At the level
of unit balls (denoted BX and BY , the quantity ‖T : X → Y ‖ is the smallest λ > 0 such
that T (BX) ⊂ λBY .

We define similarly the Banach–Mazur distance between two symmetric convex bodies
K, L ⊂ Rn

dBM (K,L) = inf

{
b

a
: aK ⊂ T (L) ⊂ bK for a, b > 0 and T ∈ GLn(R)

}
.

Here are some basic properties of dBM . We note that log dBM satisfies the axioms of a
distance.

• symmetry: we have dBM (K,L) = dBM (L,K) because aK ⊂ T (L) ⊂ bK is equivalent
to b−1L ⊂ T−1(K) ⊂ a−1L.

• invariance under polarity: we have dBM (K,L) = dBM (K◦, L◦) because aK ⊂ T (L) ⊂
bK is equivalent to b−1K◦ ⊂ (T ∗)−1(L◦) ⊂ a−1K◦.
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• triangular inequality: we have d(K,M) 6 d(K,L)d(L,M)

• d(K,L) = 1 is equivalent to the fact that there is T ∈ GLn(R) such that T (K) = L
(check! using compactness).

We denote by BMn the set of symmetric convex bodies in Rn, up to the equivalence
relation

K ∼ L ⇐⇒ ∃T ∈ GLn(R) : L = T (K).

The space (BMn, log dBM ) is a metric space. As we will see later, it is compact and often
called the Banach–Mazur compactum.

An ellipsoid E ⊂ Rn is a convex body of the form E = T (Bn
2 ) for T ∈ GLn(R). We first

give a characterization of ellipsoids. We denote by M+
n (resp. M++

n the cone of nonnegative
(resp. positive) n× n symmetric matrices.

Proposition 12. For E ⊂ Rn, the following are equivalent

1. E is an ellipsoid,

2. there is a A ∈ M++
n such that E = A(Bn

2 ),

3. there is an orthonormal basis (fi) of Rn, and positive numbers (αi), such that

E =

{
x ∈ Rn :

n∑
i=1

α−2
i 〈x, fi〉

2 6 1

}
.

4. There is a inner product on Rn such that E is the unit ball for the associated norm.

Proof. The equivalence between 1. and 2. follows from the polar decomposition: any T ∈
GLn(R) can be written as T = AO for O ∈ O(n) and A ∈ M++

n . We then have T (Bn
2 ) =

A(O(Bn
2 )) = A(Bn

2 ).
To show that 2. implies 3., use the spectral theorem to diagonalize A in an orthonormal

basis (fi), i.e. Afi = αifi for αi > 0. For x ∈ Rn, we have A(x) =
∑

i αi〈x, fi〉fi and
A−1(x) = α−1

i 〈x, fi〉fi. It follows that

x ∈ E ⇐⇒ A−1(x) ∈ Bn
2 ⇐⇒

∑
i

α−2
i 〈x, fi〉

2 6 1.

To get 4. from 3., consider the inner product

Q(x, y) =

n∑
i=1

α−2
i 〈x, fi〉〈y, fi〉.

To get 2. from 4., use the fact that any inner product Q can be written as Q(x, y) =
〈x,Ax〉 for a positive matrix A. It follows that

Q(x, x) 6 1 ⇐⇒ 〈x,Ax〉 6 1 ⇐⇒ |A1/2x| 6 1 ⇐⇒ x ∈ A−1/2(Bn
2 ).
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2.2 John’s theorem

John’s theorem allows to estimate the Banach–Mazur distance between Bn
2 and an arbitrary

convex body.
We use the following notation: given x, y ∈ Rn, we denote by |x〉〈y| the linear map

(of rank 1) given by z 7→ 〈y, z〉x (a linear map from Rn to Rn). In terms of matrices, this
correspond to the matrix (xiyj)16i,j6n.

Theorem 13 (John’s theorem). Let K ⊂ Rn be a symmetric convex body. Then there is a
unique ellipsoid of maximal volume inside K, denoted EJ(K) and called the John ellipsoid
of K. Moreover, we have the equivalence

EJ(K) = Bn
2 ⇐⇒ Bn

2 ⊂ K and
Id

n
∈ conv{|x〉〈x| : x ∈ ∂K ∩ Sn−1}.

Intuitively, if Bn
2 ⊂ K but without enough “contact point”, then there is a way to

construct another ellipsoid inside K with a larger volume. When EJ(K) = Bn
2 , we say that

K is in the John position. For every symmetric convex body K ⊂ Rn, there is T ∈ GLn(R)
such that T (K) is in the John position.

We first look at two examples. Note that the inclusions Bn
1 ⊂ Bn

2 ⊂ Bn
∞ and 1√

n
Bn
∞ ⊂

Bn
2 ⊂
√
nBn

1 are sharp.

1. The John ellipsoid of Bn
∞ is Bn

2 . This is because we have Id
x =

∑n
i=1 |ei〉〈ei|, where

(ei) is the canonical basis.

2. The John ellipsoid of Bn
1 is 1√

n
Bn

2 , or equivalently the John ellipsoid of
√
nBn

1 is Bn
2 .

What is the set
√
nBn

1 ∩ Sn−1? This contains elements x such that
∑
x2
i = 1 and∑

|xi| =
√
n. Using the equality case in the Cauchy–Schwarz inequality

∑
|xi| 6√

n
∑
x2
i , we check that

√
nBn

1 ∩ S−1 = {− 1√
n
, 1√

n
}n. If x is uniformly distributed

on this set, we have (check!)

E |x〉〈x| = Id

n
.

Proof of John’s theorem. We first show existence. We note that if E = TBn
2 , then vol(E) =

|det(T )| vol(Bn
2 ). The set

{T ∈ Mn(R) : T (Bn
2 ) ⊂ K}

is compact (check!) and therefore the continuous function | det( · )| achieves its maximum.
For the uniqueness, we use the following lemma.

Lemma 14. The function log det is strictly concave on M++
n .

Proof. For T1, T2 ∈ M++
n , we have

det

(
T1 + T2

2

)
= det(T1) det

(
Id + T

−1/2
1 T2T

−1/2
1

2

)
.

12



If we denote A = T
−1/2
1 T2T

−1/2
1 ∈ M++

n , then det(A) = det(T2)/det(T1). Let (λi) be the
eigenvalues of A. By the concavity of log, we have

log det

(
Id +A

2

)
= log

n∏
i=1

(
1 + λi

2

)
=

n∑
i=1

log

(
1 + λi

2

)
>

1

2

n∑
i=1

log λi =
1

2
log

det(T2)

det(T1)
.

It follows that

det

(
T1 + T2

2

)
= det(T1) det

(
Id +A

2

)
>
√

det(T1) det(T2).

Moreover, since log is strictly concave, there is equality if and onlf if λi = 1 for every i, i.e.
T1 = T2.

We now prove uniqueness in John’s theorem. Suppose that E1, E2 are two ellipsoids
inside K with vol(E1) = vol(E2). We may write E1 = T1(Bn

2 ) and E2 = T2(Bn
2 ) for T1,

T2 ∈ M++
n . Necessarily det(T1) = det(T2). Consider the ellipsoid E =

(
T1+T2

2

)
(Bn

2 ). By
the previous lemma, it satisfies vol(E) > vol(E1) while E ⊂ E1+E2

2 ⊂ K.
We now prove the characterization. First assume that Bn

2 ⊂ K, and that there exist
contact points (xi) in ∂K ∩ Sn−1 and a convex combination (λi) such that

∑
λi|xi〉〈xi| =

Id/n. It follows that for every y, z in Rn,

〈y, z〉
n

=
∑

λi〈y, xi〉〈xi, z〉. (2.1)

Consider an ellipsoid E ⊂ K, of the form

E = {x ∈ Rn :
∑

α−2
j 〈x, fj〉

2 6 1}

for an orthonormal basis (fj). It follows (check!) that

E◦ = {x ∈ Rn :
∑

α2
j 〈x, fj〉2 6 1}.

For every i, since xi ∈ ∂K ∩ Sn−1, it must be (check!) that K ⊂ {y : 〈y, xi〉 6 1}, so that
xi ∈ K◦ ⊂ E◦ and therefore

∑
j α

2
j 〈xi, fj〉2 6 1. Taking convex combinations gives∑
i

λi
∑
j

α2
j 〈xi, fj〉2 6 1

and therefore, using (2.1) for y = z = fj ,
∑
α2
j 6 n. By the AM/GM inequality, this

implies that
(∏

α2
j

)1/n
6 1

n

∑
α2
j 6 1. Since vol(E) = vol(Bn

2 ) ·
∏
αj , we conclude that

vol(E) 6 vol(Bn
2 ).

13



Conversely, suppose that K is in John position. If Id
n does not belong to the convex set

conv{|x〉〈x| : x ∈ Sn−1∩∂K}, then by the Hahn–Banach theorem there exists a linear form
ϕ on Msa

n such that ϕ(Id/n) < ϕ(|x〉〈x|) for every x ∈ ∂K ∩Sn−1. Since Msa
n is a Euclidean

space for the inner product (A,B) 7→ Tr(AB), the map ϕ has the form ϕ(A) = Tr(AH)
for some H in Msa

n . The hypothesis becomes 1
n Tr(H) < Tr(H|x〉〈x|) = 〈x,Hx〉 for every

x ∈ ∂K∩Sn−1. Finally, we may assume that TrH = 0 if we replace H by H ′ = H− 1
n TrH.

For δ > 0 small enough, consider the ellipsoid

Eδ = {x ∈ Rn : 〈x, (Id + δH)x〉 6 1}.

We claim that Eδ ⊂ K for δ small enough. To check this, we compare the norms ‖ · ‖K with
‖ · ‖Eδ . The latter can be computed as

‖x‖Eδ = inf{t > 0 : x ∈ tEδ} =
√
〈x, (Id + δH)x〉.

It follows that
‖x‖2Eδ − ‖x‖

2
K =

(
|x|2 − ‖x‖2K

)︸ ︷︷ ︸
f(x)

+δ 〈Hx, x〉︸ ︷︷ ︸
g(x)

.

The continuous functions f and g satisfy the following properties: f > 0 on Sn−1 (since
Bn

2 ⊂ K), and g > 0 on the set {f = 0}. A little topological argument (check!) using the
compactness of Sn−1 implies that f + δg > 0 on Sn−1 for δ small enough. It follows that
there is ε > 0 such that (1 + ε)Eδ ⊂ K.

Let (µj) be the eigenvalues of Id + δH. We have
∑
µj = n + δTr(H) = n and

vol(Eδ)
vol(Bn2 ) =

∏
µ
−1/2
j (check!). By the AM/GM inequality, we have (

∏
µj)

1/n 6 1
n

∑
µj = 1

and therefore vol(Eδ) > vol(Bn
2 ), so that vol((1 + ε)Eδ) > vol(Bn

2 ). This contradicts our
hypothesis.

2.3 Some distance estimates

Here are two corollaries of John’s theorem.

Corollary 15. For every symmetric convex body K ⊂ Rn, we have dBM (K,Bn
2 ) 6

√
n.

Corollary 16. For every symmetric convex bodes K,L ⊂ Rn, we have dBM (K,L) 6 n.

Proof of Corollary 15. We show that EJ(K) ⊂ K ⊂
√
nEJ(K). Since the problem is linearly

invariant, we may assume that EJ(K) = Bn
2 . By John’s theorem, there are contact points

(xi) in ∂K ∩ Sn−1 and a convex combination (λi) such that Id
n =

∑
λi|xi〉〈xi|. For every

x ∈ K, we have 〈x, xi〉 6 1 (check!) and therefore

|x|2 = 〈x, x〉 = n
∑
i

λi〈x, xi〉〈x, xi〉 6 n.

This proves the inclusion K ⊂
√
nBn

2

14



Theorem 17. The metric space (BMn, dBM ) is compact.

Proof. Let (Kk) a sequence in BMn. We may choose Kk such that Bn
2 ⊂ Kk ⊂

√
nBn

2 for
every k. Let ‖ · ‖k be the norm associated to Kkn which satisfies 1√

n
| · | 6 ‖ · ‖k 6 | · |.

For every k, the function ‖ · ‖k is 1-Lipschitz on Sn−1 (check!). By Ascoli’s theorem, there
is a subsequence ‖ · ‖σ(k) which converges uniformly to a limit function ‖ · ‖lim. We extend
‖ · ‖lim to a norm on Rn by setting

‖x‖lim = |x| ·
∥∥∥∥ x|x|

∥∥∥∥
lim

= lim
k→∞

‖x‖σ(k).

