Université Claude Bernard

M2 Quantum mechanics and quantum information theory

Exercise sheet # 5Entanglement

Exercice 5.1. Transpositions

Let T and T' be transpositions with respect to two orthonormal bases on \mathbb{C}^d . Show that there exists a unitary matrix U such that $T'(X) = UT(X)U^*$ for every $X \in M_d$. Deduce that the property of being PPT does not depend on a choice of basis.

Exercice 5.2. Partial tranpose

What are the eigenvalues and eigenspaces of the partial transposition, $X \mapsto X^{\Gamma}$ as a map on $B^{\mathrm{sa}}(\mathcal{H}_A \otimes \mathcal{H}_B)$.

Exercice 5.3. Isotropic states

Let (e_i) the canonical basis of \mathbb{C}^d and consider the maximally entangled vector

$$|\psi\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} |e_i\rangle \otimes |e_i\rangle.$$

For $\frac{-1}{d^2-1} \leq \beta \leq 1$, consider the state ρ_β on $\mathbb{C}^d \otimes \mathbb{C}^d$ defined as

$$\rho_{\beta} = \beta |\psi\rangle \langle \psi| + (1 - \beta) \frac{\mathrm{Id}}{d^2}.$$

- 1. For which values of β is the state ρ_{β} PPT?
- 2. (harder, optional) For which values of β is the state ρ_{β} separable?

Exercice 5.4. Realignment

The realignment $A^R \in B(\mathbb{C}^n \otimes \mathbb{C}^n, \mathbb{C}^d \otimes \mathbb{C}^d)$ of an operator $A \in B(\mathbb{C}^d \otimes \mathbb{C}^n)$ is defined as follows : the map $A \mapsto A^R$ in \mathbb{C} -linear, and $|e_i \otimes e_j\rangle \langle e_k \otimes e_l|^R = |e_i \otimes e_k\rangle \langle e_j \otimes e_l|$.

- 1. Show that if ρ is a separable state on $\mathbb{C}^d \otimes \mathbb{C}^n$, then $\|\rho^R\|_1 \leq 1$.
- 2. Show that if ρ is a pure state on $\mathbb{C}^d \otimes \mathbb{C}^n$, then ρ is separable if and only if $\|\rho^R\|_1 \leq 1$.

Exercice 5.5. Length of separable decomposition

- 1. Show that every separable state on $\mathbb{C}^d \otimes \mathbb{C}^d$ can be written as the convex combination of $\leq d^4$ pure product states.
- 2. Using a dimension-counting argument, show that there exist a constant c > 0, and for every d a separable state on $\mathbb{C}^d \otimes \mathbb{C}^d$ which cannot be written as the convex combination of $\leq cd^3$ pure product states.