M2 Convexité en grande dimension et théorie quantique de l'information

Feuille d'exercices numéro 5

Domination de Schur. Normes de Schatten.

Exercice 1 Que peut-on dire d'une matrice bistochastique inversible dont l'inverse est aussi bistochastique?

Exercice 2 Montrer que si A est une matrice $n \times n$ auto-adjointe positive, alors

$$\det(A) \leqslant \prod_{i=1}^{n} A_{ii}$$

Exercice 3 Soit A une matrice $n \times n$. Montrer que A est bistochastique si et seulement si $Ax \prec x$ pour tout $x \in \mathbf{R}^n$.

Exercice 4 Soit $x, y \in \mathbf{R}^n$ avec $\sum x_i = \sum y_i$. Montrer que $x \prec y$ si et seulement si, pour toute fonction convexe $\Phi : \mathbf{R} \to \mathbf{R}$, on a $\sum \Phi(x_i) \leq \sum \Phi(y_i)$. Indication : on pourra considérer la fonction $\Phi_t : x \mapsto \max(0, x - t)$.

Exercice 5 Déterminer les points extrémaux des convexes compacts suivants (on rappelle qu'on écrit $A \leq B$ si la matrice B - A est positive)

- a) $K_1 = \{ A \in \mathcal{M}_n(\mathbf{R}) \text{ t.q. } ||A||_{op} \leq 1 \}.$
- b) $K_2 = \{ A \in \mathcal{M}_n^{sa}(\mathbf{R}) \text{ t.q. } A \ge 0 \text{ et } \text{tr } A = 1 \}.$
- c) $K_3 = \{ A \in \mathcal{M}_n^{sa}(\mathbf{R}) \text{ t.q. } 0 \leqslant A \leqslant \text{Id} \}.$

Exercice 6 Montrer l'inégalité de Hölder non-commutative : si 1/p+1/q=1, alors pour $A, B \in \mathcal{M}_n(\mathbf{R})$,

$$||AB||_{S_1^n} \leq ||A||_{S_p^n} ||B||_{S_q^n}.$$

Exercice 7

- a) Quelle est la dimension donnée par le théorème de Dvoretzky pour les boules-unités de S_1^n et S_{∞}^n ?
- b) Montrer qu'il existe un sous-espace E de dimension n de $\mathcal{M}_n(\mathbf{R})$ tel que pour tout p,

$$d_{BM}(S_n^n \cap E, \ell_2^n) = 1.$$