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Feuille 3 : Bases de logique (correction)

Exercice 3.1

P|Q|P=@Q | non(P=Q)
0|0 1 0
0|1 1 0
110 0 1
111 1 0
P | Q | non@ | Pou(non@)
0|0 1 1
0|1 0 0
110 1 1
111 0 1

Exercice 3.2
P|Q|R|nnR|P=Q| (nonR) e P|(P=Q) ou ((nonR) et P))
0]01|O0 1 1 0 1
01011 0 1 0 1
0|10 1 1 0 1
0111 0 1 0 1
11010 1 0 1 1
11011 0 0 0 0
11110 1 1 1 1
1 (111 0 1 0 1

Exercice 3.3

1.
P=(Q=R) équivauta (non P)ou (Q = R)
équivaut & (non P) ou ((non Q) ou R)
équivaut & ((non P) ou (non Q)) ou R
équivaut &  (non(P et Q)) ou R
équivaut & (Pet Q)= R
2.

(Pou@®) =R équivaut & non(P ou@)ou R
équivaut &  ((non P) et (non Q)) ou R
équivaut &  ((non P) ou R) et ((non @) ou R)
équivaut & (P = R) et (Q = R)

Exercice 3.4

P=(Q=(Pet Q)
équivaut a (non P) ou ((non @) ou (P et Q))
équivaut a ((non P) ou (non Q)) ou (P et Q).
équivaut a ((non (P et @)) ou (P et Q).
C’est une tautologie car (non S) ou S l'est.
En conclusion, P = (Q = (P et Q)) est une tautologie.



Exercice 3.5

Si tout le monde a les yeux bleus, alors on peut choisir n’importe quelle personne comme étant P,
I'implication est vérifiée. S’il existe une personne qui n’a pas les yeux bleus, alors on la choisit comme étant
P, et I'implication est vérifiée, puisque 'assertion "P a les yeux bleus" est fausse.

Exercice 3.6
1. Ve e &,3ie S hi(x) <8

2. 3z € E,Vi € S, hi(x) > 8. Il existe au moins un étudiant qui se réveille tous les jours aprés 8 heures.

Exercice 3.7

l.dx € B, (x € Aet x € B)
2.VezeE, (re A = x€B)
3.Jx€E, (rcAetx ¢ B)
4. VreEx¢ A

Exercice 3.8 L’ensemble F a une infinité d’éléments car E = [0,1[. L’ensemble F' a un seul élément car
F ={0}.

Exercice 3.9
1.VM eR, xR, |f(z)]> M.
2. « La fonction f est croissante »s’écrit :

Vry,rg € R, (71 < 22) = (f(21) < f(22)).
« La fonction f n’est pas croissante »s’écrit :
dry,20 € R, (21 < 22) et (f(z1) > f(22)).
« La fonction f est décroissante »s’écrit :
Vo, mg € R, (71 <x2) = (f(21) = f(22)).

Exercice 3.10 Soit P, la propriété : (u, < 3" et up4q < 3”“). Montrons cette propriété par récurrence sur
n € N.

— (Initialisation) La propriété Py est vraie : 1 < 30 et 3 < 3L
— (Hérédité) Soit n € N et supposons P,, vraie. Alors

Upsa = dUp + Unp1 < 4.3% 4+ 37T = 7.37 < 3n+2

De plus, d’aprés Py, upy1 < 3"t La propriété P,y est vraie.
— Pour tout n € N, P,, est donc vraie.

Nous avons ainsi démontré que P, est vraie pour tout n € N.

Exercice 3.11 Soit P(n) : "u, = 3" — 2", On a :

P(0) : "ug = 3° — 21 = —17.

P(1):7u; =31 —22 =17,

Donc P(0) et P(1) sont vraies.

Soit m > 2. On suppose P(k) vraie pour tout entier naturel k£ < n.

On a uy, = 5uy_1 — 6,9 = 53" —2") —6(3" 2 -2 1) =53""1 63" 2 52" +6.2"!
up, =5.3""1—23" 1 52" 432" =3.3"1 —2.2" =3" — 2"t

Ainsi P(n) est vraie.

En conclusion P(n) est vraie pour tout entier naturel n.

Exercice 3.12 Pour un entier naturel n > 1, désignons par H(n) la propriété

vmeN, (1<m<n = uy,=2""1).

Nous allons la démontrer par récurrence.



