Agrégation — préparation à l'écrit d'analyse.

Feuille 6

Espaces de Hilbert.

Dans toute la feuille d'exercices, H désigne un espace de Hilbert réel et sa norme est notée $\|\cdot\|$.

Exercice 1. Identité du parallélogramme

Montrer l'égalité suivante, dite identité du parallélogramme (pourquoi?), valable pour $x, y \in H$

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$
(1)

Exercice 2. Opérateur adjoint

Soit $T: H \to H$ une application linéaire continue. On rappelle que la norme d'opérateur de T est définie comme $|||T||| = \sup\{||Tx|| : x \in H, ||x|| \le 1\}$.

1. Montrer qu'il existe une unique application linéaire $T^*: H \to H$ telle que, pour tous $x, y \in H$, on a

$$\langle T(x),y\rangle = \langle x,T^*(y)\rangle$$

- 2. Montrer que $|||T^*||| = |||T|||$ et que $(T^*)^* = T$.
- 3. (*) On suppose que $T = T^*$. Montrer que $|||T||| = \sup\{|\langle Tx, x \rangle| : x \in H, ||x|| \le 1\}$.

Exercice 3. Théorème de projection sur un convexe fermé

Soit $C \subset H$ un convexe fermé non vide.

1. Montrer que pour tout $x \in H$ il existe un unique élément $y \in C$ (noté $P_C(x)$ par la suite) tel que

$$||x - y|| = \inf\{||x - z|| : z \in C\}.$$

Indication : considérer une suite (y_n) dans C approchant l'infimum et montrer qu'elle converge en appliquant (1) à $(x - y_p, x - y_q)$.

2. Soit $x \in H$. Montrer que $P_C x$ est caractérisé comme étant l'unique point $y \in C$ vérifiant

$$\langle z - y, x - y \rangle \leqslant 0$$

pour tout $z \in C$.

- 3. Montrer que l'application $P_C: H \to H$ ainsi définie est continue. Montrer qu'elle est linéaire si et seulement si C est un sous-espace vectoriel de H.
- 4. Application. Soit a < b deux réels. Dans l'espace de Hilbert $H = L^2([0,1])$, on considère le sous-ensemble

$$C = \{ f \in L^2([0,1]) : a \leqslant f \leqslant b \text{ presque partout} \}.$$

Vérifier que C est convexe et fermé, et déterminer $P_C g$ pour $g \in H$.

Exercice 4. Ondelettes

Soit $\psi: \mathbf{R} \to \mathbf{R}$ la fonction définie par

$$\psi(t) = \begin{cases} 1 & \text{si } 0 \leqslant t \leqslant 1/2, \\ -1 & \text{si } 1/2 < t \leqslant 1, \\ 0 & \text{sinon.} \end{cases}$$

Pour $x \in \mathbf{R}$ et $k, n \in \mathbf{Z}$, on pose $\psi_{n,k}(x) = 2^{n/2}\psi(2^nx - k)$. Montrer que la famille

$$\{\psi_{n,k}: k \in \mathbf{Z}, n \in \mathbf{Z}\}$$

est une base orthonormale de l'espace de Hilbert $L^2(\mathbf{R})$.

Indication. On utilisera librement le résultat suivant : si $f : \mathbf{R} \to \mathbf{R}$ est une fonction localement intégrable, alors la fonction $F := x \mapsto \int_0^x f(t) dt$ est dérivable et F' = f presque partout.

Exercice 5. Théorème ergodique de von Neumann

Soit $T: H \to H$ une application linéaire vérifiant $|||T||| \le 1$. Pour $n \in \mathbb{N}$, on note $S_n = \frac{1}{n+1} \sum_{k=0}^n T^k$. On veut montrer que pour tout $x \in H$,

$$\lim_{n \to \infty} S_n x = Px$$

où P désigne le projecteur orthogonal sur le sous-espace $\ker(\mathrm{Id}-T)$.

- 1. Montrer que $\ker(\operatorname{Id} T) = \ker(\operatorname{Id} T^*)$, et en déduire que $H = \ker(\operatorname{Id} T) \oplus \overline{\operatorname{Im}(\operatorname{Id} T)}$.
- 2. Montrer que $S_n(x)$ tend vers 0 pour $x \in \overline{\text{Im}(\text{Id} T)}$.
- 3. Conclure.
- 4. Est-il vrai que $\lim_{n\to\infty} |||S_n P||| = 0$?
- (*) **Application.** Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction mesurable bornée 2π -périodique et $\alpha \in \mathbf{R} \setminus 2\pi \mathbf{Q}$. Déterminer la limite dans $L^2([0,2\pi])$ de la suite de fonctions (f_n) définie par

$$f_n(x) = \frac{1}{n+1} \sum_{k=0}^{n} f(x + n\alpha).$$

Exercice 6. Réciproque de l'identité du parallélogramme

Soit $(X, \|\cdot\|)$ un espace de Banach tel que l'identité (1) est satisfaite pour tous x, y dans X. Montrer que X est un espace de Hilbert.

Indication. Considérer la fonction $B:(x,y)\mapsto \frac{1}{2}(\|x+y\|^2-\|x\|^2-\|y\|^2)$ et montrer que $B(x,y)=B(y,x),\ B(x,-y)=-B(x,y)$ et B(x+y,z)=B(x,z)+B(y,z) — pour ce dernier point appliquer (1) à $(x,y),\ (x+z,y+z)$ et (x+y+z,z).

Exercice 7. Autour du théorème de Lax-Milgram

Soit $a: H \times H \to \mathbf{R}$ une forme bilinéaire symétrique, continue et coercive (c'est-à-dire telle qu'il existe $\alpha > 0$ tel que $a(x,x) \geqslant \alpha ||x||^2$ pour tout $x \in H$). On se donne également une forme linéaire continue $\ell: H \to \mathbf{R}$.

1. Montrer qu'il existe une constante M>0 telle que pour tous $x,y\in H$, on ait

$$|a(x,y)| \leqslant M||x|| ||y||.$$

- 2. Montrer le théorème de Lax–Milgram : il existe un unique $u \in H$ tel que l'on ait $a(u,v) = \ell(v)$ pour tout $v \in H$.
- 3. Soit $V \subset H$ un sous-espace vectoriel fermé et soit u la solution de $a(u,v) = \ell(v)$ pour tout $v \in H$.
 - (a) Montrer qu'il existe un unique $u_0 \in V$ vérifiant $a(u_0, v) = \ell(v)$ pour tout $v \in V$. Montrer que $||u_0|| \leq |||\ell|||/\alpha$.
 - (b) Montrer l'inégalité

$$||u - u_0|| \le \frac{M}{\alpha} \inf\{||u - v|| : v \in V\}.$$