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Feuille 3 : Bases de logique (correction)

Exercice 3.1

P Q P ⇒ Q non (P ⇒ Q)

0 0 1 0

0 1 1 0

1 0 0 1

1 1 1 0

P Q non Q P ou (nonQ)

0 0 1 1

0 1 0 0

1 0 1 1

1 1 0 1

Exercice 3.2

P Q R non R P ⇒ Q (non R) et P (P ⇒ Q) ou ((non R) et P ))

0 0 0 1 1 0 1

0 0 1 0 1 0 1

0 1 0 1 1 0 1

0 1 1 0 1 0 1

1 0 0 1 0 1 1

1 0 1 0 0 0 0

1 1 0 1 1 1 1

1 1 1 0 1 0 1

Exercice 3.3

1.

P ⇒ (Q⇒ R) équivaut à (non P ) ou (Q⇒ R)

équivaut à (non P ) ou ((non Q) ou R)

équivaut à ((non P ) ou (non Q)) ou R

équivaut à (non(P et Q)) ou R

équivaut à (P et Q)⇒ R

2.

(P ou Q)⇒ R équivaut à non(P ou Q) ou R

équivaut à ((non P ) et (non Q)) ou R

équivaut à ((non P ) ou R) et ((non Q) ou R)

équivaut à (P ⇒ R) et (Q⇒ R)

Exercice 3.4
P ⇒ (Q⇒ (P et Q))

équivaut à (non P ) ou ((non Q) ou (P et Q))
équivaut à ((non P ) ou (non Q)) ou (P et Q).
équivaut à ((non (P et Q)) ou (P et Q).
C’est une tautologie car (non S) ou S l’est.
En conclusion, P ⇒ (Q⇒ (P et Q)) est une tautologie.
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Exercice 3.5
Si tout le monde a les yeux bleus, alors on peut choisir n’importe quelle personne comme étant P ,

l’implication est vérifiée. S’il existe une personne qui n’a pas les yeux bleus, alors on la choisit comme étant
P , et l’implication est vérifiée, puisque l’assertion "P a les yeux bleus" est fausse.

Exercice 3.6
1. ∀x ∈ E , ∃i ∈ S, hi(x) 6 8

2. ∃x ∈ E , ∀i ∈ S, hi(x) > 8. Il existe au moins un étudiant qui se réveille tous les jours après 8 heures.

Exercice 3.7
1. ∃x ∈ E, (x ∈ A et x ∈ B)
2. ∀x ∈ E, (x ∈ A =⇒ x ∈ B)
3. ∃x ∈ E, (x ∈ A et x /∈ B)
4. ∀x ∈ E, x /∈ A

Exercice 3.8 L’ensemble E a une infinité d’éléments car E = [0, 1[. L’ensemble F a un seul élément car
F = {0}.

Exercice 3.9
1. ∀M ∈ R, ∃x ∈ R, |f(x)| > M .
2. « La fonction f est croissante »s’écrit :

∀x1, x2 ∈ R, (x1 6 x2) =⇒ (f(x1) 6 f(x2)).

« La fonction f n’est pas croissante »s’écrit :

∃x1, x2 ∈ R, (x1 6 x2) et (f(x1) > f(x2)).

« La fonction f est décroissante »s’écrit :

∀x1, x2 ∈ R, (x1 6 x2) =⇒ (f(x1) > f(x2)).

Exercice 3.10 Soit Pn la propriété : (un ≤ 3n et un+1 ≤ 3n+1). Montrons cette propriété par récurrence sur
n ∈ N.

— (Initialisation) La propriété P0 est vraie : 1 ≤ 30 et 3 ≤ 31.
— (Hérédité) Soit n ∈ N et supposons Pn vraie. Alors

un+2 = 4un + un+1 ≤ 4.3n + 3n+1 = 7.3n ≤ 3n+2 .

De plus, d’après Pn, un+1 ≤ 3n+1. La propriété Pn+1 est vraie.
— Pour tout n ∈ N, Pn est donc vraie.

Nous avons ainsi démontré que Pn est vraie pour tout n ∈ N.

