Mathématiques

Exercise 1.1 Norm associated to a symmetric convex body

Let $K \subset \mathbf{R}^n$ be a symmetric convex body. Show that the formula

$$||x|| = \inf\{t \ge 0 : x \in tK\}$$

defines a norm on \mathbf{R}^n for which K is the unit ball.

Exercise 1.2 Hahn–Banach separation theorem.

1. Show that if K and L are two disjoint convex compact subsets of \mathbf{R}^n , there is $x \in \mathbf{R}^n$ such that

$$\sup_{y \in K} \langle x | y \rangle < \inf_{z \in L} \langle x | z \rangle.$$

Using the axiom of choice is not allowed.

2. Let $K \subset \mathbf{R}^n$ be a convex body, and $z \in \partial K$. Show that there exists a nonzero $x \in \mathbf{R}^n$ such that

$$\sup_{y \in K} \langle x | y \rangle = \langle x | z \rangle$$

Exercise 1.3 Bipolar.

1. If K is a symmetric convex body, show that $K = K^{\circ \circ}$.

2. If A is any subset of \mathbf{R}^n , show that $(A^\circ)^\circ = \overline{\operatorname{conv}}(A \cup \{0\})$.

Exercise 1.4 Minkowski sum.

Let $K, L \subset \mathbf{R}^n$. Decide if each assertion is true of false.

- 1. If K and L are open, then K + L is open.
- 2. If K and L are closed, then K + L is closed.
- 3. If K and L are compact, then K + L is compact.

Exercise 1.5 Polarity.

- 1. Compute the polar of the following subsets of \mathbf{R}^n : a singleton, a (vector) subspace.
- 2. Show that $(K \cup L)^{\circ} = K^{\circ} \cap L^{\circ}$.
- 3. Show that if K and L are closed convex subsets containing 0, then $(K \cap L)^\circ = \overline{\operatorname{conv}}(K^\circ \cup L^\circ)$.
- 4. Let *E* be a vector subspace of \mathbb{R}^n , and P_E the orthogonal projection onto *E*. Show that for every convex $K \subset \mathbb{R}^n$ such that $0 \in int(K)$, we have

 $(P_E K)^\circ = K^\circ \cap E$ et $(K \cap E)^\circ = P_E(K^\circ)$,

where polarity in the left-hand sides is taken inside E.

Exercise 1.6 Support function.

If $K \subset \mathbf{R}^n$, we define $h_K(x) = \sup_{y \in K} \langle x | y \rangle$ for $x \in \mathbf{R}^n$.

- 1. Show that if K and L are convex bodies, we have the equivalences $K \subset L \iff h_K \leq h_L$ and $K \subset \operatorname{int} L \iff h_K < h_L$.
- 2. Show that $\delta(K, L) = ||h_K h_L||_{\infty}$, où $||f||_{\infty} = \sup\{|f(u)| : u \in S^{n-1}\}.$

Exercise 1.7 Parallel sections of a symmetric convex body.

Let K be a symmetric convex body, and E a k-dimensional subspace. Show that among sections of K parallel to E, the section through the origin has the largest k-dimensional volume.

Exercise 1.8 Isodiametric inequality.

The diameter of a subset $K \subset \mathbf{R}^n$ is defined as $\operatorname{diam}(K) = \sup\{|x - y| : x, y \in K\}$. Show that if B is a Euclidean ball with the same volume as K, we have $\operatorname{diam}(K) \ge \operatorname{diam}(B)$.

Exercise 1.9 Steiner symmetrization.

We denote by S_u the Steiner symmetrization in direction $u \in S^{n-1}$. Let K, L be convex bodies. Show the following

1. $S_u(\lambda K) = \lambda S_u(K),$

2. $S_u(K) + S_u(L) \subset S_u(K+L),$

3. S_u is continuous with respect to Hausdorff distance,

4. $a(S_u(K)) \leq a(K)$.

Exercise 1.10 Carathéodory theorem.

Let $A \subset \mathbf{R}^n$. Show that any element in conv A can be written as a convex combination of at most n+1 elements from A.

Exercise 1.11 Extreme points.

Let $K \subset \mathbf{R}^n$ a convex body. A point $x \in K$ is extreme is the identity $x = \lambda y + (1 - \lambda)z$ for $0 < \lambda < 1$ and $y, z \in K$ implies x = y = z.

- 1. Show that K has at least one extreme point.
- 2. Show that K is the convex hull of its extreme points (use induction on the dimension, and the previous question).

Exercise 1.12 Harmonic mean.

Show that for K, L convex bodies in \mathbb{R}^n , we have

$$\left(\frac{K^{\circ}+L^{\circ}}{2}\right)^{\circ}\subset \frac{K+L}{2}.$$