M2 recherche — Théorie spectrale des opérateurs et mécanique quantique

Feuille 6

Opérateurs compacts.

On désigne par \mathcal{H} un espace de Hilbert complexe séparable de dimension infinie, $B(\mathcal{H})$ l'espace des opérateurs bornés sur \mathcal{H} et $K(\mathcal{H})$ le sous-espace des opérateurs compacts.

Exercice 1. Soit (λ_n) une suite bornée, (e_n) une base orthonormale de \mathcal{H} et T l'opérateur défini $T(e_n) = \lambda_n e_n$. A quelle condition T est-il compact?

Exercice 2. Soit $f \in L^{\infty}[0,1]$. Quand est-ce que l'opérateur de multiplication M_f sur $L^2[0,1]$ est compact?

Exercice 3. Soit A un opérateur compact auto-adjoint, et $f : \sigma(A) \to \mathbb{R}$ continue. Donner une condition nécessaire et suffisante sur f pour que f(A) soit compact.

Exercice 4. Soit $T \in K(\mathcal{H})$. Montrer qu'il existe un vecteur non nul $x \in \mathcal{H}$ tel que $||Tx|| = ||T|| \cdot ||x||$.

Exercice 5. Soit $T \in K(\mathcal{H})$. Si Ran T est fermé, montrer que T est de rang fini.

Exercice 6. Soient A et B deux opérateurs tels que AB est compact. Peut-on conclure que A et/ou B est compact? Et si A = B? et si A et B sont normaux?

Exercice 7. Soient $A, B, C, D \in B(\mathcal{H})$. On définit un opérateur $T \in B(\mathcal{H} \oplus \mathcal{H})$ par

$$T = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

Montrer que T est compact si et seulement si A, B, C et D sont compacts.

Exercice 8. Alternative de Fredholm.

Soit $K \in K(\mathcal{H})$, on pose $T = \mathrm{Id} - K$.

- 1. On suppose que T est injectif. Montrer que T est surjectif. **Indication :** Montrer que la suite $(\operatorname{Ran}(T^n))$ est une suite décroissante de sous-espaces fermés et qu'elle est stationnaire.
- 2. On suppose que T est surjectif. Montrer que T est injectif.

Exercice 9. Stabilité du spectre sous une pertubation compacte.

Soit $A \in B(\mathcal{H})$ et $\lambda \in \sigma(A)$. On suppose que λ n'est pas une valeur propre de A. Montrer que pour tout $K \in K(\mathcal{H})$, on a $\lambda \in \sigma(A+K)$.

Exercice 10. Soit S l'opérateur de shift. Calculer la distance de S à $K(\ell_2)$.

Exercice 11. Opérateurs de Hankel.

Soit (a_n) une suite de nombres complexes telle que $\sum |a_n| < \infty$. Montrer que la matrice suivante définit un opérateur compact sur ℓ_2

$$A = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots \\ a_2 & a_3 & \cdots & \cdots \\ a_3 & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}.$$

Exercice 12. Operateur de Volterra.

Soit $\mathcal{H} = L^2([0,1])$. On note V l'opérateur qui à une fonction $f \in \mathcal{H}$ lui associe sa primitive s'annulant en 0. Montrer que V est compact et calculer son spectre.

Exercice 13. Matrice de Cesaró, matrice de Hilbert.

Montrer que les matrices suivantes définissent des opérateurs bornés sur ℓ_2 .

$$C = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 1/2 & 1/2 & 0 & \cdots \\ 1/3 & 1/3 & 1/3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \ H = \begin{pmatrix} 1 & 1/2 & 1/3 & \cdots \\ 1/2 & 1/3 & \cdots & \cdots \\ 1/3 & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}.$$

Sont-il compacts?