Exerise sheet \# 1

Convexity : the Brunn-Minkowski theory

Exercise 1.1 Norm associated to a symmetric convex body

Let $K \subset \mathbf{R}^{n}$ be a symmetric convex body. Show that the formula

$$
\|x\|=\inf \{t \geqslant 0: x \in t K\}
$$

defines a norm on \mathbf{R}^{n} for which K is the unit ball.

Exercise 1.2 Hahn-Banach separation theorem.

1. Show that if K and L are two disjoint convex compact subsets of \mathbf{R}^{n}, there is $x \in \mathbf{R}^{n}$ such that

$$
\sup _{y \in K}\langle x \mid y\rangle<\inf _{z \in L}\langle x \mid z\rangle .
$$

Using the axiom of choice is not allowed.
2. Let $K \subset \mathbf{R}^{n}$ be a convex body, and $z \in \partial K$. Show that there exists a nonzero $x \in \mathbf{R}^{n}$ such that

$$
\sup _{y \in K}\langle x \mid y\rangle=\langle x \mid z\rangle
$$

Exercise 1.3 Bipolar.

1. If K is a symmetric convex body, show that $K=K^{\circ \circ}$.
2. If A is any subset of \mathbf{R}^{n}, show that $\left(A^{\circ}\right)^{\circ}=\overline{\operatorname{conv}}(A \cup\{0\})$.

Exercise 1.4 Minkowski sum.

Let $K, L \subset \mathbf{R}^{n}$. Decide if each assertion is true of false.

1. If K and L are open, then $K+L$ is open.
2. If K and L are closed, then $K+L$ is closed.
3. If K and L are compact, then $K+L$ is compact.

Exercise 1.5 Polarity.

1. Compute the polar of the following subsets of \mathbf{R}^{n} : a singleton, a (vector) subspace.
2. Show that $(K \cup L)^{\circ}=K^{\circ} \cap L^{\circ}$.
3. Show that if K and L are closed convex subsets containing 0 , then $(K \cap L)^{\circ}=\overline{\operatorname{conv}}\left(K^{\circ} \cup L^{\circ}\right)$.
4. Let E be a vector subspace of \mathbf{R}^{n}, and P_{E} the orthogonal projection onto E. Show that for every convex $K \subset \mathbf{R}^{n}$ such that $0 \in \operatorname{int}(K)$, we have

$$
\left(P_{E} K\right)^{\circ}=K^{\circ} \cap E \text { et }(K \cap E)^{\circ}=P_{E}\left(K^{\circ}\right)
$$

where polarity in the left-hand sides is taken inside E.

Exercise 1.6 Support function.

If $K \subset \mathbf{R}^{n}$, we define $h_{K}(x)=\sup _{y \in K}\langle x \mid y\rangle$ for $x \in \mathbf{R}^{n}$.

1. Show that if K and L are convex bodies, we have the equivalences $K \subset L \Longleftrightarrow h_{K} \leqslant h_{L}$ and $K \subset \operatorname{int} L \Longleftrightarrow h_{K}<h_{L}$.
2. Show that $\delta(K, L)=\left\|h_{K}-h_{L}\right\|_{\infty}$, où $\|f\|_{\infty}=\sup \left\{|f(u)|: u \in S^{n-1}\right\}$.

Exercise 1.7 Parallel sections of a symmetric convex body.

Let K be a symmetric convex body, and E a k-dimensional subspace. Show that among sections of K parallel to E, the section through the origin has the largest k-dimensional volume.

Exercise 1.8 Isodiametric inequality.

The diameter of a subset $K \subset \mathbf{R}^{n}$ is defined as $\operatorname{diam}(K)=\sup \{|x-y|: x, y \in K\}$. Show that if B is a Euclidean ball with the same volume as K, we have $\operatorname{diam}(K) \geqslant \operatorname{diam}(B)$.

Exercise 1.9 Steiner symmetrization.

We denote by S_{u} the Steiner symmetrization in direction $u \in S^{n-1}$. Let K, L be convex bodies. Show the following

1. $S_{u}(\lambda K)=\lambda S_{u}(K)$,
2. $S_{u}(K)+S_{u}(L) \subset S_{u}(K+L)$,
3. S_{u} is continuous with respect to Hausdorff distance,
4. $a\left(S_{u}(K)\right) \leqslant a(K)$.

Exercise 1.10 Carathéodory theorem.

Let $A \subset \mathbf{R}^{n}$. Show that any element in conv A can be written as a convex combination of at most $n+1$ elements from A.

Exercise 1.11 Extreme points.

Let $K \subset \mathbf{R}^{n}$ a convex body. A point $x \in K$ is extreme is the identity $x=\lambda y+(1-\lambda) z$ for $0<\lambda<1$ and $y, z \in K$ implies $x=y=z$.

1. Show that K has at least one extreme point.
2. Show that K is the convex hull of its extreme points (use induction on the dimension, and the previous question).

Exercise 1.12 Harmonic mean.

Show that for K, L convex bodies in \mathbf{R}^{n}, we have

$$
\left(\frac{K^{\circ}+L^{\circ}}{2}\right)^{\circ} \subset \frac{K+L}{2}
$$

