M2 Quantum mechanics and quantum information theory

Exercise sheet \# 7

Quantum non-locality

Exercice 7.1.

Show directly from the definition that the set $Q C_{m, n}$ of quantum correlations is convex.

Exercice 7.2.

Give an explicit family of observables on \mathbb{C}^{2}, as well as a state on $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$, which show that the matrix $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ belongs to $Q C_{2,2}$.
Exercice 7.3. Optimality of the CHSH violation

1. Show that if $X_{1}, X_{2}, Y_{1}, Y_{2}$ are self-adjoint operators satisfying $X_{1}^{2}=X_{2}^{2}=\operatorname{Id}_{\mathcal{H}_{A}}$ and $Y_{1}^{2}=Y_{2}^{2}=$ $\mathrm{Id}_{\mathcal{H}_{B}}$ then the operator $B=X_{1} \otimes Y_{1}+X_{1} \otimes Y_{2}+X_{2} \otimes Y_{1}-X_{2} \otimes Y_{2}$ satisfies $\|B\| \leqslant 2 \sqrt{2}$. (Hint : compute $\left.B^{2}+\left[X_{1}, X_{2}\right] \otimes\left[Y_{1}, Y_{2}\right]\right)$.
2. Deduce that any matrix $\left(a_{i j}\right)$ in $L C_{2,2}$ satisfies the inequality $a_{11}+a_{12}+a_{21}-a_{22} \leqslant 2 \sqrt{2}$.