Exercice 3.11 Soit P (n) : ”un = 3n − 2n+1”. On a :
P (0) : ”u0 = 30 − 21 = −1”.
P (1) : ”u1 = 31 − 22 = −1”.
Donc P (0) et P (1) sont vraies.
Soit n ≥ 2. On suppose P (k) vraie pour tout entier naturel k < n.
On a un = 5un−1 − 6un−2 = 5(3n−1 − 2n)− 6(3n−2 − 2n−1) = 5.3n−1 − 6.3n−2 − 5.2n + 6.2n−1

un = 5.3n−1 − 2.3n−1 − 5.2n + 3.2n = 3.3n−1 − 2.2n = 3n − 2n+1.
Ainsi P (n) est vraie.
En conclusion P (n) est vraie pour tout entier naturel n.

Exercice 3.12 Pour un entier naturel n > 1, désignons par H(n) la propriété

∀m ∈ N, (1 6 m 6 n =⇒ um = 2m−1).

Nous allons la démontrer par récurrence.
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— (Initialisation) La propriété H(1) est vraie car u1 = u0 = 1 = 20 = 21−1.

— (Hérédité) Supposons que H(n) soit vraie pour un certain entier n > 1. Soit m un nombre entier
compris entre 1 et n + 1. Si m 6 n, alors um = 2m−1 en vertu de H(n). Si m = n + 1, alors

um = un+1 =

n∑
k=0

uk = u0 +

n∑
k=1

uk = 1 +

n∑
k=1

2k−1 = 1 +

n−1∑
k=0

2k = 1 + (2n − 1) = 2n = 2m−1.

La propriété H(n + 1) est donc vraie.

Nous avons démontré la propriété H(n) pour tout entier n > 1 ; en particulier, un = 2n−1 pour tout
n > 1.

Exercice 3.13
1. Supposons n > 3 et P (n) vraie. Alors

2n+1 − (n + 1)2 = 2 · 2n − (n + 1)2 > 2n2 − (n + 1)2 = n2 − 2n− 1 > 0

car les racines du trinôme X2− 2X − 1 sont 1−
√

2 et 1 +
√

2, et 1 +
√

2 < 1 + 2 = 3. La propriété P (n+ 1)
est donc démontrée.
2. Les propriétés P (0) et P (1) sont vraies car 20 = 1 > 02 et 21 = 2 > 12. Les propriétés P (2), P (3) et P (4)
sont fausses car 22 = 4 = 22, 23 = 8 < 9 = 32 et 24 = 16 = 42.

La propriété P (5) est vraie car 25 = 32 > 25 = 52. On en déduit que la propriété P (n) est alors vraie
pour tout entier n > 5, en raisonnant par récurrence : la propriété P (5) est vraie (initialisation) et, si P (n)
est vraie pour un certain n > 5, alors P (n + 1) est vraie en vertu de la question précédente (hérédité).

Exercice 3.14 Pour tout entier n > 2, désignons par P (n) la propriété « tout nombre entier m tel que
2 6 m 6 n est un produit de nombres premiers ». Nous allons démontrer que P (n) est vraie pour tout n > 2
en raisonnant par récurrence.

— La propriété P (2) est vraie car 2 est un nombre premier.

— Supposons que P (n) soit vraie pour un certain entier n > 2. Pour démontrer P (n + 1), il suffit de
prouver que n + 1 est un produit de nombres premier. Si n + 1 est premier, c’est vrai. Sinon, nous
pouvons écrire n + 1 = ab avec a, b deux entiers tels que 2 6 a, b 6 n. Chacun des entiers a, b est un
produit de nombres premiers en vertu de P (n), donc leur produit également.
Dans tous les cas de figure, n+1 est un produit de nombres premiers et la propriété P (n+1) est vraie.

La propriété P (n) est donc vraie pour tout nombre entier n > 2. En particulier, tout nombre entier n > 2
est un produit de nombres premiers.

Exercice 3.15
1. On va démontrer le principe des tiroirs en raisonnant par l’absurde. Supposons que cela soit faux. Il existe
n ∈ N tel que l’on puisse ranger n+ 1 paires de chaussettes dans n tiroirs avec au plus 1 paire de chaussettes
dans chaque tiroir. Soit Ti le nombre de chaussettes dans le tiroir i. On compte alors les paires de chaussettes :

n + 1 =

n∑
i=1

Ti 6
n∑

i=1

1 = n

et nous aboutissons à une contradiction. Le principe des tiroirs est donc vrai.
2. Les vingt-six lettres de l’alphabet latin permettent de former 264 + 263 + 262 + 26 = 475 254 mots
différents d’au plus quatre lettres. Donc les 500 000 mots de ce fichiers ne peuvent pas être tous différents
car 475 254 < 500 000.