It is checked (check!) that uniform convergence on the sphere translates into the fact that
(Kσ(k)) converges to Klim in BMn.

2.4 Distance between usual spaces

What is the value of dBM (K,L) as n → ∞, when K,L ∈ {Bn
1 , B

n
2 , B

n
∞}? We first start

with the easiest case.

Proposition 18. For every n, we have dBM (Bn
1 , B

n
2 ) = dBM (Bn

∞, B
n
2 ) =

√
n.

Proof. The first equality is immediate by polarity. The 6 inequality in the second one
follows from Corollary 15. For the > inequality, assume that αBn

2 ⊂ T (Bn
1 ) ⊂ Bn

2 for some
T ∈ GLn(R). Denote xi = T (ei) and observe that

T (Bn
1 ) = T (conv{±ei}) = conv{±xi}.

Moreover, for every ε ∈ {−1, 1}n, we have ‖
∑
εixi‖T (Bn1 ) = n. Consider now ε to be

uniformly distributed on {−1, 1}n. By induction on n, using the parallelogram identity, we
show (check!) that

Eε

∣∣∣∣∣
n∑
i=1

εixi

∣∣∣∣∣
2

=

n∑
i=1

|xi|2 6 n.

The inclusion αBn
2 ⊂ T (Bn

1 ) implies ‖ · ‖T (Bn1 ) 6 α−1| · |, and therefore

n2 = Eε

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2

T (Bn1 )

6 α−2 E

∣∣∣∣∣
n∑
i=1

εixi

∣∣∣∣∣
2

6 α−2n.

We conclude that α−2 > n, or α 6 1√
n
.

The case of estimating dBM (Bn
1 , B

n
∞) is more tricky. The upper bound dBM (Bn

1 , B
n
∞) 6

n is certainly not sharp for n = 2 since dBM (B2
1 , B

2
∞) = 1. The correct order of magnitude

is
√
n.
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Theorem 19. For every n, we have

c
√
n 6 dBM (Bn

1 , B
n
∞) 6 C

√
n

where c, C are absolute constants (the proof gives c = 1/
√

2 and C = 1 +
√

2).

We first show the lower bound. We construct a sequence of matrices (Wk) as follows:
Wk is a 2k × 2k matrix, given by W0 = [1] and

Wk+1 =

(
Wk Wk

Wk −Wk

)
.

By construction, Wk is self-adjoint, with entries in {−1, 1}. Moreover it can be checked by
induction on k (check!) that the columns ofWk are orthogonal, so that the matrix 2−k/2Wk

is orthogonal. We have Wk(B
2k
1 ) ⊂ B2k

∞ (since the entries of Wk are bounded by 1) and

Wk(B
2k

1 ) ⊃Wk(2
−k/2B2k

2 ) = B2k

2 ⊃ 2−k/2B2k

∞ .

This shows that dBM (Bn
1 , B

n
∞) 6

√
n whenever n is a power of 2.

For the general case, we define by induction a n× n matrix An by

An =

(
Wk 0
0 Am

)
where n = 2k+m, m < 2k. The matrix An has entries in {0,−1, 1} and therefore An(Bn

1 ) ⊂
Bn
∞. Let us check that

An(Bn
1 ) ⊃ 1

C
√
n
Bn
∞

by induction on n. This is equivalent to A−1
n ⊂ C

√
nBn

1 . We have

A−1
n =

(
W−1
k 0
0 A−1

m

)
and therefore

sup
x∈Bn∞

‖A−1
n x‖1 = sup

x1∈B2k
∞

‖W−1
k x1‖1 + sup

x2∈Bm∞
‖A−1

m x2‖1 6 2k/2 + C
√
m

where the last inequality uses the induction hypothesis. The induction is complete provided
2k/2 + C

√
m 6 C

√
2k +m for every m < 2k. One can verify (check!) that this holds for

the choice C = 1 +
√

2.
The lower bound combines two classical inequalities which we now introduce. By a

random sign we mean a random variable uniformly distributed on {−1, 1}. Khintchine
inequalities says that the Lp norm are independent on the vector space spanned by an
infinite sequence of independent random signs.
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Proposition 20 (Khintchine inequalities). For every p ∈ [1, 2], there is a constant Ap > 0
and for every p ∈ [2,∞) there is a constant Bp < ∞ such that the following holds: if (εn)
is a sequence of i.i.d. random signs, then for every n and every real numbers a1, . . . , an, we
have

∀p ∈ [2,∞),
(∑

a2
i

)1/2
6

(
E

∣∣∣∣∣
n∑
i=1

εiai

∣∣∣∣∣
p)1/p

6 Bp

(∑
a2
i

)1/2
,

∀p ∈ [1, 2), Ap

(∑
a2
i

)1/2
6

(
E

∣∣∣∣∣
n∑
i=1

εiai

∣∣∣∣∣
p)1/p

6
(∑

a2
i

)1/2
.

Note that A2 = B2 = 1 by the parallelogram identity. It also holds that Bp = O(
√
p)

as p→∞ (see Exercise 2.8) and that A1 = 1/
√

2 (see Exercise 2.9).
We also need the following (check!)

Proposition 21 (Hadamard’s inequality). Let A ∈ Mn, and v1, . . . , vn the columns of A.
Then

|detA| 6
n∏
i=1

|vi|

and therefore

| detA|1/n 6
1

n

∑
|vi|.

We now prove that dBM (Bn
1 , B

n
∞) > c

√
n. It suffices to show that is A ∈ GLn(R)

satisfies
α−1Bn

∞ ⊂ A(Bn
1 ) ⊂ Bn

∞

then α > c
√
n. Since A(B2

1) ⊂
√
nBn

2 , the columns of the matrix have a Euclidean norm
at most

√
n, and therefore | det(A)| 6 nn/2 by Hadamard’s inequality. On the other hand,

since A−1(Bn
∞) ⊂ αBn

1 , we have

sup
x∈Bn∞

‖A−1x‖1 6 α

If we denote by L1, · · · , Ln the lines of the matrix A−1, then

α > sup
ε∈{−1,1}n

n∑
i=1

|〈Li, ε〉|

> Eε

n∑
i=1

|〈Li, ε〉|

>
1√
2

n∑
i=1

|Li|

>
1√
2
n|detA−1|1/n,

17



where we used Khintchine (with the value A1 = 1/
√

2) and Hadamard inequalities. Since
|det(A)| 6 nn/2, we have |det(A−1)|1/n > n−1/2. It follows that α >

√
n/2, as claimed.
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Chapter 3

Concentration of measure

3.1 Volume of spherical caps

We denote by σ the uniform probability measure on the sphere Sn−1. It can be defined as
follows: for a Borel set A ⊂ Sn−1, define

σ(A) =
voln({ta : t ∈ [0, 1], a ∈ A})

voln(Bn
2 )

.

The measure σ is invariant under rotations: for any Borel set A ⊂ Sn−1 and O ∈ O(n),
we have σ(A) = σ(O(A)). The measure σ is the unique Borel probability measure on Sn−1

with this property (check!).
The sphere Sn−1 can be equipped with two natural distances:

• the Euclidean distance d(x, y) = |x− y|, induced from the Euclidean norm on Rn,

• the geodesic distance g, related to the Euclidean distance by the formula

|x− y| = 2 sin

(
g(x, y

2

)
.

Since both distance are in one-to-one correspondence, statement about one distance have
immediate translations into the other one. Moreover, they are related by the inequalities

2

π
g(x, y) 6 |x− y| 6 g(x, y).

Given x ∈ Sn−1 and θ ∈ [0, π], we denote by

C(x, θ) = {y ∈ Sn−1 : g(x, y) 6 θ}
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the spherical cap with center x and angle θ. It follows from the rotation invariance that

Vn(θ) := σ(C(x, θ))

does not depend on x ∈ Sn−1. We note the simple formulas Vn(π2 ) = 1
2 and Vn(π − θ) =

1− Vn(θ). One can also prove the analytic formula (check!)

Vn(θ) =

´ θ
0 sinn−2 t dt´ π
0 sinn−2 tdt

,

for which one can derive (check!) the fact that, for fixed θ ∈ [0, π/2],

lim
n→∞

Vn(θ)1/n = sin θ. (3.1)

This is a important phenomenon that plays a fundamental role: the proportion of the
sphere covered by a cap with a fixed angle tends to 0 exponentially fast in large
dimensions.

Proposition 22. For every t ∈ [0, π/2], we have

V (t) 6
1

2
sinn−1 t.

The proof uses the following fact (check!): if K, L are convex bodies such that K ⊂ L,
then a(K) 6 a(L), where a( · ) is the surface area, defined in (1.5).

Sketch of proof. The surface area covered a cap of angle t (which equals a(Bn
2 )Vn(t)) is less

that the surface area covered by a half-sphere of radius sin(t) (which equals 1
2a(sin(t)Bn

2 ) =
sinn−1 ta(Bn

2 )), as a consequence of the above fact (draw a picture). The result follows.

As a corollary, we can see check that all the measure in a high-dimensional sphere is
located close to an equator. For ε ∈ (0, π/2), consider the set

A = {(x1, . . . , xn) ∈ Sn−1 : |xn| 6 sin ε}

which is the ε-neighbourhood of an equator in geodesic distance. We have

σ(A) = 1− σ(Sn−1 \A) = 1− 2Vn(π/2− ε) > 1− cos(ε)n−1

using Proposition 22. If we combine this with the elementary inequality cos(t) 6 exp(−t2/2)
(check!), we get σ(A) > 1 − exp(−(n − 1)ε2/2). It can also be proved, and we will use it
(without proof) since it gives nicer formulas, that for n > 2 we have

Vn(π/2− ε) 6 exp(−nε2/2). (3.2)
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3.2 Covering and packing

Let (K, d) be a compact metric space. We denote by B(x, ε) the closed ball centered at
x ∈ K and with radius ε > 0.

• We say that a finite subset N ⊂ K is an ε-net if K =
⋃
x∈N B(x, ε). Equivalently,

this means that for every y ∈ K, there is x ∈ N such that d(x, y) 6 ε. Nets exists
by compactness. We denote by N(K, ε) (or N(K, d, ε)) the smallest cardinality of an
ε-net.

• We say that a finite subset P ⊂ K is ε-separated if for every distinct x, y ∈ P we
have d(x, y) > ε. We denote by P (K, ε) (or P (K, d, ε)) the largest cardinality of an
ε-separated set.

Two simple but important inequalities are given by

P (K, 2ε) 6 N(K, ε) 6 P (K, ε). (3.3)

To prove the left inequality, note that if P is a 2ε-separated set and if N is an ε-net,
the map which sends y ∈ P to a x ∈ N such that d(x, y) 6 ε is injective, and therefore
card(P) 6 card(N ). For the right inequality, simply notice that a maximal ε-separated set
is an ε-net.

The following lemma will be extremely useful

Lemma 23. For every ε ∈ (0, 1), we have

N(Sn−1, | · |, ε) 6
(

1 +
2

ε

)n
6

(
3

ε

)n
Proof. Let {xi}i∈I be maximal ε-separated set in Sn−1. Then the balls (in Rn) with
centered xi and radius ε/2 are disjoint, and are all included inside (1 + ε/2)Bn

2 . Therefore,

card(I) vol
(ε

2
Bn

2

)
6 vol

(⋃
i∈I

B(xi, ε)

)
6 vol

((
1 +

ε

2
Bn

2

))
,

and the result follows.

We now discuss more finely, at ε fixed, how fast the quantitiesN(Sn−1, ε) and P (Sn−1, ε)
grow. It turns out to be more convenient to use the geodesic distance. We start with the
inequalities (check!)

1

Vn(ε)
6 N(Sn−1, g, ε) 6 P (Sn−1, g, ε) 6

1

Vn(ε/2)
.
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Proposition 24. For any ε ∈ (0, π/2), we have

lim
n→∞

1

n
logN(Sn−1, g, ε) = − log sin ε

Since N(Sn−1, g, ε) > Vn(ε)−1, the lower bound follows from (3.1). For the upper
bound, we prove the following estimate: if ε = ε1 + ε2 with 0 < ε1 < ε2, then

N(Sn−1, g, ε) 6

⌈
1

Vn(ε1)
log

(
Vn(ε1)

Vn(ε2)

)⌉
+

1

Vn(ε1)
. (3.4)

Using (3.4), one can prove (check!) that lim sup 1
n logN(Sn−1, g, ε) 6 − log sin ε1 for every

ε1 < ε.

