Agrégation — préparation à l'écrit d'analyse.

Feuille 13

Théorèmes de point fixe

Révisions de cours pour la séance prochaine :

1. Compacité : propriétés élémentaires. Théorème d'Ascoli.

Exercice 1. Théorèmes basés sur l'ordre dans R

Soit I = [a, b] un segment de **R**.

- 1. Soit $f: I \to I$ continue. Montrer que f admet un point fixe.
- 2. Soit $f: I \to \mathbf{R}$ continue telle que $I \subset f(I)$. Montrer que f admet un point fixe.
- 3. Soit $f: I \to I$ croissante. Montrer que f admet un point fixe.

Exercice 2. Théorème du point fixe de Banach (dans un espace complet)

Soit (E, d) un espace métrique complet non vide. Soit $\lambda \in [0, 1[$ et $f : E \to E$ une application vérifiant $d(f(x), f(y)) \leq \lambda d(x, y)$ pour tous $x, y \in E$. Montrer que f admet un unique point fixe.

Exercice 3. Dans un espace compact

Soit (E,d) un espace métrique compact non vide et $f: E \to E$ telle que d(f(x), f(y)) < d(x,y) pour tous $x, y \in E$ avec $x \neq y$. Montrer que f admet un unique point fixe.

En considérant $E = [1, \infty[$ et $f : x \mapsto x + 1/x$, montrer que la conclusion n'est plus satisfaite si on suppose seulement (E, d) complet.

Exercice 4. Dans un convexe compact

Soit K un convexe compact non vide d'un espace vectoriel normé, et $f: K \to K$ une fonction vérifiant $||f(x) - f(y)|| \le ||x - y||$ pour tous $x, y \in K$. Montrer que f admet un point fixe. Est-il unique?

Indication. Pour $a \in K$ et $\varepsilon \in]0,1[$, considérer $x \mapsto \varepsilon a + (1-\varepsilon)f(x)$.

Remarque. Le théorème de Brouwer affirme que toute fonction continue $f: K \to K$ admet un point fixe; ce résultat est considérablement plus difficile à démontrer.

Exercice 5. Perturbation de l'identité

Soit $f: \mathbf{R}^n \to \mathbf{R}^n$ une fonction k-Lipschitzienne avec k < 1. On va montrer que $g = \mathrm{Id} - f$ est bijective d'inverse continue.

- 1. Montrer que g est injective.
- 2. En utilisant un théorème de point fixe, montrer que g est surjective.
- 3. Mothrer que g^{-1} est continue.

Exercice 6. Théorème de Kakutani

Soit E un espace vectoriel normé et $K \subset E$ un compact convexe non vide.

- 1. Soit $f: E \to E$ une application affine continue telle que $f(K) \subset K$. Soit $a \in K$. On pose $a_n = \frac{1}{n+1} \sum_{k=0}^n f^k(a)$.
 - (a) Montrer que $a_n \in K$ et que $||f(a_n) a_n||$ tend vers 0 lorsque n tend vers l'infini.
 - (b) En déduire que f admet au moins un point fixe dans K.
 - (c) Montrer que l'ensemble des points fixes de f dans K est un compact convexe non vide.
- 2. Supposons maintenant que K est stable par une famille $(f_i)_{i\in I}$ d'applicaions affines continues qui commutent deux à deux.
 - (a) Supposons I fini. Montrer qu'il existe un point de K qui est fixe pour tous les f_i .
 - (b) Montrer que la propriété reste vraie pour I infini.