Exercise sheet \# 8

Manipulation of entanglement

Exercice 8.1. Extreme points

Show that a convex compact set in a finite-dimensional space is the convex hull of the set of its extreme points. (This was used in class but not proved).

Hint. Use induction on dimension ; start by showing that a nonempty convex compact set has at least one extreme point.

Exercice 8.2. Majorisation

Let $p \geqslant 1$. This exercise uses majorisation to prove that $\|A\|_{p}:=\left(\operatorname{Tr}|A|^{p}\right)^{1 / p}$ defines a norm of M_{n}.

1. Let $M \in \mathrm{M}_{n}$ be a self-adjoint matrix, $d \in \mathbb{R}^{n}$ its diagonal (i.e., the vector $d_{i}=M_{i i}$) and $\sigma \in \mathbb{R}^{n}$ its spectrum. Show that $d \prec \sigma$.
2. Show that if vectors x, y in \mathbb{R}^{n} satisfy $x \prec y$, then $\sum\left|x_{i}\right|^{p} \leqslant \sum\left|y_{i}\right|^{p}$.
3. Show that if A, B are self-adjoint matrices such that $A+B$ is diagonal, then

$$
\|A+B\|_{p} \leqslant\|A\|_{p}+\|B\|_{p}
$$

4. Show that $\|\cdot\|_{p}$ is a norm on M_{n}.

Exercice 8.3. Discrimination problem for states

Let ρ and σ be two states on \mathcal{H}. Suppose that you are given an unknown state X which is equal to ρ or σ with probability $1 / 2$.

1. Show that if you measure the unknown state X using a POVM $\left(M_{i}\right)_{1 \leqslant i \leqslant N}$ and try to infer whether $X=\rho$ or $X=\sigma$ from the measurement outcome, the best strategy gives a correct guess with probability

$$
\frac{1}{2}+\frac{1}{4} \sum_{1 \leqslant i \leqslant N}\left|\operatorname{Tr}\left(M_{i} \rho\right)-\operatorname{Tr}\left(M_{i} \sigma\right)\right|
$$

2. Show that if we optimize over all POVMs, the optimal strategy gives a correct guess with probability $p_{\text {opt }}=\frac{1}{2}+\frac{1}{4}\|\rho-\sigma\|_{1}$.
3. Show that $p_{\mathrm{opt}}=1$ if and only if the range of ρ is orthogonal to the range of σ.

Exercice 8.4. Equal partial traces (partially solved in class)
Let ψ and χ be two unit vectors in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$. Show the equivalence between

1. We have $\operatorname{Tr}_{\mathcal{H}_{B}}|\psi\rangle\langle\psi|=\operatorname{Tr}_{\mathcal{H}_{B}}|\chi\rangle\langle\chi|$.
2. There is a unitary transformation U on \mathcal{H}_{B} such that $\chi=(\operatorname{Id} \otimes U)(\psi)$.

Exercice 8.5.

1. Show that if $A \in \mathrm{M}_{n}$ is a matrix such that $\operatorname{Tr} A=0$, then there exists an orthonormal basis $\left(e_{i}\right)$ such that $\left\langle e_{i}, A e_{i}\right\rangle=0$ for every i.
2. Consider two unit vectors ψ and ϕ in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ such that $\psi \perp \phi$. Using the previous question, show that there exists an orthonormal basis $\left(e_{i}\right)$ in \mathcal{H}_{A} such that, for every i, we have

$$
\left(\left\langle e_{i}\right| \otimes \operatorname{Id}_{\mathcal{H}_{B}}\right)|\psi\rangle \perp\left(\left\langle e_{i}\right| \otimes \operatorname{Id}_{\mathcal{H}_{B}}\right)|\phi\rangle
$$

3. Explain why this means that the pure states $|\psi\rangle\langle\psi|$ and $|\phi\rangle\langle\phi|$ can be perfectly distinguished by an LOCC protocol.

Exercice 8.6. Nondistillability of PPT states

Let ρ be a state on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ with positive partial transpose. Show that if Φ is an LOCC channel, then $\Phi(\rho)$ also has positive partial transpose. Deduce that $E_{D}(\rho)=0$.

Exercice 8.7. Mixtures with equal weights

Show that for every state ρ on \mathbb{C}^{d}, there exist unit vectors $\psi_{1}, \ldots, \psi_{d}$ such that

$$
\rho=\frac{1}{d} \sum_{i=1}^{d}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