Exercice 3.16 Soit E l’ensemble des pays et soit f : E → N l’application associant à chaque pays son
nombre de voisins. Notons n = Card(E) le nombre de pays (supposé fini). Puisque chaque pays a au moins
un voisin et au plus n− 1 voisins, l’application f est à valeurs dans l’ensemble {1, . . . , n− 1}. Comme

Card ({1, . . . , n− 1}) = n− 1 < n = Card(E),

l’application f ne peut pas être injective et il existe donc deux pays distincts ayant le même nombre de
voisins.
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Exercice 3.17 Soit n > 1 un entier naturel. On se donne n + 1 nombres réels x0, x1, . . . , xn dans [0, 1]
vérifiant 0 ≤ x0 ≤ x1 ≤ . . . ≤ xn ≤ 1. On veut démontrer par l’absurde la propriété suivante : « deux de ces

réels sont distants de moins de
1

n
».

1. ∃i ∈ J1, nK, xi − xi−1 6
1

n

2. ∀i ∈ J1, nK, xi − xi−1 >
1

n

3. Supposons que la propriété (P) soit fausse, auquel cas xi − xi−1 >
1

n
pour tout i ∈ {2, . . . , n}. En

sommant, on obtient :

xn − x0 =
n∑

i=1

(xi − xi−1) >
n∑

i=1

1

n
= 1 .

Or xn − x0 ≤ 1. Contradiction !

On a donc : ∃i ∈ J1, nK, xi − xi−1 6
1

n
.

Exercice 3.18 Nous allons démontrer l’irrationalité de
√

2 en raisonnant par l’absurde. Supposons donc que√
2 soit un nombre rationnel et écrivons

√
2 =

p

q
avec p, q ∈ N non nuls.

1. Si
√

2 =
p

q
, alors p =

√
2 · q et p2 = 2q2.

2. Soit d le pgcd de p et q. Nous pouvons écrire p = dp′ et q = dq′, où p′ et q′ sont deux entiers premiers

entre eux. Puisque
√

2 =
p

q
=

p′

q′
, nous pouvons remplacer p, q par p′, q′ et donc nous ramener au cas

où p et q sont premiers entre eux. C’est ce que l’on suppose par la suite.
3. L’égalité p2 = 2q2 montre que p2 est pair. On en déduit que p est pair car un nombre entier et son

carré ont la même parité.
4. Comme p est pair, nous pouvons écrire p = 2u. De p2 = 2q2, nous déduisons 4u2 = 2q2 puis q2 = 2u2.

Le nombre entier q est donc pair.
5. Les deux entiers p et q sont pairs. Comme nous avions supposés p et q premiers entre eux, nous avons

abouti à une contradiction.

Le nombre réel
√

2 est donc irrationnel.

Exercice 3.19
1. Si Jules ment, alors ce qu’il dit est faux et donc tous les deux disent la vérité. Ceci est une contradiction,

donc Jules est sincère. Puisque Jules est sincère, ce qu’il dit est vrai et l’un des deux est un menteur ;
comme ce n’est pas Jules, c’est donc Jim.

2. Si Anne est sincère, alors ce qu’elle dit est vrai et toutes les trois sont des menteuses ; en particulier,
Anne est une menteuse et ceci est une contradiction. Anne est donc une menteuse.
Puisque Anne ment, ce qu’elle dit est faux et l’une des trois (au moins) n’est pas une menteuse. Si
Émilie ment, alors ce qu’elle dit est faux et donc au moins deux d’entre elles sont sincères. Comme
Anne ment, il s’agit nécessairement de Charlotte et d’Émilie et nous aboutissons à une contradiction
au sujet de cette dernière. Émilie est donc sincère.
Comme Émilie est sincère, ce qu’elle dit est vrai et une seule des trois est sincère. Il s’agit donc d’Émilie,
ce qui signifie que Charlotte est une menteuse.

