M2 Quantum mechanics and quantum information theory

> Exercise sheet \# $\mathbf{6}$
> Entanglement (2)

Exercice 6.1. Strictly positive maps

Let C be a proper cone in a finite-dimensional real vector space V. A linear map $\Phi: V \rightarrow V$ is said positive if $\Phi(C) \subset C$. Show that the set P of positive maps is a proper cone in the space $L(V)$ of endomorphisms of V, and that a map Φ belongs to the interior of P if and only if

$$
\forall x \in C \backslash\{0\}, \quad \Phi(x) \in \operatorname{int}(C)
$$

Exercice 6.2. Decomposable maps

Show that the cone of decomposable maps from \mathbb{C}^{d} to \mathbb{C}^{n} is closed.
Exercice 6.3. Størmer theorem, quantitative
Størmer's theorem shows that every positive map $M_{2} \rightarrow M_{2}$ has the form

$$
X \mapsto \sum_{i=1}^{k} A_{i} X A_{i}^{*}+\sum_{j=1}^{l} B_{j} X^{T} B_{j}^{*}
$$

Can you give a bound on the number $k+l$ of terms appearing in this expression?

Exercice 6.4. An entangled PPT state

A set of vectors $\left(v_{i}\right)$ in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ is an unextendible product set if it satisfies the following properties
(i) it is an orthonormal family,
(ii) each vector is a product vector,
(iii) it cannot be exteded to a larger set satisfying (i) and (ii),
(iv) it does not span $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.

1. Show that there is no unextendible product set in $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$.
2. Let v_{1}, \ldots, v_{5} be the following vectors in \mathbb{C}^{3}

$$
e_{1}, \frac{e_{1}-e_{2}}{\sqrt{2}}, \frac{e_{2}-e_{3}}{\sqrt{2}}, e_{3}, \frac{e_{1}+e_{2}+e_{3}}{\sqrt{3}}
$$

Find a permutation $\pi \in \mathfrak{S}_{5}$ such that the family $\left(v_{i} \otimes v_{\pi(i)}\right)_{1 \leqslant i \leqslant 5}$ is an unextendible product set in $\mathbb{C}^{3} \otimes \mathbb{C}^{3}$.
3. Let $\left(v_{i}\right)_{1 \leqslant i \leqslant n}$ be an unextendible product set in $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$. Show that the formula

$$
\frac{1}{d^{2}-n}\left(\mathrm{Id}-\sum_{i=1}^{n}\left|v_{i}\right\rangle\left\langle v_{i}\right|\right)
$$

defines a state which is entangled (argue that its range contains no product vector) and PPT.

