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Exercise 2.1 Convex bodies at distance 1
Let K, L be two convex bodies in Rn with dBM (K,L) = 1. Show that there exists T ∈ GLn(R) such

that K = TL.

Exercise 2.2 Around John’s theorem

1. Let x ∈ Rn with |x| >
√
n. Show that conv(Bn2 ∪ {±x}) contains an ellipsoid E with vol(E) >

vol(Bn2 ). Deduce another proof of the inclusion K ⊂
√
nEJ(K) for any symmetric convex body K.

2. Let x ∈ Rn with |x| > n. Show that conv(Bn2 ∪ {x}) contains a translate of an ellipsoid E with
vol(E) > vol(Bn2 ). Deduce the following: for any convex body K, there exists an affine bijection T
such that Bn2 ⊂ T (K) ⊂ nBn2 . Show that the constant n is sharp (take K to be a simplex).

Exercise 2.3 Hadamard matrices
A Hadamard matrix is a matrix A ∈ Mn(R) with entries ±1 and such that 1√

n
A is an orthogonal

matrix.

1. Show that if a Hadamard matrix of size n > 2 exists, then n is a multiple of 4. The Hadamard
conjecture postulates the existence of a Hadamard matrix of size 4k for every k.

2. Show that if the Hadamard conjecture is true, then dBM (Bn1 , B
n
∞) 6

√
n+ 3 for every n.

3. Show that there exists a Hadamard matrix of size 12, and then of size 2k12l for every k, l ∈ N.

Exercise 2.4 Kadets–Snobar theorem
Let X be a normed space, and Y ⊂ X an n-dimensional subspace. Show the existence of a projection

P : X → X with range Y satisfying ‖P‖ 6
√
n.

Indication. Apply John’s theorem to the unit ball of Y , deduce a decomposition of Id : Y → Y in
terms of contact points and use the Hahn–Banach extension theorem: any linear form ` : Y → R extends
into a linear form ˜̀ : X → R with ‖˜̀‖ 6 ‖`‖.

Exercise 2.5 Auerbach theorem
A cross-polytope is a convex body in Rn of the form conv{±xi}, where (xi) is a basis of the vector

space Rn.

1. Show that every symmetric convex body contains a maximal volume cross-polytope. Is it unique?

2. Let K ⊂ Rn be a symmetric convex body. Show that if Bn1 is a maximal volume cross-polytope
inside K, then K ⊂ Bn∞.

3. Let K ⊂ Rn be a symmetric convex body. Show the existence of T ∈ GLn(R) such that Bn1 ⊂
T (K) ⊂ Bn∞.

Exercise 2.6 Sums of ellipsoids
Let E , F be two ellipsoids. Show that

E + F is an ellispoid ⇐⇒ ∃λ > 0 : E = λF .

Exercise 2.7 Löwner ellipsoid
Let K ⊂ Rn be a symmetric convex body. Show that there exists a unique ellipsoid (denoted EL(K))

of minimal volume containing K. Show a characterization of the equality EL(K) = Bn2 in the spirit of
John’s theorem.
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Exercise 2.8 Khintchine inequalities via convex domination
Given X, Y two random variables with finite expectation, one says that X 6cvx Y (Y dominates X

in the convex ordering) if Eϕ(X) 6 Eϕ(Y ) for any convex function ϕ : R→ R.

1. Show that is X1 is independent from X2 and Y1 is independent from Y2 with X1 6cvx Y1 and
X2 6cvx Y2, then X1 +X2 6cvx Y1 + Y2.

2. Let ε be a random sign (i.e. a random variable uniformly distributed on ±1) and Gσ be a N(0, σ2)
random variable. Find a value of σ (or even the smallest possible value) for which ε 6cvx Gσ.

3. Show that ‖G1‖Lp 6 C
√
p for every p > 1, where C is a universal constant.

4. Deduce the following: if X =
∑n
i=1 εiai, where (εi) are i.i.d. random signs and (ai) real numbers,

then ‖X‖Lp 6 C ′
√
p‖X‖L2 for every p > 2, where C ′ is a universal constant.

5. Show that for 1 6 p 6 2, we have ‖X‖Lp > c‖X‖L2 for a universal constant c > 0.

Exercise 2.9 L1 Khintchine inequality with sharp constant
Consider the probability space Ω = {−1, 1}n equipped with uniform measure. Let εi : Ω → {−1, 1}

be the ith coordinate, so that the r.v. (εi) are i.i.d.

1. For A ⊂ {1, . . . , n}, denote wA =
∏
i∈A εi (and w∅ = 1). Show that the family (wA) is an

orthonormal basis of L2(Ω) (called the Walsh–Fourier basis).

2. For f : Ω→ R and A ⊂ {1, . . . , n}, denote f̂A = E[fwA]. Show that f =
∑
A f̂AwA.

3. Define an operator L on L2(Ω) by the formula Lf =
∑
A card(A)f̂AwA. Show that

Lf(x) =

n∑
i=1

f(x)− f(x⊕i)

2
,

where x⊕i denotes the vector obtain by flipping the sign of the ith coordinate of x.

4. Show that if f : Ω→ R is an even function, then Var(f) 6 1
2E [f · Lf ].

5. Fix real numbers (ai), and consider the function f : Ω→ R defined as f(x1, . . . , xn) = |
∑n
i=1 aixi|.

Show that Lf 6 f pointwise.

6. Conclude that Ef > 1√
2
(Ef2)

1
2 .

7. Show that the constant 1√
2
is optimal in the above inequality.
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