Exercice 3.20 (Observations préliminaires) La droite (D1) d’équation x + y = 1 est la droite passant par
les points de coordonnées (0, 1) et (1, 0). La partie P1 est le demi-plan délimité par cette droite et contenant
le point (0, 0).

La droite (D2) d’équation x− y = 1 est la droite passant par les points de coordonnées (0,−1) et (1, 0).
La partie P2 est le demi-plan délimité par cette droite et contenant le point (0, 0).

La droite (D3) d’équation −x+y = 1 est la droite passant par les points de coordonnées (0, 1) et (−1, 0).
La partie P3 est le demi-plan délimité par cette droite et contenant le point (0, 0).

La droite (D4) d’équation −x − y = 1 est la droite passant par les points de coordonnées (−1, 0) et
(0,−1). La partie P4 est le demi-plan délimité par cette droite et contenant le point (0, 0).
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1. La partie P1 ∩P2 est le demi-cône de sommet (1, 0), délimité par les droites (D1) et (D2), et contenant
(0, 0). La partie P3 ∩ P4 est le demi-cône de sommet (−1, 0), délimité par les droites (D3) et (D4), et
contenant (0, 0). La partie (P1 ∩ P2) ∩ (P3 ∩ P4) est le carré plein de sommets (0, 1), (1, 0), (0,−1) et
(−1, 0).

2. On peut observer sur un dessin les relations

(P1 ∪ P2)
c = P c

1 ∩ P c
2 ( (P1 ∩ P2)

c = P c
1 ∪ P c

2 .

Toutes se démontrent facilement en revenant aux définitions des symboles ∩,∪, c.

Exercice 3.21 Les éléments du produit cartésien A × B sont tous les couples (ai, bj) avec 1 6 i 6 3 et
1 6 j 6 4 ; il y en a 3× 4 = 12.

L’ensemble A×B contient 212 = 4 096 parties.

Exercice 3.22
1. P(E) = {∅, {1}, {5}, E}
P(E ∩G) = {∅, {1}}
P(F ∩G) = {∅}
P(E ∪G) = {∅, {1}, {4}, {5}, {1, 4}, {1, 5}, {4, 5}{1, 4, 5}}
2. P(E)× P(F ) = {(∅,∅), (∅, {2}), (∅, {3}), (∅, F ), ({1},∅), ({1}, {2}), ({1}, {3}), ({1}, F ),
({5},∅), ({5}, {2}), ({5}, {3}), ({5}, F ), (E,∅), (E, {2}), (E, {3}), (E,F )}.
P(F × (E ∩G)) = {∅, {(2, 1)}, {(3, 1)}, {(2, 1), (3, 1)}}.
3. L’ensemble P(E) contient quatre éléments, donc P(P(E)) en contient 24 = 16. Les voici :

∅, {∅}, {{1}}, {{5}}, {E}, {∅, {1}}, {∅, {5}}, {∅, E}, {{1}, {5}}, {{1}, E}, {{5}, E},

{∅, {1}, {5}}, {∅, {1}, E}, {∅, {5}, E},P(E).

Exercice 3.23

1. Si a0 /∈ A, alors f(A) = A∪{a0} contient un élément de plus que A et donc Card(f(A)) = Card(A)+1.
Si a0 ∈ A, alors f(A) = A\{a0} contient un élément de moins que A et donc Card(f(A)) = Card(A)−1.
Dans tous les cas de figure, Card(f(A)) et Card(A) sont de parités différentes.

2. Soit A une partie de E. Si a0 /∈ A, alors f(A) = A ∪ {a0} est une partie de E contenant a0 et donc
f(f(A)) = f(A) \ {a0} = A. Si a0 ∈ A, alors f(A) = A \ {a0} est une partie de E contenant a0 et donc
f(f(A)) = f(A) ∪ {a0} = A. Dans tous les cas de figure,

(f ◦ f)(A) = f(f(A)) = A.

3. Nous avons obtenu f ◦f = idP(E) à la question précédente, donc f est une bijection (on peut appliquer
la question 6(c) de l’exercice 2-11, ou bien plus simplement observer que f est sa propre bijection
réciproque).

