M2 Semigroupes dans les espaces de Banach et applications

Feuille d'exercices numéro 4

Systèmes de particules (2)

Dans toute cette, feuille, S désigne un ensemble infini dénombrable, et $\Sigma = \{0,1\}^S$, muni de la topologie produit.

Exercice 1 Vote majoritaire entre voisins

Pour $0 < \delta < 1$, on cherche à modéliser par un systèmes de particules le processus suivant : chaque point $x \in \mathbf{Z}$ représente un électeur, dont l'opinion $\sigma(x)$ peut prendre les valeurs 0 et 1. On suppose que l'opinion de chaque électeur évolue (indépendemment) selon le processus suivant : au bout d'un temps exponentiel de paramètre 1, un électeur regarde quelle opinion est majoritaire parmi la sienne et celles de ses deux voisins. Avec probabilité $1-\delta$ sa nouvelle opinion est l'opinion majoritaire, et avec probabilité δ sa nouvelle opinion est l'opinion minoritaire.

Pour quelles valeurs de δ est-ce que ce processus admet une unique mesure invariante?

Indication : lorsque le système est attractif, on pourra raisonner comme pour le modèle d'Ising stochastique en identifiant la mesure invariante à l'aide d'une chaîne de Markov à deux états.

Exercice 2 Corrélations

On dit qu'une mesure de probabilité μ sur Σ a des corrélations positives si, dès que $f,g\in C(\Sigma)$ sont des fonctions croissantes, on a

$$\int fgd\mu\geqslant \left(\int fd\mu\right)\left(\int gd\mu\right).$$

- 1. Soient μ_1, μ_2 deux mesures de probabilité sur Σ ayant des corrélations positives et vérifiant $\mu_1 \leqslant_{st} \mu_2$. Montrer que pour tout $\alpha \in [0, 1]$, la mesure $\alpha \mu_1 + (1 \alpha)\mu_2$ a des corrélations positives. Peut-on se passer de l'hypothèse $\mu_1 \leqslant_{st} \mu_2$?
- 2. Montrer que toute mesure-produit sur Σ a des corrélations positives.
- 3. Soit (P_t) le semigroupe d'un système de particules attractif, de générateur \mathcal{L} .
 - (a) Montrer que si $f,g \in C(\Sigma)$ sont des fonctions croissantes, on a (lorsque cela a un sens) $\mathcal{L}(fg) \geqslant (\mathcal{L}f)g + g(\mathcal{L}f)$.
 - (b) Montrer que si $f, g \in C(\Sigma)$ sont des fonctions croissantes, on a pour tout $t \ge 0$,

$$P_t(fg) \geqslant (P_t f)(P_t g).$$

Indication: dériver.

- (c) Montrer que si une mesure de probabilité μ sur Σ a des corrélations positives, il en est de même de la mesure μP_t
- (d) Montrer la réciproque de la question (c) : un système de particules (P_t) qui a la propriété que

 μ a des corrélations positives $\Longrightarrow \mu P_t$ a des corrélations positives

est nécessairement attractif.

Exercice 3 Mesures ergodiques et couplage

Soit (P_t) le semigroupe d'un système de particules attractif sur $C(\Sigma)$, et \tilde{P}_t le semi-groupe sur $C(\Sigma \times \Sigma)$ le semigroupe obtenu par couplage de deux copies de (P_t) .

- 1. Soient μ_1, μ_2 deux mesures de probabilités invariantes pour (P_t) . Montrer qu'il existe une mesure de probabilité invariante pour (\tilde{P}_t) qui a pour marginales μ_1 et μ_2 .
- 2. Soient μ_1, μ_2 deux mesures de probabilités ergodiques pour (P_t) . Montrer qu'il existe une mesure de probabilité ergodique pour (\tilde{P}_t) qui a pour marginales μ_1 et μ_2 .
- 3. Montrer que dans les questions 1. et 2., si on suppose que $\mu_1 \leqslant_{st} \mu_2$, alors la mesure μ peut être choisie comme une mesure de couplage (c'est-à-dire à support dans $K = \{(\sigma, \sigma') \text{ t.q. } \sigma \leqslant \sigma'\}$).

Exercice 4 Transition de phase pour le processus de contact

Le processus de contact sur \mathbf{Z}^d , de taux d'infection λ , est décrit par les taux de transition

$$c_{\lambda}(x,\sigma) = \begin{cases} 1 & \text{si } \sigma(x) = 1 \\ \lambda \operatorname{\mathbf{card}} \{ y \sim x \text{ t.q. } \sigma(y) = 1 \} & \text{si } \sigma(x) = 0 \end{cases}$$

On note $\overline{\nu}_{\lambda}$ la mesure invariante maximale pour ce processus. Pour $x_0 \in S$, on pose

$$\rho_d(\lambda) = \overline{\nu}_{\lambda}(\{\sigma \in \Sigma \text{ t.q. } \sigma(x_0) = 1\}).$$

Montrer que cette définition ne dépend pas du choix de x_0 et que la fonction ρ_d est croissante. En déduire l'existence d'une transition de phase, c'est-à-dire d'un nombre $\lambda_c(d) \in (0, +\infty]$ tel que

- Si $\lambda < \lambda_c(d)$, il existe un unique mesure invariante.
- Si $\lambda > \lambda_c(d)$, il existe plusieurs mesures invariantes.

Remarque : on peut montrer que $\lambda_c(d) < +\infty$, mais c'est un résultat plus difficile. On ne connaît pas la valeur de $\lambda_c(d)$, même pour d = 1.