Exercise sheet # **7** Quantum non-locality

Exercice 7.1.

Show directly from the definition that the set $QC_{m,n}$ of quantum correlations is convex.

Exercice 7.2.

Give an explicit family of observables on \mathbb{C}^2 , as well as a state on $\mathbb{C}^2 \otimes \mathbb{C}^2$, which show that the matrix $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$ belongs to $QC_{2,2}$.

Exercice 7.3. Optimality of the CHSH violation

- 1. Show that if X_1, X_2, Y_1, Y_2 are self-adjoint operators satisfying $X_1^2 = X_2^2 = \operatorname{Id}_{\mathcal{H}_A}$ and $Y_1^2 = Y_2^2 = \operatorname{Id}_{\mathcal{H}_B}$ then the operator $B = X_1 \otimes Y_1 + X_1 \otimes Y_2 + X_2 \otimes Y_1 X_2 \otimes Y_2$ satisfies $||B|| \leq 2\sqrt{2}$. (Hint : compute $B^2 + [X_1, X_2] \otimes [Y_1, Y_2]$).
- 2. Deduce that any matrix (a_{ij}) in $LC_{2,2}$ satisfies the inequality $a_{11} + a_{12} + a_{21} a_{22} \leq 2\sqrt{2}$.