— (Initialisation) La propriété H (1) est vraie car u; = up = 1 = 20 = 2171,

— (Héredité) Supposons que H(n) soit vraie pour un certain entier n > 1. Soit m un nombre entier
compris entre 1 et n 4 1. Si m < n, alors u,, = 2™ en vertu de H(n). Si m = n + 1, alors

n n n n—1
Um =Ups1 =P up=ug+ Y up=1+» 2 1=14Y 2F=14@2"-1)=2"=2"",
k=0 k=1 k=1 k=0

La propriété H(n + 1) est donc vraie.
Nous avons démontré la propriété H(n) pour tout entier n > 1; en particulier, u, = 2"~1 pour tout
n > 1.

Exercice 3.13
1. Supposons n > 3 et P(n) vraie. Alors

2 - (n+ 1) =2-2"— (n+ 1’ > 2~ (n+ 1)’ =0~ 2 ~1>0

car les racines du trinome X2 —2X — 1 sont 1 —v/2 et 14+ V2, et 1 +v2 < 1+ 2 = 3. La propriété P(n+1)
est donc démontrée.
2. Les propriétés P(0) et P(1) sont vraies car 2° = 1 > 0% et 2! = 2 > 12. Les propriétés P(2), P(3) et P(4)
sont fausses car 22 =4 =22, 22 =8 <9 =32 et 2* = 16 = 42.

La propriété P(5) est vraie car 2° = 32 > 25 = 52, On en déduit que la propriété P(n) est alors vraie
pour tout entier n > 5, en raisonnant par récurrence : la propriété P(5) est vraie (initialisation) et, si P(n)
est vraie pour un certain n > 5, alors P(n + 1) est vraie en vertu de la question précédente (hérédité).

Exercice 3.14 Pour tout entier n > 2, désignons par P(n) la propriété « tout nombre entier m tel que
2 < m < n est un produit de nombres premiers ». Nous allons démontrer que P(n) est vraie pour tout n > 2
en raisonnant par récurrence.

— La propriété P(2) est vraie car 2 est un nombre premier.

— Supposons que P(n) soit vraie pour un certain entier n > 2. Pour démontrer P(n + 1), il suffit de
prouver que n + 1 est un produit de nombres premier. Si n 4+ 1 est premier, c¢’est vrai. Sinon, nous
pouvons écrire n + 1 = ab avec a,b deux entiers tels que 2 < a,b < n. Chacun des entiers a, b est un
produit de nombres premiers en vertu de P(n), donc leur produit également.

Dans tous les cas de figure, n+ 1 est un produit de nombres premiers et la propriété P(n+ 1) est vraie.

La propriété P(n) est donc vraie pour tout nombre entier n > 2. En particulier, tout nombre entier n > 2
est un produit de nombres premiers.

Exercice 3.15

1. On va démontrer le principe des tiroirs en raisonnant par ’absurde. Supposons que cela soit faux. Il existe
n € N tel que 'on puisse ranger n+ 1 paires de chaussettes dans n tiroirs avec au plus 1 paire de chaussettes
dans chaque tiroir. Soit T; le nombre de chaussettes dans le tiroir 7. On compte alors les paires de chaussettes :

n+1:iT¢<zn:1:n
=1 =1

et nous aboutissons a une contradiction. Le principe des tiroirs est donc vrai.

2. Les vingt-six lettres de lalphabet latin permettent de former 26* + 26% 4+ 262 + 26 = 475 254 mots
différents d’au plus quatre lettres. Donc les 500 000 mots de ce fichiers ne peuvent pas étre tous différents
car 475 254 < 500 000.

Exercice 3.16 Soit E l’ensemble des pays et soit f : F — N I’application associant & chaque pays son
nombre de voisins. Notons n = Card(E) le nombre de pays (supposé fini). Puisque chaque pays a au moins
un voisin et au plus n — 1 voisins, 'application f est & valeurs dans ’ensemble {1,...,n — 1}. Comme

Card ({1,...,n—1}) =n—1 < n = Card(E),

I’application f ne peut pas étre injective et il existe donc deux pays distincts ayant le méme nombre de
voisins.



Exercice 3.17 Soit n > 1 un entier naturel. On se donne n + 1 nombres réels xg, z1,...,x, dans [0,1]

vérifiant 0 < zg < z1 < ... <z, < 1. On veut démontrer par I’absurde la propriété suivante : « deuz de ces

1
réels sont distants de moins de — ».
n

1
1. Jdi e [1,77,]], Ti— Ti—1 < —
n
1
2. Vie[l,n], x; —xi—1 > —
n
1
3. Supposons que la propriété (P) soit fausse, auquel cas x; — z;—1 > — pour tout ¢ € {2,...,n}. En
n

sommant, on obtient :

Or z,, — 29 < 1. Contradiction!