4. Soit P(E)p l’ensemble des parties de E de cardinal pair et P(E)i l’ensemble des parties de E de cardinal
impair. Puisque f est une bijection telle que f(P(E)p) = P(E)i, l’application f réalise une bijection
entre P(E)p et P(E)i. On en déduit que les deux ensembles finis P(E)p et P(E)i ont le même cardinal,
c’est-à-dire que E contient autant de parties de cardinal pair que de parties de cardinal impair.

Exercice 3.24

1. Pour a ∈ E, f(a) est une partie de E (f(a) ∈ P(E)), en particulier f(a) contient des éléments de E
(important pour comprendre la question suivante).

2. A est une partie de E, et comme f est surjective, on peut par définition lui trouver un antécédent
a par f (c’est à dire que a ∈ E et f(a) = A). Raisonnons par l’absurde : si a ∈ A, cela signifie que
a /∈ f(a). Or f(a) = A, donc a /∈ A, ce qui est aburde. De même si a /∈ A, cela signifie que a ∈ f(a). Or
f(a) = A, donc a ∈ A, ce qui est absurde. On en conclue que notre hypothèse de départ est erronée :
il n’existe pas d’application de E dans P(E) qui soit surjective.
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Exercice 3.25
1. L’ensemble A×B est la partie de E × F formée des couples (e, f) tels que e ∈ A et f ∈ B.
2. Notons x1, x2 deux éléments distincts de E et y1, y2 deux éléments distincts de F . L’ensemble X =
{(x1, y1), (x2, y2)} est une partie de E×F qui n’est pas de la forme A×B avec A ⊂ E et B ⊂ F . On peut le
justifier en raisonnant par l’absurde. Si X = A×B, alors nécessairement A contient x1 et x2 puisque A×B
contient (x1, y1) et (x2, y2) ; de même, B doit contenir y1 et y2. On en déduit alors que A × B contient les
quatre éléments (x1, y1), (x1, y2), (x2, y1) et (x2, y2), ce qui n’est pas le cas.

Exercice 3.26

1. Soit E un ensemble à m éléments et F un ensemble à n éléments. Se donner une partie de E ∪ F
équivaut à se donner une partie X de E et une partie Y de F , puis à considérer X ∪ Y . Autrement
dit, l’application

f : P(E)× P(F )→ P(E ∪ F ), (X,Y ) 7→ X ∪ Y

est une bijection dont la bijection réciproque est l’application

P(E ∪ F )→ P(E)× P(F ), Z 7→ (Z ∩ E,Z ∩ Y ).

Avec les notations précédentes, Card(X ∪Y ) = Card(X)+Card(Y ). Ainsi, le sous-ensemble Pk(E∪F )
des parties à k éléments de E ∪ F est en bijection via f avec la réunion des sous-ensembles Pi(E) ×
Pk−i(F ), avec 0 6 i 6 k. On en déduit l’identité(

n + m

k

)
= Card(Pk(E ∪ F ))

= Card

(
k⋃

i=0

Pi(E)× Pk−i(F )

)

=

k∑
i=0

Card(Pi(E))× Pk−i(F )

=
k∑

i=0

(
n

i

)(
m

k − i

)

2. Il suffit d’appliquer l’identité précédente avec k = m = n et d’utiliser l’égalité
(

n

n− i

)
=

(
n

i

)
.

Exercice 3-101

1. P NAND Q = non(P et Q)

P Q P et Q P NAND Q

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

2. (a) non P = non(P et P ) = P NAND P

(b) P et Q = non(P NAND Q) = (P NAND Q) NAND (P NAND Q)

(c) P ou Q = (non(non P )) ou (non(non Q)) = non
(

(non P ) et (non Q)
)

= (non P ) NAND (non Q) = (P NAND P ) NAND (Q NAND Q)

3. P NOR Q = non(P ou Q)

P Q P ou Q P NOR Q

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0
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(a) non P = non(P ou P ) = P NOR P

(b) P ou Q = non(P NOR Q) = (P NOR Q) NOR (P NOR Q)

(c) P et Q = (non(non P )) et (non(non Q)) = non
(

(non P ) ou (non Q)
)

= (non P ) NOR (non Q) = (P NOR P ) NOR (Q NOR Q)

Exercice 3-102
1. Les parties X de E contenant A sont en bijection avec les parties Y de Ac via l’application

Ψ : P(Ac)→ P(E)

Y 7→ A ∪ Y

Il y a donc 2n−p parties de E contenant A.
2. Les parties de E à m éléments contenant A sont en bijection avec les parties de Ac à m− p éléments ;

il y en a donc
(
n− p

m− p

)
.

