M2 Quantum mechanics and quantum information theory

Exercise sheet \# 2

Tensor products of operators

Let \mathcal{H}, \mathcal{K} be Hilbert spaces.
Exercice 2.1. Let $A \in B(\mathcal{H})$ and $B \in B(\mathcal{K})$. For each of the following properties, assuming A and B satisfy it, can we conclude that $A \otimes B$ satisfies it?
(a) invertible. (b) self-adjoint. (c) normal. (d) unitary. (e) compact. (f) trace-class.

Exercice 2.2. It the set

$$
\operatorname{Vect}\{A \otimes B: A \in B(\mathcal{H}), B \in B(\mathcal{K})\}
$$

dense in $B(\mathcal{H} \otimes \mathcal{K})$ for the norm topology?
Exercice 2.3. Assume that \mathcal{H} and \mathcal{K} are finite-dimensional. Is every self-adjoint operator on $\mathcal{H} \otimes \mathcal{K}$ of the form

$$
\sum_{i=1}^{N} \lambda_{i} A_{i} \otimes B_{i}
$$

with λ_{i} real numbers and $A_{i}\left(\right.$ resp. $\left.B_{i}\right)$ self-adjoint operators on $\mathcal{H}($ resp. on $\mathcal{K})$?
Exercice 2.4. Let $A \in B(\mathcal{H})$ and $B \in B(\mathcal{K})$ be non zero operators such that $A \otimes B$ compact. Show that A and B are compact.

Exercice 2.5. Let $A \in B(\mathcal{H})$ and $B \in B(\mathcal{K})$. We show that

$$
\sigma(A \otimes B)=\sigma(A) \cdot \sigma(B):=\{\lambda \mu: \lambda \in \sigma(A), \mu \in \sigma(B)\}
$$

1. Show the result assuming that A and B are normal.
2. Show that if S, T are two bounded commuting operators on the same Hilbert space, then

$$
\sigma(S T) \subset \sigma(S) \cdot \sigma(T)
$$

(This requires to know about the Gelfand transform!!) Deduce that the inclusion

$$
\sigma(A \otimes B) \subset \sigma(A) \cdot \sigma(B)
$$

always holds.
3. Let $S \in B(\mathcal{H})$. We denote by $\sigma_{1}(S)$ the set of $\lambda \in \mathbb{C}$ such that

$$
\inf \{\|(S-\lambda \mathrm{Id}) x\|:\|x\|=1\}=0
$$

and $\sigma_{2}(\underline{S})=\sigma(S) \backslash \sigma_{1}(S)$. Show that $\sigma_{1}(S)$ is closed, that $\partial \sigma(S) \subset \sigma_{1}(S)$ and that $\lambda \in \sigma_{2}(S)$ implies $\bar{\lambda} \in \sigma_{1}\left(S^{*}\right)$.
4. Show that if $\lambda \in \sigma(A)$ and $\mu \in \sigma(B)$ then $\lambda \mu \in \sigma(A \otimes B)$ by considering the following cases
(a) $\lambda \in \sigma_{1}(A)$ and $\mu \in \sigma_{1}(B)$,
(b) $\lambda \in \sigma_{2}(A)$ and $\mu \in \sigma_{2}(B)$,
(c) $\lambda=0$ or $\mu=0$,
(d) the remaining cases.