On a donc : 3 € [1,n], 2; — x;-1 <

S|

Exercice 3.18 Nous allons démontrer l'irrationalité de v/2 en raisonnant par absurde. Supposons donc que

/2 soit un nombre rationnel et écrivons v2 = P avec p,q € N non nuls.
q

1.

2.

. Comme p est pair, nous pouvons écrire p = 2u. De p? = 2¢*, nous déduisons 4u? = 2¢* puis ¢* = 2u>.

Si\@zg,alorsp:\@-qetp2:2q2.
q

Soit d le pged de p et ¢. Nous pouvons écrire p = dp’ et ¢ = dq’, ou p’ et ¢’ sont deux entiers premiers

t Pui Va=2_F 1 ¢ et d
entre eux. Puisque i nous pouvons remplacer p,q par p’,q et donc nous ramener au cas

ou p et ¢ sont premiers entre eux. C’est ce que 'on suppose par la suite.

. Légalité p? = 2¢® montre que p? est pair. On en déduit que p est pair car un nombre entier et son

carré ont la méme parité.
2

Le nombre entier ¢ est donc pair.

. Les deux entiers p et g sont pairs. Comme nous avions supposés p et ¢ premiers entre eux, nous avons

abouti & une contradiction.

Le nombre réel v/2 est donc irrationnel.

Exercice 3.19

1.

Si Jules ment, alors ce qu’il dit est faux et donc tous les deux disent la vérité. Ceci est une contradiction,
donc Jules est sincére. Puisque Jules est sincére, ce qu’il dit est vrai et I'un des deux est un menteur;
comme ce n’est pas Jules, c’est donc Jim.

. Si Anne est sincére, alors ce qu’elle dit est vrai et toutes les trois sont des menteuses; en particulier,

Anne est une menteuse et ceci est une contradiction. Anne est donc une menteuse.

Puisque Anne ment, ce qu’elle dit est faux et l'une des trois (au moins) n’est pas une menteuse. Si
Emilie ment, alors ce qu’elle dit est faux et donc au moins deux d’entre elles sont sincéres. Comme
Anne ment, il s’agit nécessairement de Charlotte et d’Emilie et nous aboutissons & une contradiction
au sujet de cette derniére. Emilie est donc sincére.

Comme Emilie est sincére, ce qu’elle dit est vrai et une seule des trois est sincére. Il s’agit donc d’Emilie,
ce qui signifie que Charlotte est une menteuse.

Exercice 3.20 (Observations préliminaires) La droite (D) d’équation x + y = 1 est la droite passant par

les points de coordonnées (0, 1) et (1,0). La partie P; est le demi-plan délimité par cette droite et contenant
le point (0,0).

La droite (D9) d’équation  —y = 1 est la droite passant par les points de coordonnées (0,—1) et (1,0).
La partie P est le demi-plan délimité par cette droite et contenant le point (0,0).

La droite (D3) d’équation —z +y = 1 est la droite passant par les points de coordonnées (0,1) et (—1,0).
La partie P3 est le demi-plan délimité par cette droite et contenant le point (0,0).

La droite (D4) d’équation —z —y = 1 est la droite passant par les points de coordonnées (—1,0) et
(0, —1). La partie Py est le demi-plan délimité par cette droite et contenant le point (0,0).



1. La partie Py N P, est le demi-cone de sommet (1,0), délimité par les droites (D;) et (Dz), et contenant
(0,0). La partie P3N Py est le demi-cone de sommet (—1,0), délimité par les droites (D3) et (Dy), et
contenant (0,0). La partie (Py N P2) N (P3N Py) est le carré plein de sommets (0, 1), (1,0), (0,—1) et
(_L O)

2. On peut observer sur un dessin les relations
(P1 UPQ)C = PfﬂPQC - (P1 ﬁPg)C = PlcUPQC

Toutes se démontrent facilement en revenant aux définitions des symboles N, U, .

Exercice 3.21 Les éléments du produit cartésien A x B sont tous les couples (a;, b;) avec 1 < i < 3 et
1<j<4;ilyenadx4=12.
L’ensemble A x B contient 2'2 = 4 096 parties.

