Université Claude Bernard

M2 Quantum mechanics and quantum information theory

Exercise sheet # 3 A bit of physics

Exercice 3.1. (Stern–Gerlach experiment)

The spin of an electron is modelled by the state space $\mathcal{H} = \mathbb{C}^2$. For every unit vector $u = (x, y, z) \in \mathbb{R}^3$, one can « measure the spin in the direction u ». This is described by the observable

$$S_{(x,y,z)} = \begin{pmatrix} z & x - iy \\ x + iy & z \end{pmatrix}.$$

Check that the eigenvalues of $S_{(x,y,z)}$ are ± 1 . They correspond to «up» and «down» spins.

Suppose that we measure the spin in a direction u, observe the spin «up», and subsequently measure the spin in the direction v. Show that the probability of observing the spin «up» again equals $\cos^2(\theta/2)$, where θ is the angle between u and v.

Exercice 3.2. (Heisenberg incertaintly principle)

On a Hilbert space \mathcal{H} , consider a pure state $|\psi\rangle$ and two bounded observables A and B. Let X (resp. Y) be the outcome of the measure of the state $|\psi\rangle$ via the observable A (resp. B).

1. Show that

$$\mathbf{E}[X] = \langle \psi | A \psi \rangle$$
 and $\mathbf{Var}[X] = \langle \psi | A' \psi \rangle$

with $A' = (A - \mathbf{E}[X] \mathrm{Id})^2$.

2. Show the inequality

$$\mathbf{Var}[X] \cdot \mathbf{Var}[Y] \ge \frac{1}{4} |\langle \psi | [A, B] \psi \rangle|^2 \tag{1}$$

where [A, B] = AB - BA. (Hint : reduce to the case where $\mathbf{E}[X] = \mathbf{E}[Y] = 0$).

3. On the Hilbert space $L^2(\mathbb{R})$, consider the unbounded self-adjoint operators A ("position") defined as Af(x) = xf(x) and B ("momentum") defined as $Bf = -i\hbar f'$. Show that the relation

 $[A, B] = i\hbar \mathrm{Id}$

holds on a dense subspace of $L^2(\mathbb{R})$. It follows that for these operators the product of standard deviations («uncertainties») when measuring any state is always $\geq \hbar/2$.

4. Can bounded operators A, B on a Hilbert space satisfy the relation

$$[A,B] = \mathrm{Id} ?$$