Proof of (3.4). We use a random covering argument due to Rogers (1957). Fix N =⌈
1

Vn(ε1) log
(
Vn(ε1)
Vn(ε2)

)⌉
and let (xi)16i6N be i.i.d. random points on Sn−1 distributed ac-

cording to σ. Consider the set

A =
N⋃
i=1

C(xi, ε1).

We compute, using Fubini theorem and the fact that x ∈ C(xi, ε) ⇐⇒ xi ∈ C(x, ε)

Eσ(Sn−1 \A) = (1− Vn(ε1))N 6 exp(−NVn(ε1)) 6
Vn(ε2)

Vn(ε1)
.

In particular, there exist (x1, . . . , xN ) such that σ(Sn−1 \ A) 6 Vn(ε2)
Vn(ε1) . Consider now

{C(yj , ε2) : 1 6 j 6 M} to be a maximal family of disjoint caps of angle ε2 contained in
Sn−1\A. Using disjointedness, we obtainMVn(ε2) 6 σ(Sn−1\A) and thereforeM 6 1

Vn(ε1) .
On the other hand, by maximality, we have

Sn−1 ⊂
N⋃
i=1

C(xi, ε1 + ε2) ∪
M⋃
j=1

C(yj , 2ε2)

showing (using that 2ε2 6 ε) that N(Sn−1, g, ε) 6 N +M .

In contrast with the case of covering, we have a poor understanding of optimal packing
in high-dimensional spheres. For example, for fixed ε, the value of

lim
n→∞

1

n
logP (Sn−1, g, ε)

is not known (even the existence of the limit is not clear). We may conjecture that the
value equals − log sin(ε) as well. This would mean that one cannot substantially beat the
greedy algorithm to produce packings.
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3.3 Isoperimetric inequality on Sn−1

Exactly as in the case of Rn, we have an isoperimetric inequality on the sphere.

Theorem 25. Let A ⊂ Sn−1 be a closed set, and let C be a spherical cap such that
σ(A) = σ(C). Then for every ε > 0, we have σ(Aε) > σ(Cε), where

Xε = {x ∈ Sn−1 : ∃y ∈ X : g(x, y) 6 ε}.

This is harder to prove than the Rn version because it cannot be derived from the
Brunn–Minkowski inequality. One proof goes as follows: one can define a spherical version
of the Steiner symmetrization, and then adapt the argument we used in the proof of the
Santaló inequality.

Corollary 26. Let A ⊂ Sn−1 be a closed set with σ(A) = 1
2 . Then

σ(Aε) > 1− 1

2
exp(−nε2/2).

Proof. If C is a half-sphere, we have σ(Aε) > σ(Cε) = Vn(π/2 + ε) = 1− Vn(π/2− ε) and
we can use the formula (3.2)

It is possible to derive from the Brunn–Minkowski inequality a variant of Corollary 26
with worse constants.

Theorem 27. Let A,B ⊂ Sn−1 be closed sets such that g(x, y) > ε for every x ∈ A, y ∈ B.
Then we have

σ(A)σ(B) 6 exp(−nε2/4).

In particular, when σ(A) = 1/2, we get σ(Aε) > 1− 2 exp(−nε2/4).

Proof. We define Ã = {tx : t ∈ [0, 1], x ∈ A}, B̃ = {tx : t ∈ [0, 1], x ∈ B} and note that
(this is how we defined σ) vol(Ã) = σ(A) vol(Bn

2 ) and vol(B̃) = σ(B) vol(Bn
2 ). It follows

then from the Brunn–Minkowski inequality that

√
σ(A)σ(B) vol(Bn

2 ) =

√
vol(Ã) vol(B̃) 6 vol

(
Ã+ B̃

2

)
.

We now claim that Ã+B̃
2 ⊂ cos(ε/2)Bn

2 . This is because the maximum of
∣∣ sx+ty

2

∣∣ under the
constraints s, t ∈ [0, 1] and g(x, y) > ε is achieved for s = t = 1 and g(x, y) = ε (check!).
We have therefore √

σ(A)σ(B) vol(Bn
2 ) 6 vol(cos(ε/2)Bn

2 )

and the result follows using the inequality cos t 6 exp(−t2/2).
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In the following, we are going to use Corollary 26 even if we only proved the weaker
version from Theorem 27.

A very important corollary is the following statement, sometimes known as Lévy’s
lemma.

Theorem 28 (Lévy’s lemma). Let f : (Sn−1, g) → R a 1-Lipschitz function, and Mf a
median for f (i.e. a number which satisfies σ(f > Mf ) > 1

2 , σ(f > Mf ) 6 1
2 . Then, for

every t > 0 we have

σ(f >Mf + t) 6
1

2
exp(−nt2/2)

and therefore
σ(|f −Mf | > t) 6 exp(−nt2/2)

Remark. 1. In this context there is a unique median.

2. If f : (Sn−1, | · |) is 1-Lipschitz, then it is also 1-Lipschitz for the geodesic distance,
and the result applies.

3. If f is L-Lipschitz, Lévy’s lemma applied to f/L gives σ(|f−Mf | > t) 6 exp(−nt2/2L2).

Proof. Let A = {x ∈ Sn−1 : f(x) 6 Mf}. We have σ(A) > 1
2 . Since f is 1-Lipschitz, we

have f(x) 6Mf + t for every x ∈ At, and therefore

{f >Mf + t} ⊂ Sn−1 \At}.

It follows from Corollary 26 that

σ({f > Mf + t}) 6 1− σ(At) 6
1

2
exp(−nt2/2).

The second part is obtain by applying the result to −f :

σ({f < Mf − t}) = σ({−f > M−f + t}) 6 1

2
exp(−nt2/2).

It sometimes easier to compute the expectation E f rather than the median Mf . How-
ever, concentration of measure implies that E f and Mf are close to each other, and there-
fore a version of Lévy’s lemma for expectation can be derived formally from Theorem 28
(check!).

Corollary 29. Let f : (Sn−1, g) → R a 1-Lipschitz function. Then, for every t > 0 we
have

σ(|f −E[f ]| > t) 6 C exp(−cnt2)

for some absolute constants C <∞ and c > 0
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3.4 Gaussian concentration of measure

Let (Gi)16i6n be i.i.d. N(0, 1) random variables, and f : (Rn, | · |) → R a 1-Lipschitz
function. Can we say something about the concentration of the random variable X =
f(G1, . . . , Gn) ? Yes, and this turns out to be a corollary of the case of the sphere, thanks
to the following phenomenon. We denote by γn the standard Gaussian distribution on Rn,
i.e. the law of (G1, . . . , Gn).

Theorem 30. For n 6 N , identify Rn with a subspace of RN , and let πN,n :
√
NSN−1 →

Rn be the orthogonal projection. Let µN,n be the image-measure under πN,n of the uniform
probability measure on the sphere

√
NSN−1. Then, for every n, as N to infinity, the

sequence (µN,n)N>n converges in distribution towards γn.

The uniform measure on the sphere
√
NSN−1, which we denote σN , is understood as

the image of σ under the map x 7→
√
Nx.

Proof. For a Borel set A ⊂ Rn, we have

µN,n(A) = σ({x ∈ SN−1 : πN,n(
√
Nx) ∈ A}).

Let G = (G1, . . . , GN ) a random vector with i.i.d. N(0, 1) entries. Since the distribution of
G is invariant under rotation, the random vector G

|G| is distributed according to the uniform
measure on SN−1. The measure µN,n is therefore the distribution of

√
N

(G2
1 + · · ·G2

N )1/2
(G1, . . . , Gn).

By the law of large numbers, the prefactor
√
N

(G2
1+···G2

N )1/2
converges almost surely to 1, and

the result follows.

In turns out that a stronger notion of convergence holds: for any Borel set A ⊂ Rn, we
have

lim
N→∞

µN,n(A) = γn(A). (3.5)

Proving (3.5) for every Borel set is not so easy. When γn(∂A) = 0 (which is equivalent to
vol(∂A) = 0), the result follows from Portmanteau’s theorem. This case will be sufficient
for us (check! by adapting the following proof), as we will use (3.5) for sets of the form
A = Bε (the ε-enlargement of B). Indeed, it can be checked (check! – use the Lebesgue
differentiation theorem) that vol(∂(Bε)) = 0 for every Borel set B ⊂ Rn and ε > 0.

We now state the isoperimetric inequality for the Gaussian space (Rn, | · |, γn)

Corollary 31. Let A ⊂ Rn be a Borel set, and H a half-space such that γn(A) = γn(H).
Then, for every ε > 0, we have

γn(Aε) > γn(Hε).
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Equivalently, if we define a ∈ [−∞,+∞] by the relation γn(A) = γ1((−∞, a]), we have
γn(Aε) > γ1((−∞, a+ ε]).

Proof. If γn(A) = 0 or γn(A) = 1 the result is obvious. Otherwise, define a ∈ R by the
relation γn(A) = γ1((−∞, a]). For every b < a, we have γn(A) > γ1((∞, b]). Since

γn(A) = lim
N→∞

σN (π−1
N,n(A)) and γ1((∞, b]) = lim

N→∞
σN (π−1

N,1((−∞, b]),

we have σN (π−1
N,n(A)) > σN (π−1

N,1((−∞, b]) for N large enough. Since the set π−1
N,1((−∞, b])

is a spherical cap in
√
NSN−1, the spherical isoperimetric inequality implies that

σN (π−1
N,n(A)ε) > σN (π−1

N,1((−∞, b])ε)

where ε-enlargements are taken with respect to the geodesic distance on
√
NSN−1. We

check that π−1
N,n(A)ε ⊂ π−1

N,n(Aε). On the other hand, we have (check!)

π−1
N,1((−∞, b])ε) = π−1

N,1((−∞, εN )

where the number εN is defined by the relations sin(θN ) = b√
N

and sin(θN + ε√
N

) = b+εN√
N

.
The numbers (εN ) tend to ε as N tends to infinity (check!), and therefore, using (3.5) twice,
we obtain

γn(Aε) > γ1((−∞, b+ ε)).

The last step is to take the supremum over b < a.

As in the case of the sphere, we have (same proof, check!)

Corollary 32. Let F : Rn → R be a 1-Lipschitz function with respect to the Euclidean
distance, and G1, · · · , Gn be i.i.d. N(0, 1) random variables. If MX is the median of X =
F (G1, . . . , Gn), then for every t > 0,

P(X >MX + t) 6 P(G1 > t).

Some sharp inequalities are know on the quantity

P(G1 > t) =
1√
2π

ˆ ∞
t

exp(−x2/2) dx.

For example, one has the Komatsu inequalities for x > 0

2

x+
√
x2 + 4

6 ex
2/2

ˆ ∞
x

e−t
2/2 dt 6

2

x+
√
x2 + 2

(3.6)

which give a sharp bound when t→∞. Another simple bound is the inequality (check!)

P(G1 > t) 6
1

2
exp(−t2/2).

26



It follows that, in the context of Corollary 32, we have

P(X >MX + t) 6
1

2
exp(−t2/2),

P(|X −MX | > t) 6 exp(−t2/2),

As an application of Gaussian concentration, we prove the Johnson–Lindenstrauss
lemma. The context is the following: we have a finite set A ⊂ Rn, and we search for
a linear map f : Rn → Rk, for k � n, which is almost an isometry when restricted to A,
in the sense that for every x, y ∈ A, we have

(1− ε)|x− y| 6 |f(x)− f(y)| 6 (1 + ε)|x− y|.

When ε = 0 the best possible is k = min(n, card(A)). Remarkably, for any ε > 0, this can
be greatly improved to k of order log card(A).

Theorem 33 (Johnson–Lindenstrauss lemma). Let A ⊂ Rn, m = card(A) and ε ∈ (0, 1).
If k > C log(m)/ε2, there is a linear map f : Rn → Rk such that for every x, y ∈ A,

(1− ε)|x− y| 6 |f(x)− f(y)| 6 (1 + ε)|x− y|.

