Feuille d'exercices numéro 9

Martingales: exercices supplémentaires.

Dans toute la feuille, on travaille sur un espace de probabilités $(\Omega, \mathcal{F}, \mathbf{P})$.

Exercice 1 Loi du 0/1 de Kolmogorov

Soit $(Y_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes. La tribu de queue est

$$\mathscr{T} = \bigcap_{n \in \mathbf{N}} \sigma\left(\left\{Y_k : k > n\right\}\right).$$

En introduisant une martingale, montrer que tout $A \in \mathcal{T}$ vérifie $\mathbf{P}(A) \in \{0, 1\}$.

Exercice 2 Autour de l'uniforme intégrabilité

On rappelle qu'une famille $(X_i)_{i\in I}$ de v.a. intégrables est dite uniformément intégrable (u.i.) si

$$\lim_{t \to \infty} \sup_{i \in I} \mathbf{E} \left[|X_i| \mathbf{1}_{\{|X_i| \geqslant t\}} \right] = 0.$$

- 1. Soit p > 1. Montrer que toute famille bornée dans L^p est u.i..
- 2. Montrer qu'une famille $(X_i)_{i\in I}$ est u.i. si et seulement si elle est bornée dans L^1 et équi-intégrable, i.e. telle que pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que

$$\mathbf{P}(A) \leqslant \eta \Longrightarrow \sup_{i \in I} \mathbf{E}[|X_i|\mathbf{1}_A] \leqslant \varepsilon.$$

- 3. Montrer qu'une suite (X_n) de variables aléatoires converge dans L^1 vers X si et seulement si (X_n) est u.i. et converge en probabilité vers X.
- 4. Soit (X_n) une suite de variables aléatoires u.i.. Montrer qu'il existe une sous-suite $(X_{\sigma(n)})$ qui converge pour la topologie faible de L^1 (réciproquement, le théorème de Dunford-Pettis affirme que les parties u.i. de L^1 sont les parties relativement compactes pour la topologie faible).

Exercice 3 Une preuve du théorème de Radon-Nikodym

On démontre le théorème de Radon–Nikodym dans le cas de la mesure de Lebesgue. Soit μ une mesure finie sur les boréliens de [0,1] absolument continue par rapport à la mesure de Lebesgue λ .

1. Montrer que pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que, pour tout borélien A de [0,1],

$$\lambda(A) < \eta \Longrightarrow \mu(A) < \varepsilon.$$

2. Pour $n \in \mathbb{N}$ et $1 \leq k \leq 2^n$, on note $G_{n,k} = \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right]$ et on définit une v.a. X_n par

$$X_n = \sum_{k=1}^{2^n} 2^n \mu(G_{n,k}) \mathbf{1}_{G_{n,k}}.$$

Montrer que (X_n) est une martingale qui converge p.s.

- 3. Montrer que (X_n) est uniformément intégrable et converge dans L^1 vers une v.a. X.
- 4. Montrer que pour tout borélien A de [0,1], on a

$$\mu(A) = \int_A X \, \mathrm{d}\lambda.$$

Exercice 4 Théorème de Rademacher

On montre par des arguments de martingales le théorème de Rademacher : une fonction lipschitzienne $f:[0,1] \to \mathbf{R}$ est dérivable presque partout. On reprend les notations de l'exercice précédent et on définit une suite (X_n) par

$$X_n = \sum_{k=1}^{2^n} 2^n \left(f\left(\frac{k}{2^n}\right) - f\left(\frac{k-1}{2^n}\right) \right) \mathbf{1}_{G_{n,k}}.$$

- 1. Montrer que X_n est une martingale convergeant p.s. et dans L^1 . On note g sa limite.
- 2. Montrer que pour tous a < b, on a

$$f(b) - f(a) = \int_a^b g \, d\lambda.$$

3. En déduire que f est dérivable en tout point de Lebesgue de g.

Exercice 5 L'indépendance des accroissements et la convergence en loi impliquent la convergence presque sûre

Soit (X_n) une suite de variables réelles indépendantes et $S_n = X_1 + \cdots + X_n$. On suppose que la suite (S_n) converge en loi vers S. On veut montrer qu'alors la suite (S_n) converge presque sûrement. On introduit $\delta > 0$ tel que $|\mathbf{E}[e^{itS}]| \geq 1/2$ pour tout réel $t \in [-\delta, \delta]$ (on utilise le fait que la fonction caractéristique de S est continue en 0).

1. Pour $t \in [-\delta, \delta]$, on introduit la suite

$$M_n^{(t)} := \frac{e^{itS_n}}{\mathbf{E}[e^{itS_n}]}.$$

Montrer qu'il existe un rang déterministe n_0 dépendant de t tel que la suite $(M_n^{(t)})_{n\geq n_0}$ est bien définie et est une martingale complexe vérifiant $|M_n^{(t)}| \leq 3$.

- 2. En déduire que pour tout $t \in [-\delta, \delta]$, la suite (e^{itS_n}) est presque sûrement convergente.
- 3. Montrer que presque sûrement, l'ensemble des $t \in [-\delta, \delta]$ tels que la suite $(e^{itS_n})n \ge 0$ ne converge pas a mesure de Lebesgue nulle.
- 4. Montrer le résultat.

Exercice 6 Théorème des trois séries de Kolmogorov

Soit (X_n) une suite de variables aléatoires indépendantes, et M > 0. On pose $S_n = X_1 + \cdots + X_n$, et $X_n^{[M]} = X_n \mathbf{1}_{|X_n| \leq M}$. On souhaite montrer que (S_n) converge p.s. si et seulement si les trois conditions suivantes sont vérifiées

- (a) La série $\sum \mathbf{P}(|X_n| > M)$ converge.
- (b) La série $\sum \mathbf{E} X_n^{[M]}$ converge.
- (c) La série $\sum \mathbf{Var} X_n^{[M]}$ converge.
- 1. Si on suppose les trois conditions vérifiées, montrer que (S_n) converge p.s.
- 2. Réciproquement, on suppose que (S_n) converge p.s.
 - (i) Montrer (a).
 - (ii) Montrer le résultat suivant : si (Y_n) est une suite de variables aléatoires indépendantes vérifiant $\mathbf{E}Y_n = 0$ et uniformément bornées (au sens $|Y_n| \leq K$ pour une constante K), alors

$$\sum_{n \in \mathbf{N}} Y_n \text{ converge p.s. } \iff \sum_{n \in \mathbf{N}} \mathbf{E} Y_n^2 < +\infty.$$

Indication : écrire la décomposition de Doob de $(Y_1 + \cdots + Y_n)^2$ et considérer le temps d'arrêt $T = \inf\{n : |Y_1 + \cdots + Y_n| \ge c\}$ pour c suffisamment grand.

(iii) Conclure en introduisant $Y_n = X_n^{[M]} - \widetilde{X_n^{[M]}}$, où $(\widetilde{X_n^{[M]}})$ désigne une copie indépendante de $(X_n^{[M]})$.

2