M2 Quantum mechanics and quantum information theory

Exercise sheet \# 5

Entanglement

Exercice 5.1. Transpositions

Let T and T^{\prime} be transpositions with respect to two orthonormal bases on \mathbb{C}^{d}. Show that there exists a unitary matrix U such that $T^{\prime}(X)=U T(X) U^{*}$ for every $X \in \mathrm{M}_{d}$. Deduce that the property of being PPT does not depend on a choice of basis.

Exercice 5.2. Partial tranpose
What are the eigenvalues and eigenspaces of the partial transposition, $X \mapsto X^{\Gamma}$ as a map on $B^{\text {sa }}\left(\mathcal{H}_{A} \otimes\right.$ \mathcal{H}_{B}).

Exercice 5.3. Isotropic states

Let $\left(e_{i}\right)$ the canonical basis of \mathbb{C}^{d} and consider the maximally entangled vector

$$
|\psi\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}\left|e_{i}\right\rangle \otimes\left|e_{i}\right\rangle
$$

For $\frac{-1}{d^{2}-1} \leqslant \beta \leqslant 1$, consider the state ρ_{β} on $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ defined as

$$
\rho_{\beta}=\beta|\psi\rangle\langle\psi|+(1-\beta) \frac{\mathrm{Id}}{d^{2}} .
$$

1. For which values of β is the state ρ_{β} PPT?
2. (harder, optional) For which values of β is the state ρ_{β} separable?

Exercice 5.4. Realignment

The realignment $A^{R} \in B\left(\mathbb{C}^{n} \otimes \mathbb{C}^{n}, \mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$ of an operator $A \in B\left(\mathbb{C}^{d} \otimes \mathbb{C}^{n}\right)$ is defined as follows : the map $A \mapsto A^{R}$ in \mathbb{C}-linear, and $\left|e_{i} \otimes e_{j}\right\rangle\left\langle\left. e_{k} \otimes e_{l}\right|^{R}=\mid e_{i} \otimes e_{k}\right\rangle\left\langle e_{j} \otimes e_{l}\right|$.

1. Show that if ρ is a separable state on $\mathbb{C}^{d} \otimes \mathbb{C}^{n}$, then $\left\|\rho^{R}\right\|_{1} \leqslant 1$.
2. Show that if ρ is a pure state on $\mathbb{C}^{d} \otimes \mathbb{C}^{n}$, then ρ is separable if and only if $\left\|\rho^{R}\right\|_{1} \leqslant 1$.

Exercice 5.5. Length of separable decomposition

1. Show that every separable state on $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ can be written as the convex combination of $\leqslant d^{4}$ pure product states.
2. Using a dimension-counting argument, show that there exist a constant $c>0$, and for every d a separable state on $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ which cannot be written as the convex combination of $\leqslant c d^{3}$ pure product states.