Proof. Pick f at random! Let B : RntoRk be a random linear map corresponding to a
matrix (bij)16i6k,16j6n with i.i.d. N(0, 1) entries. The following remark is fundamental
(check!): for every u ∈ Sn−1 the random vector Bu has distribution γk. Moreover, since
the function x 7→ |x| is 1-Lipschitz, we have

P
(∣∣∣|Bu| −Mk

∣∣∣ > t
)
6 exp(−t2/2) (3.7)

for every u ∈ Sn−1, where Mk is the random variable X =
√
G2

1 + ·+G2
k, with (Gi) i.i.d.

N(0, 1). It can be checked (check!) that Mk is of order
√
k (by concentration of measure,

all the quantities MX , EX and (EX2)1/2 =
√
k differ my at most O(1)).

Define f = 1
Mk
B. Given x 6= y in A, we apply (3.7) to the unit vector u = x−y

|x−y| and
t = εMk to obtain

P
(∣∣∣|f(x)− f(y)| − |x− y|

∣∣∣ > ε|x− y|
)
6 exp(−ε2M2

k/2).

Therefore, by the union bound

P

(
∃x 6= y ∈ A :

∣∣∣∣ |f(x)− f(y)|
[x− y|

− 1

∣∣∣∣ > ε

)
6

(
m

2

)
exp(−ε2M2

k/2).

The right-hand side is less that 1 (and therefore, there exists a f with the desired property)
whenever ε2M2

k/2 > log
(
m
2

)
, which is satisfied provided k > C log(m)/ε2 since Mk ∼√

k.
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Chapter 4

Dvoretzky’s theorem

4.1 Background

We denote by `n2 = (Rn, | · |) the n-dimensional Euclidean space.
We start with the following question, which was asked by Grothendieck: is it true

for every n ∈ N∗ and ε > 0, every infinite-dimensional Banach space X contains an n-
dimensional subspace Y such that dBM (Y, `n2 ) 6 1 + ε.

As a warm-up we show that the question has an easy positive answer for the special
case of X = Lp([0, 1]) (with 1 6 p <∞). The idea is to construct on the probability space
([0, 1], vol) an i.i.d. sequence of N(0, 1) random variables (Gn). (For example (check!),
use the binary expansion of an element in [0, 1] to obtain an infinite sequence of i.i.d.
Bernoulli(1/2) variables, which can be used to simulate any distribution). For any real
numbers a1, . . . , an, observe that a1G1+· · ·+anGn has distribution N(0, |a|2), and therefore∥∥∥∥∥

n∑
i=1

aiGi

∥∥∥∥∥
Lp

= αp|a|

where αp is the Lp-norm of a N(0, 1) random variable. This shows that the space Y =
span(G1, . . . , Gn) ⊂ Lp([0, 1]) is isometric to `n2 .

The general case is more involved. We are going to prove the following theorem, which
implies a positive answer to Grothendieck’s question (check!).

Theorem 34. For every ε > 0, there is a constant c(ε) > 0 such that every n-dimensional
normed space X admits a k-dimensional subspace E with k = bc(ε) log(n)c such that

dBM (E, `k2) 6 1 + ε.

We can obtain an equivalent statement about symmetric convex bodies: for every ε > 0,
there is a constant c(ε) > 0 such that, whenever K ⊂ Rn is a symmetric convex body, there
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is a subspace E ⊂ Rn with k = dimE = bc(ε) log(n)c such that dBM (K ∩ E,Bk
2 ) 6 1 + ε.

The section K ∩ E is "almost ellipsoidal".
As an example, we work out the case of Bn

∞. We are looking for a linear map A : Rk →
Rn such that

1

1 + ε
|x| 6 ‖A(x)‖∞ 6 |x|

for every x ∈ Rk. The map A has the form

x 7→ (〈x, x1〉, . . . , 〈x, xn〉)

for some vectors x1, . . . , xn ∈ Rk. We have |xj | 6 1 and we may assume without generality
that |xj | = 1 (replace xj by

xj
|xj |). We have therefore, for every x ∈ Rk,

max
16j6n

|〈x, xj〉| >
1

1 + ε
|x|.

This is equivalent (check!) to the fact that conv{±xi} ⊃ 1
1+εB

n
2 , and also equivalent (check!)

to the fact that (xj) is θ-net in (Sk−1, g), for cos θ = 1
1+ε . From the estimates on the size of

nets in the sphere, we know that such vectors (xj)16j6n exist if n > exp(C(ε)k), and that
this behaviour is sharp (up to the value of C(ε)). Therefore, the logarithmic dependence
in Theorem 34 is optimal.

4.2 Haar measure

Any compact group (=a group which is also a compact topological space, such that the
group operations g 7→ g−1 and (g, h) 7→ gh are continuous) carries a unique Haar probability
measure

Theorem 35. If G is a compact group, there exists a unique Borel probability measure µH
(the Haar measure) which is invariant under left- and right- translations, i.e. such that for
every g ∈ G and Borel set A ⊂ G,

µH(g ·A) = µH(A · g) = µH(A).

We are going work with the Haar measure on the group On. In this case the Haar
measure can be described explicitly as follows. We give an algorithm to construct a random
element O ∈ On. We first choose a random vector e1 ∈ Sn−1 according to σ. Then, we
choose e2 at random on the sphere Sn−1∩ e⊥1 , which we identify with Sn−1, according to σ.
We iterate this process and define by induction (e1, . . . , en) by choosing ek according to the
measure σ on the sphere Sn−1 ∩ {e1, . . . , ek−1}⊥, identified with Sn−k. To define the last
vector ek, we choose with probability 1

2 one of the two elements of Sn−1 ∩ {e1, . . . , en−1}⊥.
All the choices are made independently. We then consider the matrix O whose columns are
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given by (e1, . . . , en). By construction O is an orthogonal matrix, and it can be checkde
(using the fact that the measure σ is invariant under rotations) that the distribution of O
is the Haar measure.

For 0 6 k 6 n, we denote by Gn,k the family of all k-dimensional subspaces of Rn. The
set Gn,k is called the Grassmann manifold. It can be equipped with a metric by the formula
d(E,F ) = ‖PE − PF ‖∞, where PE is the orthonormal projection onto E.

The group O(n) acts transitively on Gn,k (in the following sense: for every E, F ∈ Gn,k,
there is O ∈ O(n) such that O(E) = F ). Therefore, if O ∈ O(n) is Haar distributed, the
distribution of O(E) is the same for any E ∈ Gn,k, and will be denoted by µn,k. More
concretely, one can define µn,k as the distribution of

span{x1, . . . , xk}

where (xi) are i.i.d. random points in Sn−1 with distribution σ, or equivalently as the
distribution of

span{G1, . . . , Gk}

where (Gi) are i.i.d. Gaussian vectors with distribution N(0, Id).
An important remark is that while the set Gn,k can be defined without referring to a

Euclidean structure, the measure µn,k does depend on the underlying Euclidean structure.
We now state a theorem about concentration of Lipschitz functions on a subspace.

Theorem 36. Let f : (Sn−1, | · |) → R a 1-Lipschitz function, with mean E[f ]. Let
E ∈ Gn,k be a random subspace with distribution µn,k, and ε ∈ (0, 1). If k 6 c(ε)n, then
with high probability,

sup
x∈Sn−1∩E

|f(x)−E[f ]| 6 ε,

where c(ε) = cε2/ log(1/ε), c > 0 being an absolute constant.

The theorem above is true with c(ε) = cε2, but requires a proof more sophisticated than
the union bound argument. In this theorem, “with high probability” should be understood
as follows: the probability of the complement is smaller than C(ε) exp(−c(ε)n).

Proof. By Corollary 29, if y ∈ Sn−1 is chosen at random according to the distribution σ,

P (|f(y)−E[f ]| > ε) 6 C exp(−cnε2). (4.1)

Pick arbitrarily E0 ∈ Gn,k, and let N be a ε-net in (Sn−1 ∩ E0, | · |). Since Sn−1 ∩ E0 can
be identified with Sk−1, we may enforce using Lemma 23 that cardN 6 (3/ε)k. Consider
a random O ∈ O(n) with distribution µH , so that O(E0) has distribution µn,k. Since f ◦O
is 1-Lipschitz, we have

sup
x∈Sn−1∩E0

|f(Ox)−E[f ]| 6 ε+ sup
x∈N
|f(Ox)−E[f ]|
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and therefore, by the union bound

P

(
sup

x∈Sn−1∩E0

|f(Ox)−E[f ]| > 2ε

)
6

∑
x∈N

P (|f(Ox)−E[f ]| > ε)

6 (3/ε)kC exp(−cnε2),

where we used (4.1) and the fact that for every x ∈ Sn−1, the distribution of Ox is σ
(check!). If we denote p = (3/ε)kC exp(−cnε2), we see that p < 1 provided k 6 c(ε)n for
some c(ε) = cε2/ log(1/ε). Moreover, up to changing the value of constants, this condition
implies that p 6 C exp(−cnε2). This completes the proof.

4.3 Proof of the Dvoretzky–Milman theorem

We are going to use the following fact.

Proposition 37. Let K ⊂ Rn be a symmetric convex body such that EJ(K) = Bn
2 . Then,

ˆ
Sn−1

‖x‖K dσ(x) > c

√
log n

n
.

Proof of Theorem 34. Since the problem is invariant under linear images, we may assume
that EJ(K) = Bn

2 . We repeat the argument used in the proof of Theorem 36. Fix E0 ∈ Gn,k,
and let N0 be a θ-net in (Sn−1 ∩ E0, | · |) with cardN0 6 (3/θ)k. Take O ∈ O(n) at
random with distribution µH , and let E = O(E0). Note that N := O(N0) is a θ-net in
(Sn−1 ∩ E, | · |). Consider the function f = ‖ · ‖K on Sn−1, which is 1-Lipschitz since
Bn

2 ⊂ K (check!). By arguing as in the proof of Theorem 36, we obtain

P

(
sup
x∈N0

|f(Ox)−E[f ]| > η

)
6

(
3

θ

)k
C exp(−cnη2)︸ ︷︷ ︸

p

We choose η = εE[f ] and conclude that with probability at least 1− p,

∀x ∈ N , (1− ε)E[f ] 6 f(x) = ‖x‖K 6 (1 + ε)E[f ].

We claim that event this implies

∀x ∈ Sn−1 ∩ E,
(

1− ε− θ(1 + ε)

1− θ

)
E[f ] 6 ‖x‖K 6

1 + ε

1− θ
E[f ]. (4.2)

To see this, consider A = sup{‖x‖K : x ∈ Sn−1 ∩E}. Given x ∈ Sn−1 ∩E, there is y ∈ N
with |x− y| 6 θ. Therefore,

‖x‖K 6 ‖y‖K + ‖x− y‖K = ‖y‖K + |x− y|
∥∥∥∥ x− y|x− y|

∥∥∥∥
K

6 ‖y‖K + θA.
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Taking supremum over x gives the inequality A 6 supy∈N ‖y‖K + θA, and thus the upper
bound in (4.2). For the lower bound, we argue similarly that

‖x‖K > ‖y‖K − ‖x− y‖K > ‖y‖K − θA.

If we choose θ = ε, then (4.2) implies that (with probability at least 1 − p) for every
x ∈ Sn−1 ∩ E

(1− 3ε)E[f ]|x| 6 ‖x‖K 6 (1 + 3ε)E[f ]|x|.

If p < 1, we can conclude that dBM (K ∩ E, `k2) 6 1+3ε
1−3ε , as wanted. It remains to analyze

when p < 1. The condition p < 1 is equivalent to k log(3/ε) < cnε2 E[f ]2. By Proposition

37, we have E[f ] > c
√

logn
n , and therefore the condition p < 1 is satisfied whenever k <

c log(n)ε2/ log(1/ε)

4.4 Basic estimates on Gaussian variables

It remains to prove Proposition 37. To do this, it is useful to replace integrals over Sn−1 by
Gaussian integration. Let G = (g1, . . . , gn) a vector with i.i.d. N(0, 1) coordinates. Then,
the random variables |G| and G

|G| are independent, and the latter is distributed according
to σ. This can be seen as follows: consider O ∈ O(n) independent from G, and with
distribution µH . Then OG and G have the same distribution, and therefore

(
|G|, G|G|

)
and(

|G|, O
(
G
|G|

))
also have the same distribution. Since Ox has distribution σ for an arbitrary

x ∈ Sn−1, the claim follows.
A consequence is the formula, for any norm

ˆ
Sn−1

‖x‖ dσ(x) =
1

E |G|
E ‖G‖. (4.3)

Indeed, we have E ‖G‖ = E
∥∥∥|G| G|G|∥∥∥ = E |G| · E

∥∥∥ G
|G|

∥∥∥ by independence. It is useful to
denote by κn the number E |G|. Basic estimates are

κn 6
(
E |G|2

)1/2
=
√
n,

κn >
1√
n
E ‖G‖1 =

√
n
√

2/π,

and one may check that κn ∼
√
n as n→∞ (check!).

