Contrôle Partiel du 8 Novembre 2021

Durée: 1h30

Les documents et les téléphones/calculatrices/ordinateurs sont interdits.

Vous devrez faire attention à rédiger correctement. Toute rédaction incomplète ou imprécise sera sanctionnée même si le raisonnement est correct. N'écrivez pas au crayon à papier.

Exercice 1 - Raisonnement par récurrence (4 points)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par

$$u_0 = 1$$
, $u_1 = -5$ et $\forall n \in \mathbb{N}, u_{n+2} = 5u_{n+1} - 6u_n$.

Démontrer la propriété suivante par récurrence double : $\forall n \in \mathbb{N}, u_n = 8 \times 2^n - 7 \times 3^n$.

Exercice 2 - Fonctions trigonométriques circulaires et hyperboliques (6 points)

On considère la fonction f définie sur \mathbb{R} par $f(x) = \operatorname{ch}(x) \cos(x) + \operatorname{sh}(x) \sin(x)$.

- 1. Dans cette suite de questions, on restreint l'étude de f sur l'intervalle $[-\pi, \pi]$.
 - (a) La fonction f est-elle paire? impaire?
 - (b) Déterminer les points où le graphe de f admet une tangente horizontale. Indice : On montrera que, $\forall x \in [-\pi, \pi], f'(x) = 2\operatorname{sh}(x)\cos(x)$.
 - (c) Déterminer les variations de f sur $[-\pi, \pi]$.
 - (d) En déduire que, pour tout $x \in [-\pi, \pi], -\operatorname{ch}(\pi) \leqslant f(x) \leqslant \operatorname{sh}\left(\frac{\pi}{2}\right)$.
- 2. En exprimant $f(x)^2$ en fonction de $\mathrm{sh}(x), \sin(x), \sin(2x)$ et $\sin(2x)$, montrer que

$$\forall x \in \mathbb{R}, \quad \operatorname{sh}^2(x) - \sin^2(x) \ge -1 - \frac{\operatorname{sh}(2x)\sin(2x)}{2}.$$

Exercice 3 – Somme (3 points)

- 1. Déterminer deux réels a et b tels que $\forall k \in \mathbb{N}^*, \frac{k}{(k+1)!} = \frac{a}{k!} \frac{b}{(k+1)!}$.
- 2. Soit $n \in \mathbb{N}^*$, en déduire la valeur de $\sum_{k=1}^n \frac{k}{(k+1)!}$.

Exercice 4 – Applications (4 points)

Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par $f(x) = x^2 + 2$.

- 1. Déterminer f([0,1]) et f([-3,4]).
- 2. Déterminer $f^{-1}([0,1])$ et $f^{-1}([6,+\infty[)$.
- 3. L'application f est-elle injective?
- 4. L'application f est-elle surjective?

Exercice 5 - Prédicats (3 points)

Montrer que le prédicat "non $(P \Rightarrow Q)$ ou (P et Q)" a les mêmes valeurs de vérité que celles de P.

Exercice 6 – (BONUS) Polynômes et exponentielle (2 points)

Déterminer si l'énoncé suivant est vrai ou faux, en justifiant votre réponse par une démonstration.

Enoncé: il existe un polynôme P tel que $P(x) = e^x$ pour tout x réel.