Problem sheet # 2

The Banach-Mazur compactum

Exercise 2.1 Convex bodies at distance 1

Let K, L be two convex bodies in \mathbf{R}^n with $d_{BM}(K,L) = 1$. Show that there exists $T \in \mathsf{GL}_n(\mathbf{R})$ such that K = TL.

Exercise 2.2 Around John's theorem

- 1. Let $x \in \mathbf{R}^n$ with $|x| > \sqrt{n}$. Show that $\operatorname{conv}(B_2^n \cup \{\pm x\})$ contains an ellipsoid \mathcal{E} with $\operatorname{vol}(\mathcal{E}) > \operatorname{vol}(B_2^n)$. Deduce another proof of the inclusion $K \subset \sqrt{n}\mathcal{E}_J(K)$ for any symmetric convex body K.
- 2. Let $x \in \mathbf{R}^n$ with |x| > n. Show that $\operatorname{conv}(B_2^n \cup \{x\})$ contains a translate of an ellipsoid \mathcal{E} with $\operatorname{vol}(\mathcal{E}) > \operatorname{vol}(B_2^n)$. Deduce the following: for any convex body K, there exists an affine bijection T such that $B_2^n \subset T(K) \subset nB_2^n$. Show that the constant n is sharp (take K to be a simplex).

Exercise 2.3 Hadamard matrices

A Hadamard matrix is a matrix $A \in M_n(\mathbf{R})$ with entries ± 1 and such that $\frac{1}{\sqrt{n}}A$ is an orthogonal matrix.

- 1. Show that if a Hadamard matrix of size n > 2 exists, then n is a multiple of 4. The Hadamard conjecture postulates the existence of a Hadamard matrix of size 4k for every k.
- 2. Show that if the Hadamard conjecture is true, then $d_{BM}(B_1^n, B_{\infty}^n) \leq \sqrt{n} + 3$ for every n.
- 3. Show that there exists a Hadamard matrix of size 12, and then of size $2^k 12^l$ for every $k, l \in \mathbb{N}$.

Exercise 2.4 Kadets-Snobar theorem

Let X be a normed space, and $Y \subset X$ an n-dimensional subspace. Show the existence of a projection $P: X \to X$ with range Y satisfying $||P|| \leq \sqrt{n}$.

Indication. Apply John's theorem to the unit ball of Y, deduce a decomposition of $\mathrm{Id}:Y\to Y$ in terms of contact points and use the Hahn–Banach extension theorem: any linear form $\ell:Y\to\mathbf{R}$ extends into a linear form $\tilde{\ell}:X\to\mathbf{R}$ with $\|\tilde{\ell}\|\leqslant \|\ell\|$.

Exercise 2.5 Auerbach theorem

A cross-polytope is a convex body in \mathbf{R}^n of the form $\operatorname{conv}\{\pm x_i\}$, where (x_i) is a basis of the vector space \mathbf{R}^n .

- 1. Show that every symmetric convex body contains a maximal volume cross-polytope. Is it unique?
- 2. Let $K \subset \mathbf{R}^n$ be a symmetric convex body. Show that if B_1^n is a maximal volume cross-polytope inside K, then $K \subset B_{\infty}^n$.
- 3. Let $K \subset \mathbf{R}^n$ be a symmetric convex body. Show the existence of $T \in \mathsf{GL}_n(\mathbf{R})$ such that $B_1^n \subset T(K) \subset B_{\infty}^n$.

Exercise 2.6 Sums of ellipsoids

Let \mathcal{E} , \mathcal{F} be two ellipsoids. Show that

 $\mathcal{E} + \mathcal{F}$ is an ellispoid $\iff \exists \lambda > 0 : \mathcal{E} = \lambda \mathcal{F}$.

Exercise 2.7 Löwner ellipsoid

Let $K \subset \mathbf{R}^n$ be a symmetric convex body. Show that there exists a unique ellipsoid (denoted $\mathcal{E}_L(K)$) of minimal volume containing K. Show a characterization of the equality $\mathcal{E}_L(K) = B_2^n$ in the spirit of John's theorem.

Exercise 2.8 Khintchine inequalities via convex domination

Given X, Y two random variables with finite expectation, one says that $X \leqslant_{cvx} Y$ (Y dominates X in the convex ordering) if $\mathbf{E}\varphi(X) \leqslant \mathbf{E}\varphi(Y)$ for any convex function $\varphi: \mathbf{R} \to \mathbf{R}$.

- 1. Show that is X_1 is independent from X_2 and Y_1 is independent from Y_2 with $X_1 \leqslant_{cvx} Y_1$ and $X_2 \leqslant_{cvx} Y_2$, then $X_1 + X_2 \leqslant_{cvx} Y_1 + Y_2$.
- 2. Let ε be a random sign (i.e. a random variable uniformly distributed on ± 1) and G_{σ} be a $N(0, \sigma^2)$ random variable. Find a value of σ (or even the smallest possible value) for which $\varepsilon \leqslant_{cvx} G_{\sigma}$.
- 3. Show that $||G_1||_{L^p} \leqslant C\sqrt{p}$ for every $p \geqslant 1$, where C is a universal constant.
- 4. Deduce the following: if $X = \sum_{i=1}^{n} \varepsilon_i a_i$, where (ε_i) are i.i.d. random signs and (a_i) real numbers, then $\|X\|_{L^p} \leqslant C' \sqrt{p} \|X\|_{L^2}$ for every $p \geqslant 2$, where C' is a universal constant.
- 5. Show that for $1 \leq p \leq 2$, we have $||X||_{L^p} \geq c||X||_{L^2}$ for a universal constant c > 0.

Exercise 2.9 L^1 Khintchine inequality with sharp constant

Consider the probability space $\Omega = \{-1,1\}^n$ equipped with uniform measure. Let $\varepsilon_i : \Omega \to \{-1,1\}$ be the *i*th coordinate, so that the r.v. (ε_i) are i.i.d.

- 1. For $A \subset \{1, \ldots, n\}$, denote $w_A = \prod_{i \in A} \varepsilon_i$ (and $w_\emptyset = 1$). Show that the family (w_A) is an orthonormal basis of $L^2(\Omega)$ (called the Walsh–Fourier basis).
- 2. For $f: \Omega \to \mathbf{R}$ and $A \subset \{1, \dots, n\}$, denote $\hat{f}_A = \mathbf{E}[fw_A]$. Show that $f = \sum_A \hat{f}_A w_A$.
- 3. Define an operator L on $L^2(\Omega)$ by the formula $Lf = \sum_A \operatorname{card}(A) \hat{f}_A w_A$. Show that

$$Lf(x) = \sum_{i=1}^{n} \frac{f(x) - f(x^{\oplus i})}{2},$$

where $x^{\oplus i}$ denotes the vector obtain by flipping the sign of the *i*th coordinate of x.

- 4. Show that if $f: \Omega \to \mathbf{R}$ is an even function, then $\mathbf{Var}(f) \leqslant \frac{1}{2}\mathbf{E}[f \cdot Lf]$.
- 5. Fix real numbers (a_i) , and consider the function $f: \Omega \to \mathbf{R}$ defined as $f(x_1, \dots, x_n) = |\sum_{i=1}^n a_i x_i|$. Show that $Lf \leq f$ pointwise.
- 6. Conclude that $\mathbf{E}f \geqslant \frac{1}{\sqrt{2}}(\mathbf{E}f^2)^{\frac{1}{2}}$.
- 7. Show that the constant $\frac{1}{\sqrt{2}}$ is optimal in the above inequality.