We now state an elementary lemma about Gaussian variables. Essentially, the function√
2 log x appears since it is the inverse of the function exp(x2/2).

Lemma 38. Let g1, . . . , gn be N(0, 1) random variables. Then Emax(gi) 6
√

2 log n. If
moreover the (gi) are independent, then Emax(gi) > c

√
log n for some c > 0.
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Proof. For the first part, we use the formula (check!) E exp(tgi) = exp(t2/2) for t ∈ R. For
β > 0 to be chosen later, we have (using Jensen’s inequality and the concavity of log)

Emax(g1, . . . , gn) 6 E
1

β
log

n∑
i=1

exp(βgi)

6
1

β
logE

n∑
i=1

exp(βgi)

=
1

β
log(n exp(β2/2))

=
log n

β
+
β

2

and the optimal value β =
√

2 log n gives the result. For the second part, we may write

P(max gi > α) = 1−P(max gi 6 α)

= 1−P(g1 6 α)n

= 1− (1−P(g1 > α))n

> 1− exp(−nP(g1 > α))

We now choose α such that P(g1 > α) = 1
n . It can be checked (check! – use e.g. (3.6)) that

α > c
√

log n. We have therefore Emax(gi) > αP(max(gi) > α) > α(1− 1/e).

4.5 Proof of Proposition 37

We start with a lemma

Lemma 39. Let K ⊂ Rn be a symmetric convex body with EJ(K) = Bn
2 . Then there exists

an orthonormal basis (xk) of Rn such that ‖xk‖K >
√
k/n.

Proof. We iterate the following fact: any subspace F ⊂ Rn contains a vector x such
that |x| = 1 and ‖x‖K >

√
dim(F )/n. This fact is enough to construct by induction an

orthonormal basis (x1, . . . , xn) with ‖x1‖K > 1, ‖x2‖K >
√

(n− 1)/n, · · · , ‖xn‖K >
√

1/n
(apply the fact to the subspace F = span{x1, . . . , xk−1}. Note that using the fact with
dimF = 1 gives a proof that K ⊂

√
nBn

2 (Corollary 15).
We now prove the fact. By John’s theorem, there exist contact points xi ∈ Sn−1 ∩ ∂K,

and a convex combination (λi) such that

Id

n
=
∑
i

λi|xi〉〈xi|.
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Also remember that 〈x, xi〉 6 1 for any x ∈ K (cf. the proof of John’s theorem), and
therefore ‖ · ‖K > 〈 · , xi〉. If we denote by PF the orthonormal projection onto F , the
previous inequality yields PF

n =
∑

i λi|PFxi〉〈PFxi|. Take the trace, we obtain

dimF

n
=
∑
i

λi|PFxi|2

and therefore there exists an index i such that |PFxi| >
√

dim(F )/n. The vector x = PF xi
|PF xi|

has the desired property: indeed |x| = 1 and

‖x‖K > 〈x, xi〉 =
[PFxi|2

|PFxi|
>
√

dim(F )/n.

We can now complete the proof of Proposition 37. We have
ˆ
Sn−1

‖x ‖K dσ(x) =
1

κn
E ‖G‖K

WhereG = (g1, . . . , gn) is aN(O, Id) random vector. By Lemma 39, applying an orthogonal
transformation if necessary, we may reduce to the case when the canonical basis (ei) satisfies
‖ei‖K >

√
i/n. We now use the following trick: if (ε1, . . . , εn) are random signs independent

from G, than (ε1g1, . . . , εngn) has the same distribution as G. Therefore,

E ‖G‖K = Eg Eε ‖(ε1g1, . . . , εngn)‖K
> Eg max

i
‖giei‖K

> E max
16i6n

|gi|
√
i/n

>
1√
2
E max
n/26i6n

|gi|

and we conclude that E ‖G‖K > c
√

log n by the second part of Lemma 38.
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Chapter 5

Gluskin’s theorem

5.1 Preliminaries: on the volume of polytopes

We define a polytope to be a convex body which is the convex hull of a finite set. Equivalently
(check!), a polytope is a convex body which is the intersection of finitely many closed half-
spaces.

Let P a polytope. If P = convA, for a subset A ⊂ Rn which is minimal with this
property, the elements of A are called the vertices of P . If P =

⋂
Hi for a family (Hi) of

half-spaces which is minimal with this property, then the convex sets Hi ∩ ∂P are called
the facets of P .

A simplex in Rn is polytope with n+1 vertices, or equivalently with n+1 facets. When
0 ∈ int(P ), there is a one-to-one correspondence between the vertices of P and the facets
of P ◦.

Let K ⊂ Rn be a convex body. For u ∈ Rn, define

wK(u) = sup
x∈K
〈u, x〉,

which for |u| = 1 is called the width of K in the direction u. The width of K is the average
of mean width over directions

w(K) =

ˆ
Sn−1

w(K,u) dσ(u).

The mean width gives an upper bound on the volume, which is often quite good. It is
convenient to write it using the volume radius of a convex body K, defined as

vrad(K) =

(
vol(K)

vol(Bn
2 )

)1/n

.

So far, we never computed the value of vol(Bn
2 ). It equals

vol(Bn
2 ) =

πn/2

Γ
(
1 + n

2

)
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from which it can be derived than vol(Bn
2 )1/n ∼

√
2eπ√
n

as n tends to infinity. Here is a
simple, but instructive, way to obtain the correct order of vol(Bn

2 )1/n. We start from the
inequalities 1√

n
Bn
∞ ⊂ Bn

2 ⊂
√
nBn

1 to obtain(
2√
n

)n
= vol

(
1√
n
Bn
∞

)
6 vol(Bn

2 ) 6 vol(
√
nBn

1 ) =
2nnn/2

n!
6

(
C√
n

)n
. (5.1)

To compute vol(Bn
1 ), observe thatBn

1 is the union of 2n simplices congruent to conv(e1, . . . , en);
the value vol(conv(e1, . . . , en)) = 1

n! is computed by induction.

Theorem 40 (Urysohn’s inequality). For every symmetric convex body K ⊂ Rn, we have

vrad(K) 6 w(K)

Proof. We use the following formula: if K is a convex body with 0 in the interior (which
we can assume)

vrad(K) =

(ˆ
Sn−1

‖x‖−nK dσ(x)

)1/n

. (5.2)

To check (5.2) this formula, we integrate in polar coordinates

vol(K) =

ˆ
Rn

1K(x) dx

= λn

ˆ
Sn−1

ˆ ∞
0

1K(rθ)nrn−1 dr dσ(θ)

= λn

ˆ
Sn−1

ˆ ‖θ‖−1
K

0
nrn−1 dr dσ(θ)

= λn

ˆ
Sn−1

‖θ‖−nK dσ(θ)

for some constant λn > 0. The case K = Bn
2 shows that λn = vol(Bn

2 ), proving (5.2). We
now write, using Hölder inequality

vrad(K) =

(ˆ
Sn−1

‖x‖−nK dσ(x)

)1/n

>
ˆ
Sn−1

‖x‖−1
K dσ(x) >

1´
Sn−1 ‖x‖K dσ(x)

.

If we now apply this inequality to K◦, we get 1 6 w(K) vrad(K◦). Combined with
the Blaschke–Santalò inequality (which reads vrad(K) vrad(K◦) 6 1), we obtain that
vrad(K) 6 w(K).

Theorem 41. Let P ⊂ Bn
2 be a polytope with N vertices. Then

vrad(P ) 6 C

√
log(N)

n
.

36



In particular, having vrad(P ) ' 1 requires an exponential number of vertices.

Proof. Let V be the set of vertices of P . Without loss of generality, we may assume that
V ⊂ Sn−1 (check!). We then write

vrad(P ) 6 w(P ) =
1

κn
Ew(P,G)

whereG is a standard Gaussian vector inRn. The random variable w(P,G) is the maximum
of N random variables with distribution N(0, 1), and the upper bound follows from Lemma
38 .

The bound from Theorem 41 is not sharp when N is proportional to n. Here is an
improvement in this range

Theorem 42. Let P ⊂ Bn
2 be a polytope with λn vertices. Then

vrad(P ) 6 C
λ√
n
.

Proof. We use Carathéodory’s theorem (exo): any point x ∈ P is a convex combination of
at most n+ 1 vertices. Geometrically, this means that P is the union of all simplices built
on its vertices. Therefore, by the union bound,

vol(P ) 6

(
λn

n+ 1

)
vn

where vn is the maximal volume of a simplex inscribed inside Bn
2 . Since vn 6 2vn−1

n , we
have vn 6 2n

n! , and therefore

vol(P ) 6

(
λn

n+ 1

)
2n

n!
6 (λn)n+1 (2e)n

nn
.

We conclude by using the lower bound from (5.1).

On can prove, under the hypotheses from Theorem 41, the upper bound vol(P ) 6

C

√
log(N/n)

n , which is stronger than both Theorems 41 and 42.

5.2 Volume of the operator norm unit ball

As a preliminary to Gluskin’s theorem, we need an estimate for the volume of the unit ball
of the set of n× n matrices with respect to the operator norm. The operator norm on Mn

is
‖A‖op = sup

{
|Ax|
|x|

: x 6= 0

}
.
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In order to do Euclidean geometry in Mn, we use the Hilbert–Schmidt inner product

〈A,B〉 = Tr(ABt)

and denote by ‖A‖HS = Tr(AAt)1/2 the induced norm, called the Hilbert–Schmidt norm.
We denote by Bn

op and Bn
HS the unit ball for the operator and Hilbert–Schmidt norms.

Proposition 43. We have

c
√
n 6

(
vol(Bn

op)

vol(Bn
HS)

)1/n2

6
√
n.

Proof. The upper bound is easy and follows from the inequality ‖A‖op > 1√
n
‖A‖HS , which

can be seen by writing

‖A‖2HS =

(
n∑
i=1

|Aei|2
)1/2

6
√
n max

16i6n
|Aei| 6

√
n‖A‖op.

For the lower bound, we write (SHS ∼ Sn
2−1 being the Hilbert–Schmidt sphere, equipped

with the uniform measure σHS)

vol(Bn
op)

vol(Bn
HS)

=

ˆ
SHS

‖A‖−n2

op dσHS(A) >
1

2
m−n

2
,

where m is the median of ‖ · ‖op with respect to σHS . It remains to justify that m 6
C√
n
. Since the function ‖ · ‖op is a 1-Lipschitz function on (SHS , ‖ · ‖HS), it follows by

concentration of measure that its median and mean differ by at most C√
n2

= C
n . Therefore,

we are reduced to show that ˆ
SHS

‖A‖op dσ(A) 6
C√
n
.

In view of (4.3), this is equivalent to the content of the next lemma.

Lemma 44. Let G a n× n matrix with independent N(0, 1) entries. Then

E ‖G‖op 6 C
√
n.

This is clearly sharp, since we have E ‖G‖op > κn by looking only at the first column.

Proof. Let N be a 1
4 -net in (Sn−1, | · |) with cardN 6 9n. We have

‖G‖op = max
x∈Sn−1

|Gx| = max
x,y∈Sn−1

〈Gx, y〉.
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Given x, y ∈ Sn−1, let x′ and y′ ∈ N such that |x− x′| 6 1
4 and |y − y′| 6 1

4 . We have

〈Gx, y〉 6 〈Gx′, y〉+ |x− x′| · |y| · ‖G‖op 6 〈Gx′, y′〉+
1

2
‖G‖op.

Taking the supremum over x, y gives

‖G‖op 6 max
x′,y′∈N

〈Gx′, y′〉+
1

2
‖G‖op

and thus
E ‖G‖op 6 2E max

x′,y′∈N
〈Gx′, y′〉.

The right-hand side is the expectation of N 6 81n random variables with distribution
N(0, 1), and therefore

E ‖G‖op 6 2
√

2 log(81n) = C
√
n.

5.3 Proof of Gluskin’s theorem

Gluskin’s theorem states that the diameter of the Banach–Mazur compactum BMn is of
order n.

