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Exercise 3.1 Kissing numbers
For n > 1, let Kn be the maximal number of unit balls in Rn with pairwise disjoint interiors which

are tangent to Bn2 . Compute K1 and K2, check that K3 > 12 (there is equality) and prove the bounds(
2√
3

+ o(1)

)n
6 Kn 6 (2 + o(1))n

by considering an equivalent packing problem on Sn−1.
Remark. The exact value of Kn is known only for n ∈ {1, 2, 3, 4, 8, 24}.

Exercise 3.2 Nets and convex hull
Let N ⊂ Sn−1 and θ ∈ (0, π/2). Show that N is a θ-net in (Sn−1, g) if and only if (cos θ)Bn2 ⊂ convN .

Exercise 3.3 Isoperimetry: sphere vs Euclidean space
Show that the isoperimetric inequality on Rn−1 can be deduced from the isoperimetric inequality on

Sn−1.

Exercise 3.4 Tricks with concentration
Let X be random variable and a ∈ R such that for every t > 0,

P(|X − a| > t) 6 C exp(−αt2).

Show the following inequalities, where Ci and αi > 0 depend only on C and α

1. P(|X −EX| > t) 6 C1 exp(−α1t
2),

2. P(|X −MX | > t) 6 C2 exp(−α2t
2), where MX is a median of X,

3. (assuming X > 0) P(|X −
√
EX2| > t) 6 C3 exp(−α3t

2).

Exercise 3.5 An alternative argument for Gaussian concentration
The goal of this exercise is to show that the following: if G = (G1, . . . , Gn) are i.i.d. N(0, 1) random

variables and f : Rn → R is 1-Lipschitz, then for every t > 0,

P (|f(G)−Ef(G)| > t) 6 2e−
2t2

π2 .

1. Show that we can assume that f is C1 and Ef(G) = 0.

2. Let H be an independant copy of G, and for 0 6 θ 6 π/2, define Gθ = G sin(θ) + H cos(θ). Show
that for every θ, (Gθ,

d
dθGθ) has the same distribution as (G,H).

3. Show that for every convex function ψ : R→ R we have

E [ψ(f(G))] 6 E [ψ(f(G)− f(H))] = E

[
ψ

(∫ π/2

0

〈∇f(Gθ),
d

dθ
Gθ〉dθ

)]
6 E

[
ψ
(π

2
〈∇f(G), H〉

)]
.

4. Apply the previous inequality to ψ : x 7→ exp(λx) for λ > 0, and deduce that

E [exp(λf(G))] 6 exp(π2λ2/8).

5. Conclude.
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Exercise 3.6 Komatsu inequalities

1. Show that for every x > 0

2

x+
√
x2 + 4

6 ex
2/2

∫ ∞
x

e−t
2/2 dt 6

2

x+
√
x2 + 2

(1)

as follows: if f−(x), f(x) and f+(x) denote the left, middle and right member of (1), show that
f ′−(x) > xf−(x)− 1, f ′(x) = xf−(x)− 1, f ′+(x) 6 xf+(x)− 1

2. Show that if G is a N(0, 1) random variable, P(G > t) 6 1
2 exp(−t2/2) for every t > 0.

Exercise 3.7 Median of a χ2(n) distribution
Let G = (G1, . . . , Gn) be a standard Gaussian vector in Rn. The random variable X = |G|2 =

G2
1 + · · ·+G2

n follows a χ2(n) distribution. Denote by MX a median of X. We are going to prove that

n− 2/3 6MX 6 n. (2)

1. Check that the density of X is proportional to x 7→ x
n
2−1e−

x
2 .

2. Consider the random variable Y = log(X/n) with density g. Compute g, check that g(y) 6 g(−y)
for every y > 0 and conclude that MY 6 0 and MX 6 n.

3. Consider the random variable Z = ( X
n−2/3 )1/3 with density h. Compute h, check that h(1 − t) 6

h(1 + t) for t ∈ [0, 1] and conclude that MZ > 1 and MX > n− 2/3.

Exercise 3.8 Ehrhard inequality
Denote Φ(t) = P(X 6 t) for X ∼ N(0, 1). The following inequality is called the Ehrhard inequality:

for any Borel sets A, B ⊂ Rn and t ∈ [0, 1],

Φ−1(γn(((1− t)A+ tB) > (1− t)Φ−1(γn(A)) + tΦ−1(γn(B)). (3)

1. Check that there is equality when A and B are half-spaces with A ⊂ B or B ⊂ A.

2. Deduce the Gaussian isoperimetric inequality from (3) by choosing B = r
tB

n
2 and taking t→ 0.

3. We are going to show that for any convex function F : Rn → R, if G is a standard Gaussian vector
in Rn, then MF (G) 6 EF (G), where MF (G) denotes the median.

(a) Using (3), show that the function g : t 7→ Φ−1(P(F (G) 6 t)) is concave on R.

(b) Deduce that there exists α > 0 such that g(t) 6 α(t−MF (G)) for every t ∈ R.

(c) Conclude that MF (G) 6 EF (G).

(d) Give an alternative proof of the upper bound in (2).
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