Exercice 3.22

1. P(E) ={2,{1},{5}, E}

P(ENG) ={2,{1}}

P(FNG)={o}

P(EUG) ={2,{1} {4}, {5}, {1,4},{1,5},{4,5}{1,4,5}}

2. P(E) x P(F) ={(9,2),(2,{2}), (&,{3}), (&, F), ({1}, 2), ({1},{2}), {1}, {3}), {1}, F),
({5}, 2), ({5}, {2}), ({5}, {3}), ({5}, F), (E, @), (E,{2}), (E, {3}), (E, F)}.

PEx(ENG)) ={2.{(2,1)}{B, D} {(2,1),3,1)}}.

3. L’ensemble P(F) contient quatre éléments, donc P(P(E)) en contient 2* = 16. Les voici :

o {a}, {13}, {53} {E} {2, {1}}, {2, {5}}. {2, B}, {{1}, {5}}, {{1}, £}, {{5}, B},
{2.{1}, {5}}, {2, {1}, B}, {2, {5}, E}, P(E).

Exercice 3.23

1. Siag ¢ A, alors f(A) = AU{ap} contient un élément de plus que A et donc Card(f(A)) = Card(A)+1.
Siag € A, alors f(A) = A\{ap} contient un élément de moins que A et donc Card(f(A)) = Card(A)—1.
Dans tous les cas de figure, Card(f(A)) et Card(A) sont de parités différentes.

2. Soit A une partie de E. Si ag ¢ A, alors f(A) = AU {ag} est une partie de E contenant ag et donc
f(f(A) = f(A)\{ao} = A. Siag € A, alors f(A) = A\ {ap} est une partie de E contenant ag et donc
f(f(A)) = f(A) U{ap} = A. Dans tous les cas de figure,

(f o F)(A) = f(f(4)) = A.

3. Nous avons obtenu fo f = idp(g) & la question précédente, donc f est une bijection (on peut appliquer
la question 6(c) de l'exercice 2-11, ou bien plus simplement observer que f est sa propre bijection
réciproque).

4. Soit P(E), 'ensemble des parties de E de cardinal pair et P(E); 'ensemble des parties de E de cardinal
impair. Puisque f est une bijection telle que f(P(E),) = P(E);, I'application f réalise une bijection
entre P(E), et P(E);. On en déduit que les deux ensembles finis P(E), et P(E); ont le méme cardinal,
c’est-a-dire que E contient autant de parties de cardinal pair que de parties de cardinal impair.

Exercice 3.24

1. Pour a € E, f(a) est une partie de E (f(a) € P(FE)), en particulier f(a) contient des éléments de E
(important pour comprendre la question suivante).

2. A est une partie de E, et comme f est surjective, on peut par définition lui trouver un antécédent
a par f (c’est a dire que a € F et f(a) = A). Raisonnons par l'absurde : si a € A, cela signifie que
a¢ f(a). Or f(a) = A, donc a ¢ A, ce qui est aburde. De méme si a ¢ A, cela signifie que a € f(a). Or
f(a) = A, donc a € A, ce qui est absurde. On en conclue que notre hypothése de départ est erronée :
il n’existe pas d’application de E dans P(F) qui soit surjective.



Exercice 3.25

1. L’ensemble A x B est la partie de E x F formée des couples (e, f) tels que e € A et f € B.

2. Notons 1,z deux éléments distincts de E et g1,y deux éléments distincts de F. L’ensemble X =
{(z1,y1), (z2,y2) } est une partie de E' x F' qui n’est pas de la forme A x B avec A C E et B C F. On peut le
justifier en raisonnant par ’absurde. Si X = A x B, alors nécessairement A contient 1 et x5 puisque A x B
contient (z1,y1) et (z2,y2); de méme, B doit contenir y; et y2. On en déduit alors que A x B contient les
quatre éléments (x1,y1), (21, y2), (x2,91) et (x2,y2), ce qui n’est pas le cas.