Theorem 45. There is a constant c0 > 0 such that, for any dimension n, there exist
symmetric convex bodies Kn, Ln in Rn such that dBM (Kn, Ln) > c0n.

Recall that

dBM (K,L) = inf

{
b

a
: ∃T ∈ GLn(R) aK ⊂ T (L) ⊂ bK

}
and that we can actually restrict to T ∈ SL±n (R), the set of n×n matrices with determinant
equal to ±1.

We will choose Kn and Ln at random. To motivate the proof, start with the following
observation. It is trivial that dBM (Bn

1 , B
n
1 ) = 1. However, if O ∈ O(n) is chosen at random

according to the Haar measure, We have E ‖Oe1‖1 ∼ c
√
n and therefore

P
(
O(Bn

1 ) ⊂ c
√
nBn

1

)
tends to 0 as n grows. Therefore, the distance from Bn

1 to itself, when computed at random,
is of order n. Gluskin’s idea is to exploit this phenomenon by considering random variants
of Bn

1 .
We consider

An =

{
K of the form conv{±xi}16i63n with xi ∈ Sn−1 and such that K ⊃ 1√

n
Bn

2

}
.
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We define a An-valued random variable by setting

K = conv{(±ei)16i6n, (±yj)16j62n},

where yj ∈ Sn−1 are i.i.d. with distribution σ. We say thatK is a random convex body with
distribution Pn. We will prove Gluskin’s theorem by showing that if K, L are independent
random convex bodies with distribution Pn, then for some c0,

P(dBM (K,L) > c0n) −→ 1.

Proposition 46. Fix L ∈ An, and let K a random convex body with distribution Pn. Then,
for any T ∈ SL±n(R) and ρ ∈ (0, 1),

P
(
T (K) ⊂ ρ

√
nL
)
6
(
C1ρ

2
)n2

Proof. We generate K as conv{±ei,±yj} with (yj) i.i.d. with distribution σ. If T (K) ⊂
ρ
√
nL, then T (yj) ∈ ρ

√
nL for every j ∈ {1, . . . , 2n}. These 2n events are independent,

and therefore

P(T (K) ⊂ ρ
√
nL) 6 σ

({
x ∈ Sn−1 : T (x) ∈ ρ

√
nL
})2n

6 σ(Sn−1 ∩ ρ
√
nT−1L)2n.

Lemma 47. If K0 is a symmetric convex body in Rn, then

σ(Sn−1 ∩K0) 6
vol(K0)

vol(Bn
2 )
.

Proof. Write

σ(Sn−1 ∩K0) =
{tx : t ∈ [0, 1], x ∈ Sn−1 ∩K0}

vol(Bn
2 )

6
vol(K0)

vol(Bn
2 )
.

We continue the proof of Proposition 46. We have

P(T (K) ⊂ ρ
√
nL) 6

(
vol(ρ

√
nL)

vol(Bn
2 )

)2n

=
(
ρ
√
n vrad(L)

)2n2

.

Since L is a polytope with 6n vertices, Theorem 42 implies that vrad(L) 6 C/
√
n, and

therefore
P(T (K) ⊂ ρ

√
nL) 6 (Cρ)2n2

= (C1ρ
2)n

2
.

Proposition 46 shows that the event T (K) ⊂ ρ
√
nL is unlikely for a fixed T . We are

now going to use a net argument over T ∈ SL±n .
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Proposition 48. Fix L ∈ An, and denote

ML = {T ∈ Mn(R) : Tei ∈
√
nL for 1 6 i 6 n}, (a convex set)

TL =ML ∩ SL±n (R).

For every ε ∈ (0, 1), TL contains a ε-net (for ‖ · ‖op) of cardinal at most (C/ε)n
2.

Proof. Let N ⊂ TL a maximal ε-separated set for ‖ · ‖op. Then N is a ε-net, and the balls
xi + ε

2B
n
op for xi ∈ N are disjoint and contained in TL + ε

2B
n
op. We claim that

TL +
ε

2
Bn
op ⊂

(
1 +

ε

2

)
ML.

Indeed, we have TL ⊂ML (obvious) and if T ∈ Bn
op, then Tei ∈ Bn

2 ⊂
√
nL, so Bn

op ⊂ML.
Comparing volumes gives

card(N ) vol
(ε

2
Bn
op

)
6
(

1 +
ε

2

)n2

vol(ML).

By Fubini’s theorem, we have voln2(ML) = voln(
√
nL)n. As we already observed, vrad(L) 6

C/
√
n, so vol(L) 6 (C/n)n and vol(ML) 6 (C/

√
n)n

2 . On the other hand, we know from
Proposition 43 that vol(Bn

op) > (C/
√
n)n

2 . This gives

card(N ) 6

(
3

ε

)n2

vol(ML)

vol(Bn
op)

6

(
C

ε

)n2

.

We have now all the ingredients needed to prove Gluskin’s theorem. Fix L ∈ An, and
let K be a random convex body.

Lemma 49. If ε < ρ < 1, then

P
(
∃T ∈ SL±n (R) : T (K) ⊂ (ρ− ε)

√
nL
)
6

(
Cρ2

ε

)n2

Proof. Let N be a ε-net in TL given by Proposition 48, with cardN 6 (C/ε)n
2 . Assume

that there exists T ∈ SL±n (R) such that T (K) ⊂ (ρ− ε)
√
nL. Then T (ei) ∈

√
nL for every

i, and therefore T ∈ TL. Choose T ′ ∈ N such that ‖T − T ′‖op 6 ε. For every x ∈ K, we
have

‖T ′x‖L 6 ‖Tx‖L + ‖(T − T ′)x‖L 6 (ρ− ε)
√
n+
√
n|(T − T ′)x| 6 ρ

√
n.
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The problem has been discretized: we have

P
(
∃T ∈ SL±n (R) : T (K) ⊂ (ρ− ε)

√
nL
)

6 P
(
∃T ′ ∈ NL : T ′(K) ⊂ ρ

√
nL
)

6 card(NL) sup
T ′∈NL

P
(
T ′(K) ⊂ ρ

√
nL
)

6

(
C

ε

)n2 (
C1ρ

2
)n2

6

(
Cρ2

ε

)n2

as needed.

We now choose ρ = 1
4C and ε = ρ

2
1

8C , so that Cρ2

ε = 1
2 . We have shown that for a fixed

L ∈ An and a random K,

P

(
∃T ∈ SL±n (R) : T (K) ⊂ 1

8C

√
nL

)
6 2−n

2
.

Let now K and L be independent random convex bodies. By conditioning,

P

(
∃T ∈ SL±n (R) : K ⊂

√
n

8C
T (L)

)
6 2−n

2
.

P

(
∃T ∈ SL±n (R) : T (L) ⊂

√
n

8C
K

)
6 2−n

2
.

With probability at least 1− 2 · 2−n2 , if T ∈ SL±n (R) and a, b > 0 satisfy aK ⊂ T (L) ⊂ bK,
then b >

√
n/8C and a−1 >

√
n/8C, so b/a > n/(64C2). This shows that

P
(
dBM (K,L) 6

n

64C2

)
6 1− 21−n2

,

proving Theorem 45.
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Chapter 6

Gaussian processes

By a stochastic process we just mean a collection (Xt)t∈T of random variables. We say that
(Xt)t∈T is a (centered) Gaussian process if every linear combination∑

t∈T
λtXt

has a centered Gaussian distribution N(0, σ2) for some σ > 0.
When (Xt)t∈T is a Gaussian process, the index set T can be equipped with a distance

induced by the L2 norm: for s, t ∈ T

d(s, t) =
(
E
[
|Xs −Xt|2

])1/2
.

Example of Gaussian process can be constructed as follows: consider any subset T ⊂ Rn,
and set

Xt = 〈G, t〉
where G is a N(0, Id) Gaussian random vector. This example describes the general case,
at least when T is finite. Indeed, given a Gaussian process (Xt)t∈T with T finite, we may
identify the subspace span{Xt : t ∈ T} ⊂ L2(Ω) with the Euclidean space (Rn, | · |) for
some n. This induces a map φ : T → Rn. If we set Yt := 〈G,φ(T )〉 with G as above, we
check that

EY 2
t = |φ(t)|2 = EX2

t ,

2EYsYt = EY 2
s + EY 2

t −E(Ys − Yt)2 = EX2
s + EX2

t −E(Xs −Xt)
2 = 2EXsXt.

Since the distribution of a centered Gaussian process is characterized by the covariance
matrix, the vectors (Xt)t∈T and (Yt)t∈T have the same distribution.

The goal of this chapter is to give estimates on the quantity

E sup
t∈T

Xt

in terms of the geometry of the metric space (T, d). In full generality, measurability issues
could arise, but in practice we will always reduce to the case when T is finite.
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6.1 Comparison inequalities

Lemma 50 (Slepian’s lemma). Let (Xt)t∈T and (Yt)t∈T be Gaussian processes, with T
finite. Assume that EX2

t = EY 2
t for every t ∈ T , and also that for every s, t

‖Xs −Xt‖L2 6 ‖Ys − Yt‖L2 .

Then, for any real numbers (λt),

P (∃t : Xt > λt) 6 P (∃t : Yt > λt) , (6.1)

which implies in particular that

Emax
t∈T

Xt 6 Emax
t∈T

Yt. (6.2)

We first explain the last part of the lemma. It is useful to know about stochastic
domination. Given random variables X, Y , the following are equivalent (check!) and we
say that Y dominates X

1. For every λ ∈ R, P(X > λ) 6 P(Y > λ),

2. For every measurable non-decreasing function f : R → R such that f(X) and f(Y )
are integrable, we have E[f(X)] 6 E[f(Y )].

3. There are random variables X ′ and Y ′ defined on a common probability space, such
that X and X ′ have the same law, Y and Y ′ have the same law, and P(X ′ 6 Y ′) = 1.

It is then easy to check that (6.1) implies that maxYt dominates maxXt, and (6.2) follows
(check!).

We now state a generalization of Slepian’s lemma. It is more complicated to state, but
not harder to prove. Slepian’s lemma appears at the special case where each set Ts is a
singleton.

Lemma 51 (Gordon’s lemma). Let (Xt)t∈T and (Yt)t∈T be Gaussian processes, with T
finite. Assume that T is written as a partition T =

⋃
s∈S Ts, and for t ∈ T denote by s(t)

the unique s such that t ∈ Ts. We assume that EX2
t = EY 2

t for every t ∈ T , and that for
t, t′ ∈ T

‖Xt −Xt′‖L2 6 ‖Yt − Yt′‖L2 if s(t) 6= s(t′)

‖Xt −Xt′‖L2 > ‖Yt − Yt′‖L2 if s(t) = s(t′)

Then, for every real numbers (λt),

P

(⋃
s∈S

⋂
t∈Ts

{Xt > λt}

)
6 P

(⋃
s∈S

⋂
t∈Ts

{Yt > λt}

)
, (6.3)
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which implies in particular that

Emax
s∈S

min
t∈Ts

Xt 6 Emax
s∈S

min
t∈Ts

Yt

It is useful to remark that the process (−Xt), (−Yt) also satisfy the hypothesis of
Gordon’s lemma, and therefore it also holds that

Emin
s∈S

max
t∈Ts

Xt > Emin
s∈S

max
t∈Ts

Yt.

Proof. We note that, taking complements, (6.3) is equivalent to

E

[∏
s∈S

(
1−

∏
t∈Ts

1{Xt>λt}

)]
> E

[∏
s∈S

(
1−

∏
t∈Ts

1{Yt>λt}

)]
.

We show a functional version of this inequality: whenever (ft) are non-decreasing functions
with values in [0, 1],

E

[∏
s∈S

(
1−

∏
t∈Ts

ft(Xt)

)]
> E

[∏
s∈S

(
1−

∏
t∈Ts

ft(Yt)

)]
,

the previous inequality corresponding to ft = 1[λt,+∞). We can now assume that each
function ft is of class C2. If we introduce the function F : RT → R defined by

F ((xt)t∈T ) =
∏
s∈S

(
1−

∏
t∈Ts

ft(xt)

)
,

we are reduced to showing that EF (Xt) > EF (Yt). We observe the following: for u, v ∈ T ,{
∂2
uvF > 0 if s(u) 6= s(v)

∂2
uvF 6 0 if s(u) = s(v) and u 6= v.

