Problem sheet \# 4

Dvoretzky's theorem

Exercise 4.1 Haar measure on $\mathrm{O}(n)$ from Gaussian matrices

Let G be a $n \times n$ matrix with independent $N(0,1)$ entries.

1. Check that for any $O \in \mathrm{O}(n)$, the matrices $G O$ and $O G$ have the same distribution as G.
2. Deduce that the matrix $\sqrt{G^{t} G} G^{-1}$ is distributed according to the Haar measure on $\mathrm{O}(n)$.

Exercise 4.2 Uniform measure on the sphere

Prove that the uniform measure σ on S^{n-1} is the only Borel probability measure which is invariant under rotations.

Exercise 4.3 Random sets are nets

Let $\mathcal{N}=\left\{x_{i}: 1 \leqslant i \leqslant N\right\}$ be a set of N i.i.d. points uniformly distributed on S^{n-1}. Fix $\varepsilon>0$ and show that provided $N \geqslant \exp (C n)$ (for some constant $C=C(\varepsilon)$), the set \mathcal{N} is a ε-net in S^{n-1} with high probability.
Exercise 4.4 Dvoretzky's theorem with $\varepsilon=0$
Which of the following statements are true?

1. For any k, there is $n \in \mathbf{N}$ and a k-dimensional subspace E of $\ell_{\infty}^{n}=\left(\mathbf{R}^{n},\|\cdot\|_{\infty}\right)$ such that $d_{B M}\left(\ell_{2}^{k}, E\right)=1$.
2. For any k, there is a k-dimensional subspace E of ℓ_{∞} (the Banach space of bounded sequences, equipped with the sup norm) such that $d_{B M}\left(\ell_{2}^{k}, E\right)=1$.
3. For any k, there is a k-dimensional subspace E of c_{0} (the Banach space of sequences tending to 0 , equipped with the sup norm) such that $d_{B M}\left(\ell_{2}^{k}, E\right)=1$.

Exercise 4.5 A variant on Dvoretzky's theorem

1. Show that if \mathcal{E} is an ellipsoid in \mathbf{R}^{n}, there is a subspace F of dimension $\lceil n / 2\rceil$ such that $\mathcal{E} \cap F$ is a Euclidean ball.
2. Deduce the following variant of Dvoretzky's theorem: for any $\varepsilon>0$, there is a constant $c(\varepsilon)>0$ such that for any symmetric convex body $K \subset \mathbf{R}^{n}$, there is a subspace $E \subset \mathbf{R}^{n}$ with $\operatorname{dim} E \geqslant c(\varepsilon) \log n$ and a number $r>0$ such that

$$
r B_{2}^{n} \cap E \subset K \cap E \subset r(1+\varepsilon) B_{2}^{n} \cap E .
$$

Exercise 4.6 Dvoretzky's theorem in ℓ_{p}^{n}

What is the dimension of almost Euclidean subspaces given by the proof we showed, for the space $\ell_{p}^{n}=\left(\mathbf{R}^{n},\|\cdot\|_{p}\right)$?

Exercise 4.7 Optimality of Dvoretzky's theorem

Let K a convex body in John position, and $M=\int_{S^{n-1}}\|x\|_{K} \mathrm{~d} \sigma(x)$. Let E be a random subspace of dimension k distributed according to $\mu_{n, k}$. Assume (for simplicity) that $k \mid n$ and that

$$
\begin{equation*}
\mathbf{P}\left(\forall x \in S^{n-1} \cap E, \quad\|x\|_{K} \leqslant 2 M\right) \geqslant 1-1 / n . \tag{1}
\end{equation*}
$$

1. Show the existence of n / k pairwise orthogonal k-dimensional subspaces $\left(E_{i}\right)$, such that each E_{i} satisfies the condition in (1).
2. Conclude that for every $x \in \mathbf{R}^{n},\|x\|_{K} \leqslant 2 M \sqrt{n / k}|x|$ and therefore $k \leqslant 4 M^{2} n$.

We show in the course the existence of almost Euclidean sections of dimension of order $M^{2} n$; the exercise shows that this result is sharp.