Exercice 3.26

1. Soit E un ensemble & m éléments et F' un ensemble & n éléments. Se donner une partie de £ U F
équivaut a se donner une partie X de E et une partie Y de F, puis a considérer X UY. Autrement
dit, I'application

f:PE)xPF)—-PEUF), (X,)Y)—XUY
est une bijection dont la bijection réciproque est ’application
P(EUF)—PE)XxP(F), Z— (ZNE,ZNY).
Avec les notations précédentes, Card(X UY') = Card(X) + Card(Y"). Ainsi, le sous-ensemble Py (E U F)

des parties & k éléments de E'U F est en bijection via f avec la réunion des sous-ensembles P;(E) x
Pr—i(F), avec 0 < i < k. On en déduit 'identité

<" ; m) = Card(Py(EUF))

k
= Card (U Pi(E) x Pki(F)>

=0

k
= Z Card(P;(FE)) x Pr_i(F)
i=0

S BN

n n
2. 11 suffit d’appliquer I'identité précédente avec k = m = n et d’utiliser 1’égalité < ) = < )
n—1

Exercice 3-101
1. P NAND Q = non(P et Q)

PlQ[Pet Q| PNAND Q
00 0 1
01 0 1
10 0 1
11 1 0

2. (a) non P =non(P et P) = P NAND P
(b) P et Q = non(P NAND Q) = (P NAND Q) NAND (P NAND Q)
(¢) P ou @ = (non(non P)) ou (non(non Q)) = non((non P) et (non Q))
= (non P) NAND (non Q) = (P NAND P) NAND (@ NAND Q)
3. P NOR Q = non(P ou Q)

P|Q|Pou@ | PNORQ
010 0 1
0|1 1 0
110 1 0
111 1 0




(a) non P =non(P ou P) = P NOR P

(b) P ou @ =non(P NOR Q) = (P NOR @) NOR (P NOR Q)

(¢) P et @ = (non(non P)) et (non(non Q)) = non((non P) ou (non Q))
= (non P) NOR (non @) = (P NOR P) NOR (@ NOR Q)

Exercice 3-102

1. Les parties X de E contenant A sont en bijection avec les parties Y de A€ via 'application

U :P(A°) — P(E)
Y — AUY

Il y a donc 2P parties de E contenant A.

2. Les parties de E a m éléments contenant A sont en bijection avec les parties de A° & m — p éléments ;
| ( . p)
il y en a donc .

m-—p
3. Les couples (X,Y) de parties de E telles que X NY = A sont en bijection avec les couples (X', Y") de
parties de A telles que X’ NY' = @ via 'application

0 : P(A°) x P(A°) — P(E) x P(E)
(X' Y= (AUX' S AUY)

Il y en a donc 3"7P. En effet, si F est un ensemble & m éléments, alors il existe 3™ couples (X', Y”)
de parties de F telles que X' NY’ = @. Pour le démontrer, notons C,, le nombre de tels couples et
observons que la condition Y'N X’ équivaut a Y’ € X'“; il s’agit donc de dénombrer les couples (X', Y”)
formés d’une partie X’ de F et d’une partie Y’ de X’°. On en déduit :

Cm = Z Card(P(X'9)) = Z gm—Card(X') _ i <7Z> om=k — (14 2)™ = 3™,

X'CcF X'CF k=0

Exercice 3-103 Cette identité se démontre simplement par récurrence.
2 —1
20 7
— Soit n € N et supposons la formule vraie pour u,,. Si n+ 1 est pair, alors n est impair et u,+1 = u, + 1.
En écrivant n = 2k 4 1, ’hypothése de récurrence permet d’écrire

— Elle est vraie lorsque n =0 car ug =1 =

2k+1 -1 2k+2 -1
Un+1:Un+1:W‘|‘ :W
ce qui est bien la formule souhaitée pour n + 1 = 2(k + 1).
U
Si n+ 1 est impair, alors n est pair et uy,11 = ?n En écrivant n = 2k, I’hypothése de récurrence

permet d’écrire
Up, 1 2k+1 -1 _ 2k+1 -1

Up+1 = 7 = 5 ok = ok+1

ce qui est bien la formule souhaitée pour n + 1 =2k + 1.

Exercice 3-104 1. On dénombre ces n-uplets en fonction de la valeur de la coordonnée x,,, qui est un nombre
entier compris entre 0 et n :

D(p,n) = ZCard({(a;l,...,afp) eENP |z +...+xp=neta,=k})
k=0

= ZCard({(ﬁ,...,xp,l) eNP gy 44wy =n—k})
k=0

= ZD(p— 1,n—k).
k=0



2. On peut déduire de la question précédente I'identité
n+p—1
p—1

en raisonnant par récurrence sur p > 1. L’entier n € N est fixé.

D(p,n) = (

1 -1
— L’équation £; = n a une unique solution dans N, donc D(n,1) = 1. Comme < —i—p 1 ) =1, la
formule est démontrée pour p = 1.