We interpolate between (Xt) and (Yt) as follows. First, we may assume that (Xt) and
(Yt) are independent (check!). Next, define for θ ∈ [0, π/2],

Wt(θ) = cos(θ)Xt + sin(θ)Yt

so that Wt(0) = Xt and Wt(π/2) = Yt. If we consider the function Φ(θ) = E[F (Wt(θ)], it
is enough to show that Φ′ 6 0 on [0, π/2]. For a fixed θ ∈ [0, π/2], we compute

Φ′(θ) = E
∑
u∈T

∂uF (Wt(θ))W
′
u(θ),
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where W ′t(θ) = d
dθWt(θ) = − sin(θ)Xt + cos(θ)Yt. We now also fix u ∈ T . We use the

following formula (check!): if (G,H) is a pair of jointly Gaussian variables, we may write
G = αH + Z for α ∈ R and Z a random variable independent from Z (and we then have
α = E[GH]

E[H2]
).

Therefore, for every t ∈ T , we may write

Wt(θ) = αtW
′
u(θ) + Zt

with Zt independent from W ′t(θ). The real number αt has the same sign as

E[Wt(θ)W
′
tθ)] = cos(θ) sin(θ) (E[YtYu]−E[XtXu]) .

From our hypothesis, we see that αt > 0 if s(t) = s(u) and αt 6 0 if s(t) 6= s(u). Moreover,
αu = 0.

We write
Φ′(θ) =

∑
u∈T

Eω∈ΩW
′
u(θ)(ω)∂uF ((αtW

′
u(θ)(ω) + Zt(ω)︸ ︷︷ ︸

hu,ω((αt)t∈T )

.

We now focus on the quantity hu,ω from the previous equation, which we think of as a
function of the variables (αt)t∈T . We have

∂thu,ω = (W ′u)2∂2
ut(αtW

′
u + Zt)

{
> 0 if s(t) 6= s(u),

6 0 if s(t) = s(u), t 6= u.

Since αt has a sign opposed to ∂thu,ω, it follows that hu,ω((αt)t∈T ) 6 hu,ω(0, . . . , 0). There-
fore, we have

Φ′(θ) 6
∑
u∈T

E
[
W ′u(θ)∂uF (Zt)

]
= 0,

where the last equality follows from the independence of Zt and W ′u. The proof is therefore
complete.

Here is a variant on Slepian’s lemma.

Lemma 52 (Fernique’s lemma). Let (Xt)t∈T , (Yt)t∈T be Gaussian processes, with T finite.
Assume that ‖Xs −Xt‖L2 6 ‖Ys − Yt‖L2 for every s, t ∈ T . Then

Emax
t∈T

Xt 6 Emax
t∈T

Yt.

It is clear that stochastic domination does not hold without the hypothesis EX2
t = EY 2

t

(consider the case of T being a singleton).
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Proof. Let Z ∼ N(0, 1) be a random variable independent from (Xt) and (Yt). For ε ∈ (0, 1)
and R > 0 large enough, we define

Xt = (1− ε)Xt + αtZ,

Y t = Yt + βtZ,

where αt and βt are chosen so that EX2
t = EY

2
t = R2. In formulas, we have (as R→∞)

αt =
√
R2 − (1− ε)2 EX2

t = R− (1− ε)2 EX2
t

2R
+ o(1/R),

βt =
√
R2 −EY 2

t = R− EY 2
t

2R
+ o(1/R).

We have

‖Xs −Xt‖2L2 = (1− ε)2‖Xs −Xt‖2L2 + (αs − αt)2 →
R→∞

(1− ε)2‖Xs −Xt‖2L2 ,

‖Y s − Y t‖2L2 = ‖Ys − Yt‖2L2 + (βs − βt)2 →
R→∞

‖Ys − Yt‖2L2 .

In particular, for R large enough, we have ‖Xs −Xt‖L2 6 ‖Y s − Y t‖L2 for every s, t. We
may therefore apply Slepian’s lemma to the processes (Xt) and (Y t) and conclude that
EmaxXt 6 EmaxY t. Note that

Emax
t∈T

Xt = Emax
t∈T

(Xt −RZ) = (1− ε)Emax
t∈T

Xt +O(1/R),

Emax
t∈T

Y t = Emax
t∈T

(Y t −RZ) = Emax
t∈T

Yt +O(1/R), .

Letting R → ∞ gives (1 − ε)EmaxXt 6 EmaxYt, and the result follows by taking ε to
zero.

Nice applications of Slepian’s lemma arise when considering random matrices. Here is
an example, which improves on 44. The constant 2 can be shown to be sharp.

Proposition 53. Let G be a n×n matrix with independent N(0, 1) entries. Then E ‖G‖op 6
2
√
n.

Proof. We consider two Gaussian processes indexed by Sn−1 × Sn−1

X(x,y) = 〈Gx, y〉,

Y(x,y) = 〈g1, x〉+ 〈g2, x〉,

with g1 and g2 independent N(0, Idn) Gaussian vectors. We note that

E ‖G‖op = E max
(x,y)∈Sn−1×Sn−1

X(x,y).

47



We claim that for every x, y, x′, y′ in Sn−1,

‖X(x,y) −X(x′,y′)‖L2 6 ‖Y(x,y) − Y(x′,y′)‖L2 . (6.4)

For every finite subset T ⊂ Sn−1×Sn−1, we apply Slepian’s lemma to the processes (Xt)t∈T
and (Yt)t∈T . When T ranges over all finite subsets of Sn−1 × Sn−1, this gives (check!)

E ‖G‖op = E max
(x,y)∈Sn−1×Sn−1

X(x,y) 6 E max
(x,y)∈Sn−1×Sn−1

Y(x,y) = E [|g1|+ |g2|] = 2κn 6
√
n.

It remains to justify (6.4). We compute that

‖X(x,y) −X(x′,y′)‖2L2 =
∑
i,j

(xiyj − x′iy′j)2 = 2−
∑
i,j

xiyjx
′
iy
′
j = 2− 〈x, x′〉〈y, y′〉

‖Y(x,y) − Y(x′,y′)‖2L2 =
∑
i

(xi − x′i)2 +
∑
j

(yj − y′j)2 = 2− 〈x, x′〉+ 2− 〈y, y′〉.

Since 2(1− 〈x, x′〉)(1− 〈y, y′〉) > 0, the inequality follows.

A similar argument applies to rectangular matrices. In that case, extra information can
be obtain by using Gordon’s lemma.

Proposition 54. Let G be a m × n matrix with independent N(0, 1) entries, for n 6 m.
Consider G as a linear map from Rn to Rm. Then,

√
m−

√
n 6 E min

x∈Sn−1
|Gx| 6 E max

x∈Sn−1
|Gx| 6

√
n+
√
m.

Proof. We consider the Gaussian processes indexed by Sn−1 × Sm−1

X(x,y) = 〈Gx, y〉,

Y(x,y) = 〈g, x〉+ 〈h, y〉,

with g ∼ N(0, Idn) and h ∼ (O, Idm). We have, as in the previous proof,

‖Y(x,y) − Y(x′,y′)‖2L2 − ‖X(x,y) −X(x′,y′)‖2L2 = 2(1− 〈x, x′〉)(1− 〈y, y′〉).

It follows that the hypotheses of Gordon’s lemma are satisfied if we equip the index set
with the partition

Sn−1 × Sm−1 =
⋃

s∈Sn−1

{s} × Sm−1.

Gordon’s lemma implies that (check!)

κm − κn 6 E min
x∈Sn−1

|Gx| 6 E max
x∈Sn−1

|Gx| 6 κm + κn

and (not so easy) considerations from calculus show that κm − κn >
√
m −

√
n whenever

m > n.
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6.2 Sudakov inequalities

Let (Xt)t∈T be a Gaussian process. For ε > 0, denote by N(T, d, ε) the covering number of
the metric space (T, d).

Proposition 55 (Sudakov inequality). Let (Xt)t∈T be a centered Gaussian process. Then,
for every ε > 0,

E sup
t∈T

Xt > cε
√

logN(T, d, ε).

Proof. Let N = N(T, d, ε). By (3.3), there is a subset (ti)16i6N of T such that d(ti, tj) > ε
whenever i 6= j. Let (Zi)16i6N be i.i.d. N(0, 1) random variables, and Yi = ε√

2
Zi. For

i 6= j, we have ‖Zi − Zj‖L2 =
√

2 and therefore ‖Yi − Yj‖L2 = ε 6 ‖Xti − Xtj‖L2 . By
Fernique’s lemma, we have

E sup
16i6N

Yi 6 E sup
16i6N

Xti 6 E sup
t∈T

Xt.

We know from Lemma 38 that the left-hand-side is greater that cε
√

logN .

As a corollary, we obtain upper bounds on the covering number of convex bodies. Given
convex bodies K,L ⊂ Rn, denote by N(K,L, ε) the minimal number of translates of εL
needed to cover K. In other words,

N(K,L, ε) = inf

{
N : ∃x1, . . . , xN ∈ K : K ⊂

N⋃
i=1

xi + εL

}
.

Corollary 56. Let K ⊂ Rn be a convex body. Then

logN(K,Bn
2 , ε) 6 C

nw(K)2

ε2

Proof. Apply Sudakov’s inequality to the Gaussian process (Xt)t∈T defined by Xt = 〈G, t〉,
where T = K and G is a standard Gaussian vector in Rn. Note that the metric space (T, d)
can be identified with (K, | · |), and that

E sup
t∈T

Xt = κnw(K).

It is conjectured that the covering numbers of convex bodies satisfy the following (ap-
proximate) duality property: if K, L are symmetric convex bodies in Rn, then do we
have

logN(L◦,K◦, Cε) 6 C logN(K,L, ε) ? (6.5)

The inequality (6.5) (which is known to be true when L = Bn
2 , but this is not an easy

result) implies a dual version of Sudakov’s inequality.
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Proposition 57 (Dual Sudakov inequality). If K ⊂ Rn is a symmetric convex body, then

logN(Bn
2 ,K

◦, ε) 6 C
nw(K)2

ε2
.

Proof. Let

wg(K) = κnw(K) =

ˆ
Rn

sup
x∈K
〈x, y〉 dγn(y)

be the Gaussian mead width of K. We may assume that wg(K) = 1 (otherwise, replace K
by λK for λ = wg(K)−1). We have to show that logN(rBn

2 ,K
◦) 6 Cr2 for r > 0.

Let x1, . . . , xN ∈ rBn
2 such that the sets (xi + 2K◦) are disjoint. We can remark that

since wg(K) = 1, we have γn(2K◦) > 1
2 by Markov’s inequality. Moreover, using symmetry

of K◦, we have

γn(xi + 2K◦) =
γn(xi + 2K◦) + γn(−xi + 2K◦)

2

=

ˆ
2K◦

Φ(x+ xi) + Φ(x− xi)
2

dx

where Φ(x) = 1
(2π)n/2

exp(−|x|2/2) is the Gaussian density. We have, using convexity of the
exponential function,

Φ(x+ xi) + Φ(x− xi)
2

>
1

(2π)n/2
exp

(
−|x+ xi|2

4
− |x− xi|

2

4

)
=

1

(2π)n/2
exp

(
−|x|

2

2
− |xi|

2

2

)
> Φ(x) exp(−r2/2).

Integrating over 2K◦ gives

γn(xi + 2K◦) > e−r
2/2γn(2K◦) >

1

2
e−r

2/2.

Since the sets (xi+2K◦) are disjoint, it follows that 1
2e
−r2/2N 6 1, completing the proof.

6.3 Dudley inequality

Dudley’s inequality is an upper bound on the expected supremum of a Gaussian process,
in terms of covering numbers. It actually holds true, with the same proof, for the larger
class of subGaussian processes which we now introduce.

A centered stochastic process (Xt) indexed by a metric space (T, d) is subGaussian with
constant α > 0 if for every s, t ∈ T and x > 0,

P(Xs −Xt > x) 6 2 exp

(
−α x2

d(s, t)2

)
.
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If (Xt)t∈T is a Gaussian process and d is the distance on T induced from the L2 norm,
then (Xt) is subGaussian with constant 1

2 : if s, t ∈ T , then Xs−Xt
d(s,t) ∼ N(0, 1) and we use

the fact that a N(0, 1) random variable X satisfies

P(X > x) 6
1

2
exp(−x2/2).

