Université Claude Bernard M2 Quantum mechanics and quantum information :

M2 Quantum mechanics and quantum information theory

$\begin{array}{l} {\bf Exercise \ sheet} \ \# \ 9 \\ {\rm Fidelity, \ entropy} \end{array}$

Exercice 9.1. Properties of fidelity

Let ρ and σ be states on \mathcal{H} , and τ be a state on \mathcal{H}' . Show the following properties of fidelity

- 1. We have $F(\rho, \sigma) = F(\sigma, \rho)$.
- 2. We have $F(\rho, \sigma) \ge 0$ with equality if and only if $\rho \sigma = 0$.
- 3. We have $F(\rho, \sigma) \leq 1$ with equality if and only if $\rho = \sigma$.
- 4. If $V : \mathcal{H} \to \mathcal{H}'$ is an isometric embedding, then $F(V\rho V^*, V\sigma V^*) = F(\rho, \sigma)$.
- 5. We have $F(\rho \otimes \tau, \sigma \otimes \tau) = F(\rho, \sigma)$.

Exercice 9.2. von Neumann entropy and majorisation

- 1. Show that if ρ and σ are states on \mathbb{C}^d such that spec $\rho \prec \operatorname{spec} \sigma$, then $H(\rho) \ge H(\sigma)$.
- 2. Show that for every state ρ on \mathbb{C}^d , we have $\rho \leq \log_2 d$.
- 3. Show that H is a concave function on the set of quantum states.
- 4. Show that $\Phi : \mathsf{M}_d \to \mathsf{M}_d$ is a unital quantum channel, then $H(\Phi(\rho)) \ge H(\rho)$ for any state ρ on \mathbb{C}^d .