3. Les couples (X,Y ) de parties de E telles que X ∩ Y = A sont en bijection avec les couples (X ′, Y ′) de
parties de Ac telles que X ′ ∩ Y ′ = ∅ via l’application

Θ : P(Ac)× P(Ac)→ P(E)× P(E)

(X ′, Y ′) 7→ (A ∪X ′, A ∪ Y ′)

Il y en a donc 3n−p. En effet, si F est un ensemble à m éléments, alors il existe 3m couples (X ′, Y ′)
de parties de F telles que X ′ ∩ Y ′ = ∅. Pour le démontrer, notons Cm le nombre de tels couples et
observons que la condition Y ′∩X ′ équivaut à Y ′ ⊂ X ′

c ; il s’agit donc de dénombrer les couples (X ′, Y ′)
formés d’une partie X ′ de F et d’une partie Y ′ de X ′

c. On en déduit :

Cm =
∑
X′⊂F

Card(P(X ′
c
)) =

∑
X′⊂F

2m−Card(X′) =
m∑
k=0

(
m

k

)
2m−k = (1 + 2)m = 3m.

Exercice 3-103 Cette identité se démontre simplement par récurrence.

— Elle est vraie lorsque n = 0 car u0 = 1 =
21 − 1

20
.

— Soit n ∈ N et supposons la formule vraie pour un. Si n+1 est pair, alors n est impair et un+1 = un +1.
En écrivant n = 2k + 1, l’hypothèse de récurrence permet d’écrire

un+1 = un + 1 =
2k+1 − 1

2k+1
+ 1 =

2k+2 − 1

2k+1

ce qui est bien la formule souhaitée pour n + 1 = 2(k + 1).

Si n + 1 est impair, alors n est pair et un+1 =
un
2
. En écrivant n = 2k, l’hypothèse de récurrence

permet d’écrire

un+1 =
un
2

=
1

2
· 2k+1 − 1

2k
=

2k+1 − 1

2k+1
,

ce qui est bien la formule souhaitée pour n + 1 = 2k + 1.

Exercice 3-104 1. On dénombre ces n-uplets en fonction de la valeur de la coordonnée xp, qui est un nombre
entier compris entre 0 et n :

D(p, n) =
n∑

k=0

Card({(x1, . . . , xp) ∈ Np | x1 + . . . + xp = n et xp = k})

=

n∑
k=0

Card({(x1, . . . , xp−1) ∈ Np−1 | x1 + . . . + xp−1 = n− k})

=

n∑
k=0

D(p− 1, n− k).
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2. On peut déduire de la question précédente l’identité

D(p, n) =

(
n + p− 1

p− 1

)
en raisonnant par récurrence sur p > 1. L’entier n ∈ N est fixé.

— L’équation x1 = n a une unique solution dans N, donc D(n, 1) = 1. Comme
(

1 + p− 1

1− 1

)
= 1, la

formule est démontrée pour p = 1.
— Supposons que la formule soit démontrée pour un certain entier p > 1. D’après la question précédente

et l’hypothèse de récurrence, nous pouvons écrire :

D(p + 1, n) =
n∑

k=0

D(p, n− k) =
n∑

k=0

(
n− k + p− 1

p− 1

)
=

n∑
`=0

(
p− 1 + `

p− 1

)
.

Il s’agit de la somme de tous les coefficients binomiaux situés sur la colonne p−1 du triangle de Pascal,
de la ligne p− 1 à la ligne n + p− 1. On en déduit

D(p + 1, n) =

(
n + p

p

)
en vertu de la formule classique 1

b∑
`=0

(
a + `

a

)
=

(
a + b + 1

a + 1

)
pour tous les entiers naturels a, b.