Theorem 58 (Dudley’s inequality). Let (Xt) be a centered subGaussian process with con-
stant α. Then

E sup
t∈T

Xt 6
C√
α

ˆ ∞
0

√
logN(T, d, ε) dε. (6.6)

If the metric space T is bounded (which is always the case in applications), then
N(T, d, ε) = 1 for ε larger that ε0 enough and therefore the integral can be taken on
[0, ε0].

Proof. We actually show the equivalent bound

E sup
t∈T

Xt 6
C√
α

∑
k∈Z

2−k
√

logN(T, d, 2−k). (6.7)

If I denotes the integral in (6.6) and S denotes the series in (6.7), then S 6 I 6 2S. Indeed,
write

I =
∑
k∈Z

ˆ 2k+1

2k

√
logN(T, d, ε) dε

and use the fact that the function ε 7→ N(T, d, ε) is nonincreasing.
When proving Dudley’s theorem, we can assume that T is finite (check!) and that α = 1

(by homogeneity: if (Xt) is subGaussian with constant α, then (cXt) is subGaussian with
constant α/

√
c).

For k ∈ Z, set εk = 2−k, and let Nk be a εk-net in (T, d) such that card(Nk) =
N(T, d, εk). We also write kmax for the minimal k such that Nk = T and kmin for the
maximal k such that card(Nk) = 1. Therefore Nkmin

= {t0}.
For t ∈ T and k ∈ Z, let πk(t) ∈ Nk such that d(t, πk(t)) 6 εk. We have

E sup
t∈T

Xt = E sup
t∈T

(Xt −Xt0).

The idea will be to use chaining : write

Xt −Xt0 =

kmax−1∑
k=kmin

Xπk+1(t) −Xπk(t)

and therefore

E sup
t∈T

(Xt −Xt0) 6
kmax−1∑
k=kmin

E sup
t∈T

(Xπk+1(t) −Xπk(t)).
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We now focus on the quantity E supt∈T (Xπk+1(t)−Xπk(t)), for fixed k. This is the supremum
of at most card(Nk) card(Nk+1) random variables, each satisfying the subGaussian estimate

P(Xπk+1(t) −Xπk(t)) > x) 6 2 exp

(
− x2

d(πk+1(t), πk(t))2

)
6 2 exp

(
− x2

(2εk)2

)
.

We have the following lemma (check!)

Lemma 59. Let Y1, . . . , YN be random variables satisfying P(Yi > x) 6 2 exp(−x2/β2) for
N > 2. Then Emax(Y1, . . . , YN ) 6 Cβ

√
logN .

It follows that

E sup
t∈T

(Xπk+1(t) −Xπk(t)) 6 Cεk
√

log (card(Nk) card(Nk+1)) 6 Cεk
√

logN(T, d, εk+1.

Combining all the estimates gives

E sup
t∈T

Xt 6 C

kmax∑
k=kmin

2−k−1
√

logN(T, d, 2−k−1)

and (6.7) follows.

As an application of Dudley’s inequality, we prove a uniform law of large numbers.
Consider an integrable function f : [0, 1]→ R. If (Zi) are i.i.d. random variables uniformly
distributed on [0, 1], the by the law of large numbers

lim
n→∞

1

n

n∑
i=1

f(Zi) =

ˆ 1

0
f(x) dx.

Moreover, the error is of order O(1/
√
n) when f ∈ L2. Can we hope for the error to be

small simultaneously for every f? This is clear not possible: given samples (Z1, . . . , Zn),
one may engineer a function f for which the empirical mean is arbitrary large from the
limit. However, this becomes true if we impose some mild regularity on f , for example
being Lipschitz.

Theorem 60. Let F be the family of L-Lipschitz function from [0, 1] to R. Then, if (Zi)
are i.i.d. uniformly distributed on [0, 1],

E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)−
ˆ 1

0
f(x) dx

∣∣∣∣∣ 6 CL√
n
.
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Proof. We may assume L = 1 by homogeneity. We may also consider equivalently the
subclass F0 of functions with integral equal to 0. Consider the process (Xf )f∈F0 defined
by

Xf =
1

n

n∑
i=1

f(Zi).

We recall the classical Hoeffding inequality

Lemma 61 (Hoeffding’s inequality). Let Y1, . . . , Yn be independent random variables, such
that Yi takes values in a interval of length `i. Let S = Y1 + · · ·+ Yn. Then for every x > 0,

P(S > E[S] + x) 6 exp(−2x2/L2),

with L2 = `21 + · · ·+ `2n.

For f , g ∈ F0, we have

P(Xf −Xg > x) = P

(
1

n

n∑
i=1

(f(Xi)− g(Xi)) > x

)
6 exp

(
− 2nx2

‖f − g‖2∞

)
,

showing that the process (Xf )f∈F0 is subGaussian with constant α = 2n with respect to
the metric d(f, g) = ‖f − g‖∞. Dudley’s inequality implies that

E sup
f∈F0

Xf 6
C√
n

ˆ ∞
0

√
logN(F0, d, ε) dε.

We have N(F0, d, ε) = 1 for ε > 1. For smaller ε, we claim that

N(F0, d, ε) 6

(
C

ε

)C/ε
. (6.8)

It follows that

E sup
f∈F0

Xf 6
C√
n

ˆ 1

0

√
log ε√
ε

dε 6
C ′√
n
.

To justify (6.8), consider piece-wise affine functions (check!).

6.4 VC-dimension

Let Ω any set and F ⊂ {0, 1}Ω be a class of functions from Ω to {0, 1}. We say that Λ ⊂ Ω
is shattered by F if any g : Λ → {0, 1} appears as the restriction to Λ of some f ∈ F .
The Vapnik–Chervonenkis dimension of F , denoted by vc(F), is the largest cardinality of
a subset Λ ⊂ Ω shattered by F .

Here are some examples
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1. Let Ω = R, and F be the family of indicator functions of segments of R. We have
vc(F) = 2. Indeed, it can checked for example that {3, 5} is shattered by F . On
the other hand, a set {a, b, c} with a < b < c cannot be shattered, since no function
f ∈ F satisfies f(a) = f(c) = 1 and f(b) = 0.

2. Let Ω = R2, and F be the family of indicator functions of closed half-spaces. Then
vc(F) = 3 (check!).

3. Let Ω = R2 and F be the family of indicator function of convex bodies. Then
vc(F) = +∞.

Our goal is to prove the following theorem

Theorem 62 (Empirical processes via VC dimension). Let F ⊂ {0, 1}Ω, where (Ω,Σ, µ)
is a probability space. Let Z, (Zi) be i.i.d. random variables with law µ. Then

E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)−E f(Z)

∣∣∣∣∣ 6 C

√
vc(F)

n
.

Corollary 63 (Glivenko–Cantelli theorem). Let (Zi) be i.i.d. random variables with cumu-
lative distribution function F (x) = P(Zi 6 x). Consider the empirical distribution function
Fn(x) = 1

n card{i ∈ {1, · · · , n} : Zi 6 x. Then

E ‖Fn − F‖∞ 6
C√
n

Proof. Apply Theorem 62 to the family {1(−∞,x] : x ∈ R}, whose VC-dimension equals
2.

Proof of Theorem 62. We first use a symmetrization argument: if (Z ′i) are independent
copies of (Zi), and (εi) are independent random signs, then

E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)−E f(Z)

∣∣∣∣∣ = E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)−E
1

n

n∑
i=1

f(Z ′i)

∣∣∣∣∣
6 E sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− f(Z ′i)

∣∣∣∣∣
= E sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi(f(Zi)− f(Z ′i))

∣∣∣∣∣
6 2E sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Zi).

∣∣∣∣∣
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Define the process (Xf )f∈F by

Xf =
1

n

n∑
i=1

εif(Zi).

We are going to estimate E supXf instead of E sup |Xf |, but this can be easily adapted
(check!).

We now work conditionally on the value of (Zi) (so that the remaining source of ran-
domness comes from the random signs (εi)). Conditionally on (Zi), we have by Hoeffding’s
inequality

P(Xf −Xg > x) = P

(
1

n

n∑
i=1

εi(f − g)(Zi) > x

)
6 exp

(
− 2nx2

1
n

∑
|(f − g)(Zi)|2

)
,

which shows that (Xf )f∈F is subGaussian with constant 2n with respect to the (random)
distance dZ(f, g) = ‖f − g‖L2(µZ), where µZ = 1

n

∑n
i=1 δZi is the empirical probability

measure associated to (Z1, . . . , Zn). We apply Dudley’s inequality (conditionally to Zi) to
write

E sup
f∈F

Xf 6
C√
n
E(Zi)

ˆ ∞
0

√
logN(F , dZ , ε) dε.

It remains to use the following proposition, applied for µ = µZ to obtain

E sup
f∈F

Xf 6
C√
n
E(Zi)

ˆ ∞
0

√
vc(F) log(C/ε) dε 6 C

√
vc(F)

n
.

Proposition 64. Let F ⊂ {0, 1}Ω, where (Ω,Σ, µ) is a probability space. Then for every
ε > 0,

N(F , L2(µ), ε) 6

(
C

ε

)C vc(F)

.

The proof is based on the following lemmas

Lemma 65. Let (Ω,Σ, µ) be a probability space, and {f1, . . . , fN} be an ε-separated set
in L2(µ). Then there exists a finite subset Ω′ ⊂ Ω with card(Ω′) 6 Cε−4 logN such that
{f1, . . . , fN} is ε/2-separated in L2(ν), where ν denotes the uniform probability measure on
Ω′.

Lemma 66 (Sauer–Shelah lemma). If F ⊂ {0, 1}n satisfies vc(F) = d, then

card(F) 6
d∑

k=0

(
n

k

)
6
(en
d

)d
.
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Proof of Proposition 64. Using (3.3), there is a subset P = {f1, . . . , fN} ⊂ F with N =
N(F , L2(µ), ε) which is ε-separated in L2(µ) norm. Let Ω′ be the set produced by applying
Lemma 65 to these functions. Let P ′ ⊂ {0, 1}Ω′ be the set of restrictions to Ω′ of elements
from P . We have card(P ′) = card(P ) since P is ε/2-separated in L2(ν) (check!).

By the Sauer–Shelah lemma (applied to P ′ ⊂ {0, 1}Ω′), we have, denoting d = vc(P ′),

N = card(P ′) 6

(
e card Ω′

d

)d
6

(
Cε−4 logN

d

)d
and therefore (check!) N 6 (Cε−4)2d. Finally, it is obvious that vc(P ′) 6 vc(P ) 6
vc(F).

Proof of Lemma 65. Choose Ω′ = {x1, . . . , xn} at random, with (xi) being i.i.d. of law µ.
For i 6= j, let h = (fi − fj)2. We have

‖fi − fj‖2L2(ν) − ‖fi − fj‖
2
L2(µ) =

1

n

n∑
i=1

h(xi)−Eh(x).

Since h is bounded by 1, Hoeffding’s inequality applies and yields

P
(∣∣∣‖fi − fj‖2L2(ν) − ‖fi − fj‖

2
L2(µ)

∣∣∣ > x
)
6 2 exp(−2nx2).

Since ‖fi − fj‖2L2(µ) > ε2, we have (chose x = 3ε2/4)

P

(
‖fi − fj‖L2(ν) >

ε2

4

)
6 2 exp(−cnε4).

By the union bound, we obtain that

P
(
{f1, . . . , fN} is not ε/2-separated in L2(ν)

)
6 2N2 exp(−cnε4)

which is less that 1 for n = Cε−4 logN .

Proof of Lemma 66. We prove a stronger statement: any family F ⊂ {0, 1}n shatters at
least card(F) subsets of {0, 1}.

We proceed by induction on card(F). Any F shatters the empty set. If cardF > 2,
then there is x ∈ {1, . . . , n} and f1, f2 ∈ F such that f1(x) 6= f2(x). Define subfamilies

F0 = {f ∈ F : f(x) = 0},
F1 = {f ∈ F : f(x) = 1}.

By induction, F0 (resp. F1) shatters at least card(F0) (resp. card(F1)) subsets of {0, 1}n.
Let S be a subset shattered by F0 or F1. Note that S cannot contain x.
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• Obviously, S is shattered by F .

• If S is shattered by both F0 and F1, then S ∪ {x} is also shattered by F .

This shows that the number of sets shattered by F it at least card(F0)+card(F1) = card(F),
as needed. The last inequality in (66) is elementary (check!).
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