M2 Convexité en grande dimension et théorie quantique de l'information

Examen final. Durée: 3h

N'hésitez pas à admettre un résultat pour pouvoir continuer. Les 5 exercices sont indépendants et de difficulté inégale.

Exercice 1

On appelle ± 1 -polytope un polytope dont les sommets sont inclus dans $\{-1,1\}^n$. Montrer le résultat suivant : si P_1, \ldots, P_k sont des ± 1 -polytopes (dans \mathbf{R}^n), et si il existe $t_1, \ldots, t_k \geq 0$ avec $\sum t_i = 1$ tels que $t_1P_1 + \cdots + t_kP_k$ contienne un cube de côté 10^{-3} , alors au moins un des polytopes P_i a un nombre de sommets supérieur à $\exp(Cn)$, où C > 0 est une constante universelle.

Par « cube de côté 10^{-3} », on entend un ensemble de la forme $\prod_{i=1}^{n} [x_i, x_i + 10^{-3}]$.

Indication: largeur moyenne!

Exercice 2

On note $H = \mathbf{C}^d \otimes \mathbf{C}^d$. On rappelle que tout vecteur unitaire $x \in H$ admet une décomposition de Schmidt

$$x = \sum_{i=1}^{d} \sqrt{\lambda_i(x)} \ e_i \otimes f_i,$$

où $\lambda_i(x) \ge 0$ sont les coefficients de Schmidt de x, et $(e_i), (f_i)$ sont des bases orthonormales de \mathbf{C}^d . On note $\lambda_{\max}(x)$ le plus grand coefficient de Schmidt de x.

- 1. À quelle condition sur $\lambda_{\max}(x)$ l'état $|x\rangle\langle x|$ est-il séparable?
- 2. Montrer que $\lambda_{\max}(x)$ s'écrit comme

$$\lambda_{\max}(x) = \sup_{u,v} |\langle x, u \otimes v \rangle|^2,$$

où le supremum est pris sur les vecteurs unitaires $u, v \in \mathbf{C}^d$.

Exercice 3

On note $H = \mathbf{C}^d \otimes \mathbf{C}^d$, et $T : \mathcal{M}(\mathbf{C}^d) \to \mathcal{M}(\mathbf{C}^d)$ l'application de transposition $T(A) = A^t$ et $T_1 = T \otimes \operatorname{Id}_{\mathcal{M}(\mathbf{C}^d)} : \mathcal{M}(H) \to \mathcal{M}(H)$ la transposition partielle.

- 1. Montrer que si ρ est séparable, alors $T_1(\rho)$ est un opérateur positif.
- 2. En déduire que l'état suivant est intriqué sur ${\bf C}^2\otimes {\bf C}^2$ pour $0\leqslant t<2/3$

$$t\frac{\mathrm{Id}}{4} + (1-t)|x\rangle\langle x|,$$

où $x = \frac{1}{\sqrt{2}}(1,0) \otimes (1,0) + \frac{1}{\sqrt{2}}(0,1) \otimes (0,1).$

Exercice 4

Pour $p \ge 1$, on note $\|\cdot\|_p$ la norme de Schatten S_p^d sur $\mathcal{M}(\mathbf{C}^d)$. On note $\mathcal{M}_{sa}(\mathbf{C}^d)$ l'ensemble des matrices hermitiennes. La première partie de l'exercice montre le lemme suivant

Lemme 1 Soient $A, B, C \in \mathcal{M}(\mathbf{C}^d)$ telles que la matrice par blocs $\begin{bmatrix} A & B \\ B^* & C \end{bmatrix}$ soit hermitienne positive. Alors pour tout $p \ge 1$, $||B||_p^2 \le ||A||_p ||C||_p$.

- 1. Pour quoi suffit-il de montrer le lemme dans le cas où B est diagonale à coefficients réels positifs?
- 2. On suppose que B est diagonale de coefficients diagonaux $b_1, \ldots, b_d \in \mathbf{R}^+$. Montrer que pour tout $i, b_i^2 \leq a_{ii}c_{ii}$.
- 3. Terminer la preuve du lemme.

Soit $\Phi: \mathcal{M}(\mathbf{C}^d) \to \mathcal{M}(\mathbf{C}^d)$ une application positive. On va comparer les quantités suivantes

$$\|\Phi\|_{1\to p} = \sup_{A\in\mathscr{M}(\mathbf{C}^d), \|A\|_1 \leqslant 1} \|\Phi(A)\|_p$$

$$\|\Phi\|_{1\rightarrow p}^{sa} = \sup_{A\in\mathcal{M}_{sa}(\mathbf{C}^d), \|A\|_1\leqslant 1} \|\Phi(A)\|_p$$

4. Montrer que

$$\|\Phi\|_{1\to p} = \sup_{x,y\in\mathbf{C}^d, \|x\|_2 = \|y\|_2 = 1} \|\Phi(|x\rangle\langle y|)\|_p$$
$$\|\Phi\|_{1\to p}^{sa} = \sup_{x\in\mathbf{C}^d, \|x\|_2 = 1} \|\Phi(|x\rangle\langle x|)\|_p$$

5. Montrer que si Φ est complètement positive, alors $\|\Phi\|_{1\to p} = \|\Phi\|_{1\to p}^{sa}$. Indication : considérer $\Phi \otimes \operatorname{Id}_{\mathscr{M}(\mathbf{C}^2)}(|u\rangle\langle u|)$, où $u = x \otimes (1,0) + y \otimes (0,1)$ et utiliser le lemme.

Exercice 5

On rappelle que la capacité d'un canal quantique $\Phi: \mathcal{M}(\mathbf{C}^d) \to \mathcal{M}(\mathbf{C}^d)$ est définie comme

$$\chi(\Phi) = \sup_{\{p_i, \rho_i\}} S\left(\Phi\left(\sum_i p_i \rho_i\right)\right) - \sum_i p_i S(\Phi(\rho_i)),$$

où le supremum est pris sur les états (ρ_i) sur \mathbf{C}^d , et sur les suites finies $p_i \geqslant 0$ telles que $\sum p_i = 1$. Montrer que dans cette formule, on peut se restreindre aux suites (p_i) de longueur inférieure ou égale à d^2 , et que l'on peut se restreindre à choisir les états (ρ_i) purs.