Agrégation — préparation à l'écrit d'analyse.

Feuille 10

Séries de Fourier

Révisions de cours pour la séance prochaine :

1. Probabilités.

Notations

- $-\mathcal{M} = \{f : \mathbf{R} \to \mathbf{C} : f \text{ Lebesgue-mesurable et } 2\pi\text{-p\'eriodique}\}.$
- $-\mathcal{C} = \{ f \in \mathcal{M} : f \text{ continue} \}.$
- Pour $1 \leq p \leq +\infty$, on note $L^p = \{f \in \mathcal{M} : f \in L^p(]0, 2\pi[)\}$. On munit L^p de la norme $||f||_{L^p} =$ $(2\pi)^{-1/p} ||f_{|]0,2\pi[}||_{L^p(]0,2\pi[)}.$ Pour $n \in \mathbf{Z}$, on note $e_n \in \mathcal{C}$ la fonction $x \mapsto \exp(inx).$ Pour $f \in L^1$, on pose
- - 1. Pour $n \in \mathbf{Z}$, $c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt$.
 - 2. Pour $n \in \mathbb{N}$, $S_n(f) = \sum_{k=-n}^n c_k(f)e_k$.
 - 3. Pour $n \in \mathbb{N}$, $F_n(f) = \frac{1}{n+1} \sum_{k=0}^n S_k$.
- Pour $f, g \in \mathcal{M}$ on définit, lorsque cela a un sens, leur convolution f * g (pour $x \in \mathbf{R}$)

$$(f * g)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(t)g(x-t) dt.$$

Exercice 1. Régularité

- 1. Soit $f \in \mathcal{C}$ une fonction de classe C^k pour $k \in \mathbb{N}$. Montrer que $\lim_{n \to \infty} n^k c_n = 0$.
- 2. Soit $k \ge 2$ et $f \in \mathcal{C}$. On suppose que $c_n = O(1/|n|^k)$. Montrer que f est de classe C^{k-2} .

Exercice 2. Noyau de Dirichlet

Pour $n \in \mathbb{N}$, on pose $D_n = \sum_{k=-n}^{\kappa} e_k$.

- 1. Montrer que pour $x \in \mathbf{R} \setminus 2\pi \mathbf{Z}$, on a $D_n(x) = \frac{\sin((n+1)x/2)}{\sin(x/2)}$.
- 2. Montrer que pour tout $n \in \mathbb{N}$ et $f \in L^1$, on a $S_n(f) = f * D_n$.
- 3. Montrer que $\lim_{n\to\infty} ||D_n||_1 = +\infty$.
- 4. Pour $n \in \mathbb{N}$, on considère la forme linéaire $\ell_n : \mathcal{C} \to \mathbb{C}$ définie par $\ell_n(f) = (f * D_n)(0)$. Montrer que $\|\ell_n\|_{\mathcal{C}^*} = \|D_n\|_1$, où la norme d'une forme linéaire $\ell \in \mathcal{C}^*$ est

$$\|\ell\|_{\mathcal{C}^*} = \sup\{|\ell(f)| : f \in \mathcal{C}, \|f\|_{\infty} \le 1\}.$$

5. À l'aide du théorème de Banach-Steinhaus, en déduire qu'il existe une fonction $f \in \mathcal{C}$ telle que $S_n(f)$ ne converge pas vers f en 0.

Exercice 3. Noyau de Féjer

Pour $n \in \mathbb{N}$, on pose $\Phi_n = \frac{1}{n+1}(D_0 + \cdots + D_n)$.

- 1. Montrer que pour $x \in \mathbf{R} \setminus 2\pi \mathbf{Z}$, on a $\Phi_n(x) = \frac{\sin^2((n+1)x/2)}{(n+1)\sin^2(x/2)}$
- 2. Montrer que pour tout $n \in \mathbb{N}$ et $f \in L^1$, on a $F_n(f) = f * \Phi_n$.
- 3. Montrer que pour tout n, on a $\frac{1}{2\pi} \int_0^{2\pi} \Phi_n(t) dt = 1$.
- 4. Vérifier que (Φ_n) tend vers 0 uniformément sur les compacts de $\mathbf{R} \setminus 2\pi \mathbf{Z}$.
- 5. En déduire le théorème de Féjer : si $f \in \mathcal{C}$, alors $(F_n(f))$ converge uniformément vers f.

Exercice 4. Inégalité de Bernstein

On considère une fonction de la forme

$$P(t) = \sum_{k=1}^{n} a_k \exp(i\lambda_k t)$$

où $a_1,\ldots,a_k\in\mathbf{C}$ et $\lambda_1,\ldots,\lambda_k\in\mathbf{R}$. On note $\Lambda=\max(|\lambda_1|,\ldots,|\lambda_k|)$ et on souhaite montrer l'inégalité $\|P'\|_{\infty}\leqslant \Lambda\|P\|_{\infty}$

- 1. Montrer qu'il suffit de traiter le cas $\Lambda = \pi/2$. On fait cette hypothèse dans la suite.
- 2. Soit $\Psi: \mathbf{R} \to \mathbf{R}$ la fonction 2π -périodique vérifiant $\Psi(t) = t$ sur $[-\pi/2, \pi/2]$ et $\Psi(t) = \pi t$ sur $[\pi/2, 3\pi/2]$. Montrer que pour $t \in \mathbf{R}$, on a

$$\Psi(t) = \sum_{k=0}^{\infty} \frac{4(-1)^k}{\pi(2k+1)^2} \sin((2k+1)t).$$

3. Montrer que pour tout $t \in \mathbf{R}$, on a

$$P'(t) = i \sum_{k=1}^{n} a_k \Psi(\lambda_k) \exp(i\lambda_k t).$$

4. Conclure.

Exercice 5. Inégalité isopérimétrique

1. Soit $f:[0,2\pi]\to {f C}$ une fonction de classe C^1 telle que $\int_0^{2\pi}f(t)\,{\rm d}t=0$. Montrer que

$$\int_0^{2\pi} |f(t)|^2 dt \leqslant \int_0^{2\pi} |f'(t)| dt$$

et caractériser les cas d'égalité.

2. Soit [a,b] un intervalle compact de \mathbf{R} et $\gamma:[a,b]\to\mathbf{R}^2$ une courbe fermée de classe C^1 orientée positivement. On note $\gamma(t)=(x(t),y(t))$. Soit L la longueur de γ et A l'aire qu'elle enserre. On rappelle (c'est une conséquence de la formule de Green-Riemann) que A est donnée par la formule

$$A = \int_a^b x(t)y'(t) \, \mathrm{d}t.$$

Montrer que $L^2\geqslant 4\pi A$ et caractériser les cas d'égalité.