M2 Semigroupes dans les espaces de Banach et applications

Feuille d'exercices numéro 1

Chaînes de Markov à temps continu

Exercice 1 Processus de Poisson

Soit (τ_n) une suite de variables aléatoires i.i.d. de loi exponentielle de paramètre λ . On pose $S_n = \tau_1 + \cdots + \tau_n$, et pour un borélien $A \subset \mathbf{R}$

$$N(A) = \mathbf{card}\{k \geqslant 1 \text{ t.q. } S_k \in A\}.$$

On dit que le processus $(N_t)_{t\geq 0} = N([0,t])_{t\geq 0}$ est un processus de Poisson d'intensité λ .

- 1. Calculer la densité de S_n (on dit que c'est une loi gamma de paramtères (λ, n))
- 2. Montrer que N_t suit une loi de Poisson de paramètre λt .
- 3. Montrer que si s < t, $N_t N_s$ suit une loi de Poisson de paramètre $\lambda(t s)$.
- 4. Montrer que si $t_1 < t_2 < \cdots < t_n$, les variables aléatoires $N_{t_1}, N_{t_2} N_{t_1}, \dots, N_{t_n} N_{t_{n-1}}$ sont indépendantes.
- 5. Montrer plus généralement que si A_1, \ldots, A_n sont des boréliens disjoints de \mathbf{R} , les variables aléatoires $N(A_1), \ldots, N(A_n)$ sont indépendantes, de loi de Poisson de paramètres respectifs $\lambda m(A_1), \ldots, \lambda m(A_n)$ (où m désigne la mesure de Lebesgue sur \mathbf{R}).
- 6. Montrer, que, conditionnellement à l'événement $N_t = n$, les variables aléatoires S_1, \ldots, S_n sont indépendantes et de loi uniforme dans [0, n]
- 7. Soit (Y_n) une suite de variables aléatoires i.i.d à valeurs dans $S = \{1, \ldots, j\}$. On définit

$$N_t^i = \mathbf{card}\{k \geqslant 1 \text{ t.q. } S_k \in A \text{ et } Y_k = i\}$$

Montrer que les processus $(N_t^1)_{t\geqslant 0}, \ldots, (N_t^j)_{t\geqslant 0}$ sont des processus de Poisson indépendants, d'intensités respectives $\lambda \mathbf{P}(Y_1=1), \ldots, \lambda \mathbf{P}(Y_1=j)$.

Exercice 2 Soit (Y_n) une chaîne de Markov à temps discret de matrice de transition P, et (N_t) un processus de Poisson. Quelle est la Q-matrice associée à la chaîne de Markov à temps continu définie par $X_t = Y_{N_t}$?

Exercice 3 Chaînes de Markov sur 2 états Soit la Q-matrice sur l'espace $S = \{0,1\}$ définie par $q(0,1) = -q(0,0) = \beta$, et $q(1,0) = -q(1,1) = \delta$, et (X_t) la chaîne de Markov associée. Pour $i, j \in S$, calculer $\mathbf{P}(X_t = i | X_0 = j)$.

Exercice 4 Chaîne de naissance Soit la Q-matrice sur l'espace $S = \mathbb{N}^*$ définie par q(k, k+1) = -q(k, k) = k (les autres termes étant nuls), et (X_t) la chaîne de Markov associée. Pour $k \leq l$, montrer que

$$p_t(k,l) = \mathbf{P}(X_t = l | X_0 = k) = {l-1 \choose l-k} e^{-kt} (1 - e^t)^{l-k}.$$

Vérifier que $q(k,l) = \frac{d}{dt} p_t(k,l)_{|t=0}$.

Application : une bactérie se divise en deux bactéries identiques au bout d'un temps exponentiel de paramètre 1, et les "enfants" répètent ce processus, indépendemment. S'il y a une seule bactérie au temps 0, quelle est la loi du nombre de bactéries au temps t?

Exercice 5 Soit (X_t) la chaîne de Markov sur ${\bf Z}$ associée à une Q-matrice vérifiant $q(i,i+1) = -\lambda q(i,i)$, $q(i,i-1) = -\mu q(i,i)$, où $\lambda + \mu = 1$ (les autres termes étant nuls). A quelle condition sur λ, μ et (q_i) est-ce que cette chaîne n'explose pas?