M2 Quantum mechanics and quantum information theory

Exercise sheet \# 4
 Quantum channels

Exercice 4.1. Examples of channels

Show that the following maps $\mathrm{M}_{n}^{\text {sa }} \rightarrow \mathrm{M}_{n}^{\text {sa }}$

$$
\begin{aligned}
& R(X)=\operatorname{Tr}(X) \frac{\mathrm{Id}}{n} \\
& D(X)=\operatorname{diag}(X)
\end{aligned}
$$

(the diagonal part of the matrix X) are quantum channels and give explicit Kraus decomposition. Are they mixed-unitary?

Exercice 4.2. Direct sum of channels

Let $\Phi_{1}: B\left(\mathcal{H}_{1}\right) \rightarrow B\left(\mathcal{H}_{1}^{\prime}\right)$ and $\Phi_{2}: B\left(\mathcal{H}_{2}\right) \rightarrow B\left(\mathcal{H}_{2}^{\prime}\right)$ be quantum channels. Show that the map $B\left(\mathcal{H}_{1} \oplus \mathcal{H}_{2}\right) \rightarrow B\left(\mathcal{H}_{1}^{\prime} \oplus \mathcal{H}_{2}^{\prime}\right)$ defined for $X_{i j} \in B\left(\mathcal{H}_{i}, \mathcal{H}_{j}^{\prime}\right)$ as

$$
\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right] \mapsto\left[\begin{array}{cc}
\Phi_{1}\left(X_{11}\right) & 0 \\
0 & \Phi_{2}\left(X_{22}\right)
\end{array}\right]
$$

is a quantum channel and describe its Kraus operators in terms of the Kraus operators of Φ_{1} and Φ_{2}.

Exercice 4.3. k-positive but not $(k+1)$-positive

Let $k<n$ be integers. Show that the map $\Phi: \mathrm{M}_{n}^{\text {sa }} \rightarrow \mathrm{M}_{n}^{\text {sa }}$ defined by $\Phi(X)=k \operatorname{Tr}(X) \mathrm{Id}-X$ is k-positive but not ($k+1$)-positive.

Exercice 4.4. Channels decrease trace norm

Show that any positive and trace-preserving map $\Phi: \mathrm{M}_{n}^{\mathrm{sa}} \rightarrow \mathrm{M}_{n}^{\mathrm{sa}}$ satisfies the inequality

$$
\|\Phi(X)\|_{1} \leqslant\|X\|_{1}
$$

for every $X \in \mathrm{M}_{n}^{\text {sa }}$.

Exercice 4.5. Schur multipliers

Denote by \odot the entrywise product of matrices, i.e., $\left(a_{i j}\right) \odot\left(b_{i j}\right)=\left(a_{i j} b_{i j}\right)$. Given a matrix $A \in \mathrm{M}_{n}^{\text {sa }}$, consider the map $\Phi: \mathrm{M}_{n}^{\mathrm{sa}} \rightarrow \mathrm{M}_{n}^{\mathrm{sa}}$ given as $X \mapsto A \odot X$. Show that the following are equivalent

1. The matrix A is positive semi-definite,
2. The map Φ is positive,
3. The map Φ is completely positive.

Exercice 4.6. Unital qubit channels

This exercise proves that every unital quantum channel $\Phi: \mathrm{M}_{2}^{\mathrm{sa}} \rightarrow \mathrm{M}_{2}^{\mathrm{sa}}$ is mixed-unitary.

1. Argue that it is enough to prove the result for channels which are diagonal in the Pauli basis, i.e., such that

$$
\begin{equation*}
\Phi(\mathrm{Id})=\operatorname{Id}, \Phi\left(\sigma_{x}\right)=a \sigma_{x}, \Phi\left(\sigma_{y}\right)=b \sigma_{y}, \Phi\left(\sigma_{z}\right)=c \sigma_{z} \tag{1}
\end{equation*}
$$

for some real numbers a, b, c.
2. Show that the map satisfying (1) is completely positive if and only if $(a+b)^{2} \leqslant(1+c)^{2}$ and $(a-b)^{2} \leqslant(1-c)^{2}$.
3. Conclude by describing the region of \mathbb{R}^{3} delimited by these inequalities.

