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Problem sheet # 3
The concentration of measure phenomenon

Exercise 3.1 Kissing numbers
For n > 1, let K,, be the maximal number of unit balls in R™ with pairwise disjoint interiors which
are tangent to BY. Compute K; and Ks, check that K3 > 12 (there is equality) and prove the bounds

(\% + o(l))n < K, < (240(1)"

by considering an equivalent packing problem on S"~!.
Remark. The exact value of K, is known only for n € {1,2,3,4,8,24}.

Exercise 3.2 Nets and convex hull
Let N C S ! and 6§ € (0,7/2). Show that N is a f-net in (S"~1, g) if and only if (cos §) By C conv .

Exercise 3.3 Isoperimetry: sphere vs Euclidean space
Show that the isoperimetric inequality on R”~! can be deduced from the isoperimetric inequality on
Sn—t,

Exercise 3.4 Tricks with concentration
Let X be random variable and a € R such that for every ¢ > 0,

P(|X —a| > t) < Cexp(—at?).
Show the following inequalities, where C; and «; > 0 depend only on C' and «
L. P(|X —EX| >t) < Cyexp(—ant?),
2. P(|X — Mx| > t) < Cyexp(—ast?), where Mx is a median of X,
3. (assuming X > 0) P(|X — VEX2| > t) < Cs exp(—ast?).
Exercise 3.5 An alternative argument for Gaussian concentration

The goal of this exercise is to show that the following: if G = (Gy,...,G,) are i.i.d. N(0,1) random
variables and f : R™ — R is 1-Lipschitz, then for every ¢ > 0,
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P(f(G)~ BAC)| > 1) <2 %
1. Show that we can assume that f is C! and Ef(G) = 0.

2. Let H be an independant copy of G, and for 0 < § < 7/2, define Gy = G sin(6) + H cos(f). Show
that for every 0, (Gy, %Gg) has the same distribution as (G, H).

3. Show that for every convex function ¢ : R — R we have
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4. Apply the previous inequality to ¢ : z — exp(Az) for A > 0, and deduce that

™

<E[v(2(vr@),m)].

E[(f(@)] <E[(f(G) - f(H))] = E 2

E [exp(Af(G))] < exp(r?)?/8).

5. Conclude.



Exercise 3.6 Komatsu inequalities

1. Show that for every x > 0
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as follows: if f_(z), f(x) and fi(x) denote the left, middle and right member of (1), show that
fl(e) Zz af(x) =1, f/(x) = xf(x) =1, fi(z) Szfi(e) =1

2. Show that if G is a N (0, 1) random variable, P(G > t) < 3 exp(—t?/2) for every t > 0.

Exercise 3.7 Median of a x?(n) distribution
Let G = (G1,...,G,) be a standard Gaussian vector in R™. The random variable X = |G|?> =
G? + .-+ + G2 follows a x?(n) distribution. Denote by My a median of X. We are going to prove that

n—2/3< Mx <n. (2)

1. Check that the density of X is proportional to z — % e~ %.

2. Consider the random variable Y = log(X/n) with density g. Compute g, check that g(y) < g(—vy)
for every y > 0 and conclude that My < 0 and Mx < n.

3. Consider the random variable Z = (njg/g)l/?’ with density h. Compute h, check that h(1 —t) <
h(1+41t) for t € [0,1] and conclude that Mz > 1 and Mx > n —2/3.

Exercise 3.8 Ehrhard inequality
Denote ®(t) = P(X < t) for X ~ N(0,1). The following inequality is called the Ehrhard inequality:
for any Borel sets A, BC R"™ and ¢ € [0,1],

O (3 (L= )A+B) > (1 - 1)@ (1a(4)) + 187 (74(B)). (3)
1. Check that there is equality when A and B are half-spaces with A C B or B C A.
2. Deduce the Gaussian isoperimetric inequality from (3) by choosing B = 7 B3 and taking ¢ — 0.

3. We are going to show that for any convex function F' : R® — R, if G is a standard Gaussian vector
in R™, then Mp(g) < EF(G), where Mp () denotes the median.

(a) Using (3), show that the function g : t — ®~1(P(F(G) < t)) is concave on R.

(b) Deduce that there exists a > 0 such that g(t) < a(t — Mp(q)) for every t € R.

(c) Conclude that Mpg) < EF(G).

(d) Give an alternative proof of the upper bound in (2).