— Supposons que la formule soit démontrée pour un certain entier p > 1. D’aprés la question précédente
et ’hypothése de récurrence, nous pouvons écrire :

D(p+1,n):ép(p,n—k):i<n_kff_l) :i<p—1—|—€>‘

k=0 p — N P~ 1

1l s’agit de la somme de tous les coefficients binomiaux situés sur la colonne p — 1 du triangle de Pascal,
de la ligne p — 1 a la ligne n + p — 1. On en déduit

D(p+1,n) = <n;p)

en vertu de la formule classique !
Zb: <a+£> B <a+b+1>
e a a+1

pour tous les entiers naturels a, b.

Exercice 3-105

1. Un élément x de E appartient & AAB si et seulement si x € AU B — c’est-a-dire x appartient a A ou
B —et x ¢ AN B — c’est-a-dire x n’appartient pas & A et B. Cela revient a dire que x appartient a
A\ BouaB\ A, donc AAB=(A\B)U(B\ A).

2. (Unicité) Si une telle partie X existe, alors X = XAX = @& en vertu de la condition appliquée a la
partie A = X.

(Existence) Vérifions que la partie X = o satisfait a notre condition. Pour toute partiec A de E,
AN = (AU@)\(AN©)=A\o = A.

3. (Unicité) Fixons une partie A de E et supposons que A’ soit une partie de E telle que ANA" = E.
Alors, par la définition de I'opération /\, nous obtenons AUA’ = E et ANA' = @, c’est-a-dire A’ = A°.
(Existence) Pour toute partie A de E, nous avons immeédiatement AAA® = (AU A°)\ (AN A°) = E.

Exercice 3-106

1. L’implication de gauche & droite est évidente. Pour obtenir I'implication réciproque, il suffit d’observer
que l'on peut écrire A = {x € F | fa(x) = 1}.

2. La condition A C B équivaut a la condition f4 < fp.

3. On vérifie immédiatement les identités
fane = fafp =min{fa, f}, faup =max{fa, fB} et fac=1- fa.

4. On a fAAB = max{fA, fB} — min{fA, fB} = fA + fB — 2fAfB-

5. Si A et X sont deux parties de F, la condition AAX = A se traduit en termes de fonctions caracté-
ristiques par fx + fa — 2fafx = fa, c’est-a-dire fx(1 —2f4) = 0. Cette condition est vérifiée pour
toute partie A de F si fx =0, et c’est la seule possibilité puisqu’on obtient fx = 0 en faisant A = &.
Comme 0 = fg, on retrouve ainsi le résultat de la question 2 de 'exercice précédent.

De maniére analogue, la condition AANA" = E se traduit par fa + fa — 2fafar = 1, c’est-a-dire

far(1 —2f4) = 1 — fa. En passant aux valeurs absolues, on en déduit far = 1 — f4 = faec car
|1 —2fa| =1, donc A" = A°.

1
1. Qui peut se démontrer en raisonnant par récurrence sur b, grace a 'identité <m> + < ) T 1) = <m:—1 )
J J J
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Exercice 3-107

1. Pour tout n € N, n > 1 on désigne par P(n) la propriété suivante "le nombre d’applications d’un
ensemble de cardinal n dans un ensemble fini B est Card(B)"."

(Initialisation) : Soit A un ensemble de cardinal 1. Alors se donner une application de A dans B revient
a choisir I'image dans B de I'unique élément de A; il y a Card(B) choix possibles. La propriété P(1)
est donc vraie.

(Hérédité) Soit m € N, m > 1 et supposons P(m) vraie. Soit A un ensemble & m + 1 éléments. Fixons
un élément ag dans A. Se donner une application de A dans B revient a se donner une application g
de A\ {ap} dans B, puis a choisir I'image by de ag dans B; il y a Card(B)™ choix pour g et Card(B)
choix pour by, donc il y a au final

Card(B)™ - Card(B) = Card(B)™*!

applications de A dans B2 La propriété P(m + 1) est donc vraie. On en déduit que P(n) est vraie
pour tout entier n > 1.

2. Désignons par {0,1}% Pensemble des applications de E dans {0,1}. L’application
P(E) — {07 1}E7 A fA

est une bijection : elle est injective d’aprés la question 1 de l'exercice précédent, et elle est surjective
car, si f est une application de E dans{0,1}, alors f = f4 avec A = {x € E | f(z) =1} = f~'(1). On
en déduit

Card(P(E)) = Card ({0,1}¥) = 2Card(£),

2. Ce calcul de cardinal justifie la notation B* utilisée usuellement pour désigner ’ensemble des applications d’'un ensemble
A dans un ensemble B.