Exercice 3-105
1. Un élément x de E appartient à A4B si et seulement si x ∈ A∪B — c’est-à-dire x appartient à A ou

B — et x /∈ A ∩B — c’est-à-dire x n’appartient pas à A et B. Cela revient à dire que x appartient à
A \B ou à B \A, donc A4B = (A \B) ∪ (B \A).

2. (Unicité) Si une telle partie X existe, alors X = X4X = ∅ en vertu de la condition appliquée à la
partie A = X.
(Existence) Vérifions que la partie X = ∅ satisfait à notre condition. Pour toute partie A de E,
A4∅ = (A ∪∅)\(A ∩∅) = A\∅ = A.

3. (Unicité) Fixons une partie A de E et supposons que A′ soit une partie de E telle que A4A′ = E.
Alors, par la définition de l’opération 4, nous obtenons A∪A′ = E et A∩A′ = ∅, c’est-à-dire A′ = Ac.
(Existence) Pour toute partie A de E, nous avons immédiatement A4Ac = (A ∪Ac) \ (A ∩Ac) = E.

Exercice 3-106
1. L’implication de gauche à droite est évidente. Pour obtenir l’implication réciproque, il suffit d’observer

que l’on peut écrire A = {x ∈ E | fA(x) = 1}.
2. La condition A ⊂ B équivaut à la condition fA 6 fB.
3. On vérifie immédiatement les identités

fA∩B = fAfB = min{fA, fB}, fA∪B = max{fA, fB} et fAc = 1− fA.

4. On a fA4B = max{fA, fB} −min{fA, fB} = fA + fB − 2fAfB.
5. Si A et X sont deux parties de E, la condition A4X = A se traduit en termes de fonctions caracté-

ristiques par fX + fA − 2fAfX = fA, c’est-à-dire fX(1 − 2fA) = 0. Cette condition est vérifiée pour
toute partie A de E si fX = 0, et c’est la seule possibilité puisqu’on obtient fX = 0 en faisant A = ∅.
Comme 0 = f∅, on retrouve ainsi le résultat de la question 2 de l’exercice précédent.
De manière analogue, la condition A4A′ = E se traduit par fA + fA′ − 2fAfA′ = 1, c’est-à-dire
fA′(1 − 2fA) = 1 − fA. En passant aux valeurs absolues, on en déduit fA′ = 1 − fA = fAc car
|1− 2fA| = 1, donc A′ = Ac.

1. Qui peut se démontrer en raisonnant par récurrence sur b, grâce à l’identité

(
m

j

)
+

(
m

j + 1

)
=

(
m+ 1

j + 1

)
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Exercice 3-107

1. Pour tout n ∈ N, n ≥ 1 on désigne par P (n) la propriété suivante "le nombre d’applications d’un
ensemble de cardinal n dans un ensemble fini B est Card(B)n."
(Initialisation) : Soit A un ensemble de cardinal 1. Alors se donner une application de A dans B revient
à choisir l’image dans B de l’unique élément de A ; il y a Card(B) choix possibles. La propriété P (1)
est donc vraie.
(Hérédité) Soit m ∈ N, m ≥ 1 et supposons P (m) vraie. Soit A un ensemble à m + 1 éléments. Fixons
un élément a0 dans A. Se donner une application de A dans B revient à se donner une application g
de A \ {a0} dans B, puis à choisir l’image b0 de a0 dans B ; il y a Card(B)m choix pour g et Card(B)
choix pour b0, donc il y a au final

Card(B)m · Card(B) = Card(B)m+1

applications de A dans B 2. La propriété P (m + 1) est donc vraie. On en déduit que P (n) est vraie
pour tout entier n ≥ 1.

2. Désignons par {0, 1}E l’ensemble des applications de E dans {0, 1}. L’application

P(E)→ {0, 1}E , A 7→ fA

est une bijection : elle est injective d’après la question 1 de l’exercice précédent, et elle est surjective
car, si f est une application de E dans{0, 1}, alors f = fA avec A = {x ∈ E | f(x) = 1} = f−1(1). On
en déduit

Card(P(E)) = Card
(
{0, 1}E

)
= 2Card(E).

2. Ce calcul de cardinal justifie la notation BA utilisée usuellement pour désigner l’ensemble des applications d’un ensemble
A dans un ensemble B.

9


