Problem sheet # 4 Dvoretzky's theorem

Exercise 4.1 Haar measure on O(n) from Gaussian matrices

Let G be a $n \times n$ matrix with independent N(0, 1) entries.

- 1. Check that for any $O \in O(n)$, the matrices GO and OG have the same distribution as G.
- 2. Deduce that the matrix $\sqrt{G^t G} G^{-1}$ is distributed according to the Haar measure on O(n).

Exercise 4.2 Uniform measure on the sphere

Prove that the uniform measure σ on S^{n-1} is the only Borel probability measure which is invariant under rotations.

Exercise 4.3 Random sets are nets

Let $\mathcal{N} = \{x_i : 1 \leq i \leq N\}$ be a set of N i.i.d. points uniformly distributed on S^{n-1} . Fix $\varepsilon > 0$ and show that provided $N \geq \exp(Cn)$ (for some constant $C = C(\varepsilon)$), the set \mathcal{N} is a ε -net in S^{n-1} with high probability.

Exercise 4.4 Dvoretzky's theorem with $\varepsilon = 0$

Which of the following statements are true ?

- 1. For any k, there is $n \in \mathbf{N}$ and a k-dimensional subspace E of $\ell_{\infty}^{n} = (\mathbf{R}^{n}, \|\cdot\|_{\infty})$ such that $d_{BM}(\ell_{2}^{k}, E) = 1$.
- 2. For any k, there is a k-dimensional subspace E of ℓ_{∞} (the Banach space of bounded sequences, equipped with the sup norm) such that $d_{BM}(\ell_2^k, E) = 1$.
- 3. For any k, there is a k-dimensional subspace E of c_0 (the Banach space of sequences tending to 0, equipped with the sup norm) such that $d_{BM}(\ell_2^k, E) = 1$.

Exercise 4.5 A variant on Dvoretzky's theorem

- 1. Show that if \mathcal{E} is an ellipsoid in \mathbb{R}^n , there is a subspace F of dimension $\lceil n/2 \rceil$ such that $\mathcal{E} \cap F$ is a Euclidean ball.
- 2. Deduce the following variant of Dvoretzky's theorem: for any $\varepsilon > 0$, there is a constant $c(\varepsilon) > 0$ such that for any symmetric convex body $K \subset \mathbf{R}^n$, there is a subspace $E \subset \mathbf{R}^n$ with dim $E \ge c(\varepsilon) \log n$ and a number r > 0 such that

$$rB_2^n \cap E \subset K \cap E \subset r(1+\varepsilon)B_2^n \cap E.$$

Exercise 4.6 Dvoretzky's theorem in ℓ_p^n

What is the dimension of almost Euclidean subspaces given by the proof we showed, for the space $\ell_p^n = (\mathbf{R}^n, \|\cdot\|_p)$?

Exercise 4.7 Optimality of Dvoretzky's theorem

Let K a convex body in John position, and $M = \int_{S^{n-1}} ||x||_K d\sigma(x)$. Let E be a random subspace of dimension k distributed according to $\mu_{n,k}$. Assume (for simplicity) that k|n and that

$$\mathbf{P}\left(\forall x \in S^{n-1} \cap E, \|x\|_K \leqslant 2M\right) \ge 1 - 1/n.$$
(1)

- 1. Show the existence of n/k pairwise orthogonal k-dimensional subspaces (E_i) , such that each E_i satisfies the condition in (1).
- 2. Conclude that for every $x \in \mathbf{R}^n$, $||x||_K \leq 2M\sqrt{n/k}|x|$ and therefore $k \leq 4M^2n$.

We show in the course the existence of almost Euclidean sections of dimension of order M^2n ; the exercise shows that this result is sharp.