Problem sheet \# 3

The concentration of measure phenomenon

Exercise 3.1 Kissing numbers

For $n \geqslant 1$, let K_{n} be the maximal number of unit balls in \mathbf{R}^{n} with pairwise disjoint interiors which are tangent to B_{2}^{n}. Compute K_{1} and K_{2}, check that $K_{3} \geqslant 12$ (there is equality) and prove the bounds

$$
\left(\frac{2}{\sqrt{3}}+o(1)\right)^{n} \leqslant K_{n} \leqslant(2+o(1))^{n}
$$

by considering an equivalent packing problem on S^{n-1}.
Remark. The exact value of K_{n} is known only for $n \in\{1,2,3,4,8,24\}$.

Exercise 3.2 Nets and convex hull

Let $\mathcal{N} \subset S^{n-1}$ and $\theta \in(0, \pi / 2)$. Show that \mathcal{N} is a θ-net in $\left(S^{n-1}, g\right)$ if and only if $(\cos \theta) B_{2}^{n} \subset \operatorname{conv} \mathcal{N}$.

Exercise 3.3 Isoperimetry: sphere vs Euclidean space

Show that the isoperimetric inequality on \mathbf{R}^{n-1} can be deduced from the isoperimetric inequality on S^{n-1}.

Exercise 3.4 Tricks with concentration

Let X be random variable and $a \in \mathbf{R}$ such that for every $t \geqslant 0$,

$$
\mathbf{P}(|X-a| \geqslant t) \leqslant C \exp \left(-\alpha t^{2}\right)
$$

Show the following inequalities, where C_{i} and $\alpha_{i}>0$ depend only on C and α

1. $\mathbf{P}(|X-\mathbf{E} X| \geqslant t) \leqslant C_{1} \exp \left(-\alpha_{1} t^{2}\right)$,
2. $\mathbf{P}\left(\left|X-M_{X}\right| \geqslant t\right) \leqslant C_{2} \exp \left(-\alpha_{2} t^{2}\right)$, where M_{X} is a median of X,
3. (assuming $X \geqslant 0) \mathbf{P}\left(\left|X-\sqrt{\mathbf{E} X^{2}}\right| \geqslant t\right) \leqslant C_{3} \exp \left(-\alpha_{3} t^{2}\right)$.

Exercise 3.5 An alternative argument for Gaussian concentration

The goal of this exercise is to show that the following: if $G=\left(G_{1}, \ldots, G_{n}\right)$ are i.i.d. $N(0,1)$ random variables and $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is 1-Lipschitz, then for every $t \geqslant 0$,

$$
\mathbf{P}(|f(G)-\mathbf{E} f(G)| \geqslant t) \leqslant 2 e^{-\frac{2 t^{2}}{\pi^{2}}}
$$

1. Show that we can assume that f is C^{1} and $\mathbf{E} f(G)=0$.
2. Let H be an independant copy of G, and for $0 \leqslant \theta \leqslant \pi / 2$, define $G_{\theta}=G \sin (\theta)+H \cos (\theta)$. Show that for every $\theta,\left(G_{\theta}, \frac{\mathrm{d}}{\mathrm{d} \theta} G_{\theta}\right)$ has the same distribution as (G, H).
3. Show that for every convex function $\psi: \mathbf{R} \rightarrow \mathbf{R}$ we have
$\mathbf{E}[\psi(f(G))] \leqslant \mathbf{E}[\psi(f(G)-f(H))]=\mathbf{E}\left[\psi\left(\int_{0}^{\pi / 2}\left\langle\nabla f\left(G_{\theta}\right), \frac{\mathrm{d}}{\mathrm{d} \theta} G_{\theta}\right\rangle \mathrm{d} \theta\right)\right] \leqslant \mathbf{E}\left[\psi\left(\frac{\pi}{2}\langle\nabla f(G), H\rangle\right)\right]$.
4. Apply the previous inequality to $\psi: x \mapsto \exp (\lambda x)$ for $\lambda \geqslant 0$, and deduce that

$$
\mathbf{E}[\exp (\lambda f(G))] \leqslant \exp \left(\pi^{2} \lambda^{2} / 8\right)
$$

