Université Claude Bernard M2 Quantum mechanics and quantum information theory Mathématiques

Exercise sheet # 2

Tensor products of operators

Let \mathcal{H}, \mathcal{K} be Hilbert spaces.

Exercice 2.1. Let $A \in B(\mathcal{H})$ and $B \in B(\mathcal{K})$. For each of the following properties, assuming A and B satisfy it, can we conclude that $A \otimes B$ satisfies it?

(a) invertible. (b) self-adjoint. (c) normal. (d) unitary. (e) compact. (f) trace-class.

Exercice 2.2. It the set

$$\operatorname{Vect}\{A\otimes B : A\in B(\mathcal{H}), B\in B(\mathcal{K})\}$$

dense in $B(\mathcal{H} \otimes \mathcal{K})$ for the norm topology?

Exercice 2.3. Assume that \mathcal{H} and \mathcal{K} are finite-dimensional. Is every self-adjoint operator on $\mathcal{H} \otimes \mathcal{K}$ of the form

$$\sum_{i=1}^N \lambda_i A_i \otimes B_i$$

with λ_i real numbers and A_i (resp. B_i) self-adjoint operators on \mathcal{H} (resp. on \mathcal{K})?

Exercice 2.4. Let $A \in B(\mathcal{H})$ and $B \in B(\mathcal{K})$ be non zero operators such that $A \otimes B$ compact. Show that A and B are compact.

Exercice 2.5. Let $A \in B(\mathcal{H})$ and $B \in B(\mathcal{K})$. We show that

$$\sigma(A \otimes B) = \sigma(A) \cdot \sigma(B) := \{ \lambda \mu : \lambda \in \sigma(A), \mu \in \sigma(B) \}.$$

- 1. Show the result assuming that A and B are normal.
- 2. Show that if S, T are two bounded commuting operators on the same Hilbert space, then

$$\sigma(ST) \subset \sigma(S) \cdot \sigma(T)$$

(This requires to know about the Gelfand transform !!) Deduce that the inclusion

$$\sigma(A \otimes B) \subset \sigma(A) \cdot \sigma(B)$$

always holds.

3. Let $S \in B(\mathcal{H})$. We denote by $\sigma_1(S)$ the set of $\lambda \in \mathbb{C}$ such that

$$\inf\{\|(S - \lambda \mathrm{Id})x\| : \|x\| = 1\} = 0$$

and $\sigma_2(S) = \sigma(S) \setminus \sigma_1(S)$. Show that $\sigma_1(S)$ is closed, that $\partial \sigma(S) \subset \sigma_1(S)$ and that $\lambda \in \sigma_2(S)$ implies $\overline{\lambda} \in \sigma_1(S^*)$.

- 4. Show that if $\lambda \in \sigma(A)$ and $\mu \in \sigma(B)$ then $\lambda \mu \in \sigma(A \otimes B)$ by considering the following cases
 - (a) $\lambda \in \sigma_1(A)$ and $\mu \in \sigma_1(B)$,
 - (b) $\lambda \in \sigma_2(A)$ and $\mu \in \sigma_2(B)$,

(c)
$$\lambda = 0$$
 or $\mu = 0$,

(d) the remaining cases.