5. Conclude.

Exercise 3.6 Komatsu inequalities

1. Show that for every $x \geqslant 0$

$$
\begin{equation*}
\frac{2}{x+\sqrt{x^{2}+4}} \leqslant e^{x^{2} / 2} \int_{x}^{\infty} e^{-t^{2} / 2} \mathrm{~d} t \leqslant \frac{2}{x+\sqrt{x^{2}+2}} \tag{1}
\end{equation*}
$$

as follows: if $f_{-}(x), f(x)$ and $f_{+}(x)$ denote the left, middle and right member of (1), show that $f_{-}^{\prime}(x) \geqslant x f_{-}(x)-1, f^{\prime}(x)=x f_{-}(x)-1, f_{+}^{\prime}(x) \leqslant x f_{+}(x)-1$
2. Show that if G is a $N(0,1)$ random variable, $\mathbf{P}(G>t) \leqslant \frac{1}{2} \exp \left(-t^{2} / 2\right)$ for every $t \geqslant 0$.

Exercise 3.7 Median of a $\chi^{2}(n)$ distribution

Let $G=\left(G_{1}, \ldots, G_{n}\right)$ be a standard Gaussian vector in \mathbf{R}^{n}. The random variable $X=|G|^{2}=$ $G_{1}^{2}+\cdots+G_{n}^{2}$ follows a $\chi^{2}(n)$ distribution. Denote by M_{X} a median of X. We are going to prove that

$$
\begin{equation*}
n-2 / 3 \leqslant M_{X} \leqslant n \tag{2}
\end{equation*}
$$

1. Check that the density of X is proportional to $x \mapsto x^{\frac{n}{2}-1} e^{-\frac{x}{2}}$.
2. Consider the random variable $Y=\log (X / n)$ with density g. Compute g, check that $g(y) \leqslant g(-y)$ for every $y \geqslant 0$ and conclude that $M_{Y} \leqslant 0$ and $M_{X} \leqslant n$.
3. Consider the random variable $Z=\left(\frac{X}{n-2 / 3}\right)^{1 / 3}$ with density h. Compute h, check that $h(1-t) \leqslant$ $h(1+t)$ for $t \in[0,1]$ and conclude that $M_{Z} \geqslant 1$ and $M_{X} \geqslant n-2 / 3$.

Exercise 3.8 Ehrhard inequality

Denote $\Phi(t)=\mathbf{P}(X \leqslant t)$ for $X \sim N(0,1)$. The following inequality is called the Ehrhard inequality: for any Borel sets $A, B \subset \mathbf{R}^{n}$ and $t \in[0,1]$,

$$
\begin{equation*}
\Phi^{-1}\left(\gamma _ { n } \left(((1-t) A+t B) \geqslant(1-t) \Phi^{-1}\left(\gamma_{n}(A)\right)+t \Phi^{-1}\left(\gamma_{n}(B)\right)\right.\right. \tag{3}
\end{equation*}
$$

1. Check that there is equality when A and B are half-spaces with $A \subset B$ or $B \subset A$.
2. Deduce the Gaussian isoperimetric inequality from (3) by choosing $B=\frac{r}{t} B_{2}^{n}$ and taking $t \rightarrow 0$.
3. We are going to show that for any convex function $F: \mathbf{R}^{n} \rightarrow \mathbf{R}$, if G is a standard Gaussian vector in \mathbf{R}^{n}, then $M_{F(G)} \leqslant \mathbf{E} F(G)$, where $M_{F(G)}$ denotes the median.
(a) Using (3), show that the function $g: t \mapsto \Phi^{-1}(\mathbf{P}(F(G) \leqslant t))$ is concave on \mathbf{R}.
(b) Deduce that there exists $\alpha>0$ such that $g(t) \leqslant \alpha\left(t-M_{F(G)}\right)$ for every $t \in \mathbf{R}$.
(c) Conclude that $M_{F(G)} \leqslant \mathbf{E} F(G)$.
(d) Give an alternative proof of the upper bound in (2).
