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Feuille 10. Dérivabilité

Exercice 10-1 Pour chacune des fonctions f définies ci-dessous, calculer la fonction dérivée f’ :

1
1) 2* 4326 2) 627/ +42°% — 21 3) V3x+ Vr+ - 4) z(x + 3)e”
T
5) 41 6) vVi+ax 7 Inz ) sinx
x2—x—2 14+ x3 1+ cosx
9) Va2+z+1 10) sin(cos(3z)) 11) In(sin® ) 12) =%
13) (1 —2)"* 14) In(|2z|) 15) e*m® 16) 2™®
Réponse :
1. 42° + 62
2. 212°% + 1022 - 2
3. ; + lx_Q/g _ 1

23z 3 x?
4. (2 + 51+ 3)e”
xt — 223 — 62% — 2z + 1
(22 —x — 2)?
6 vl
2v/aVT+ a(1 4 /2)?

1—-3lnz

[E
1

8 —

1+ cosx

9. 1/3(z®> + 2 +1)"232x + 1)
10. —3cos(cos(3z)) sin(3z)
2cosx

11. =
SN T

12. —2z¢™

13. —7/3(1 — z)*/3

14. 1/z

15. e*™24m

16. —1In(2)2"®

@

SHE

Exercice 10-2 Déterminer a,b € R tels que la fonction f définie sur R par :

f(x):{\/}, si0<az<l,

ar? +br+1, siz>1,
soit dérivable sur R™*.

Réponse : La fonction est continue et dérivable sur ]0, 1] et sur |1, +oo[. Le seul probléme est = 1.

la fonction f est continue en x = 1 si et seulement si lim f(x) = 1im+ flz)=f(1),ie.1=a+b+1,
r—1- z—1



i.e. a+b=0. Alors, f est dérivable si et seulement si ses dérivées a droite et a gauche en 1 existent

— f(1 — f(1
et sont égales, i.e. lim M = lim M, i.e. — = 2a+b. Finalement, f est dérivable
z—1— rz—1 z—1t T — 11 2 1 1
sur |0, +00[ si et seulement si a +b =0 et 2a + b = 2 le.a= 3 et b= —3

Exercice 10-3

1. Etudier la continuité et la dérivabilité de la fonction f de R vers R définie par :

e’ —ux, siz <0,
f(aj) — Coszgg:;:)’ si0 S xr S 17 (2)
14+ —, sixz>1.
x

2. Méme question avec : f(x) = +/|z| .

Réponse : (1) La fonction est continue en dehors de 0 et 1 parce que chaque point x de R\ {0, 1}
appartient & un intervalle ouvert sur lequel f est définie de maniére unique et par une fonction

' nw : . : X
continue, en I'occurrence par ¢* — z ou cos®*(mx) ou 1 + ——. Elle est continue & droite en 0 et &
x

gauche en 1 parce que la définition de la fonction en ces points est donnée par cos?(7z). Comme

1
lim e* —x = 1= f(0), elle est aussi continue a gauche en 0 et comme 1im+ 1+ o= f(1) elle
z—0~ z—1 i

est aussi continue a droite en 1. Elle est donc partout continue.
Pour z < 0, f est dérivable de dérivée f'(z) =e® — 1. Pour 0 < z < 1, f est dérivable de dérivée

1-1
f'(z) = =27 cos(mx) sin(wz). Pour x > 1, f est dérivable de dérivée f'(x) = 21136_
x
2 2
— - —1
En o tim L8 =IO oy T g g LB SO gy oo =L
z—0~ T z—0~ 2T z—0t+ x z—0t T

_ 2
lim (mx)*(cos(mz) + 1)
z—07F 2x

= 0. La fonction f est donc dérivable en O de dérivée f'(0) = 0.

— f(1 2 -1 2 -1 — 2 1
Ensuite lim L0 =S _ g oot m) =1y, eost(my) =1y, —(my) (eos(my) + 1)
rz—1~ r—1 r—1— r—1 y—0— Yy y—0— 2y
— f(1 1 1 1
0 et lim M — lim —% _ — lim M = 1. Donc f admet une dérivée a droite et
a1t x—1 et x(x —1)  y=ot y(y+1)

une dérivée a gauche en 1 mais n’est pas dérivable.
(2) La fonction f est continue en tout point de R puisqu’elle est la composée de deux fonctions
continues sur R, en l'occurrence ,/ et | |.
Elle est dérivable en tout point de R\ {0} car chaque réel non nul appartient & un intervalle
ouvert sur lequel f est définie par z — v/z pour > 0 et z — /—z pour = < 0.
NI

v—r—0 x -0

En 0, lim — = lim £ = —o00, tandis que lim VT = lim — = 4o00. Par
z—0- x —0 z—0t —2 z—0+t x —0 z—=0t X

conséquent, f n’est pas dérivable en 0; elle ne 'est pas & gauche ni a droite non plus.

Exercice 10-4 Préciser pour chacune des fonctions suivantes de R vers R en quels points elles sont
dérivables, dérivables & droite, dérivables & gauche, et les valeurs de leurs dérivées, dérivées a droite,
dérivées a gauche.

1. f(x) = cos(cosx).
2. g(x) =1+ cosz.
3. h(xz) =+/|sinz|.

Réponse :

1. La fonction cosz est dérivable sur R donc f(z) est aussi dérivable sur R de dérivée f'(z) =
sin(cos x) sin(x).



2. La fonction g est périodique de période 2. En dehors de 7, g est dérivable de dérivée ¢'(z) =
—sinz

21+ cosz

) . V14cosx . /1 —cos ) 1

Pour les valeurs supérieures en 7, lim ——— = lim V2T i M = —. Ce
z—nt r—T y—0~t Y y—0T \/ﬁy \/§

qui donne la valeur de la dérivée a droite. Par contre en 7~ on obtiendra 7 ce qui donne

la valeur de la dérivée a gauche. Par conséquent, g n’est pas dérivable en 7. Elle ne I'est qu’a
gauche et & droite. Par périodicité, le méme manque de dérivabilité existe en tout point de R
de la forme (2k + 1)7.

3. La fonction h(x) est périodique de période w. Comme sin z est partout dérivable, que |z| est
dérivable en dehors de 0, et que /= est dérivable sur R?*, la fonction h(zx) est dérivable sur

cos T
0, w[ de dérivée h'(z) = .
10, (z) 2sinx
o o _h(x) 1
Par contre en 0, A n’est ni dérivable & droite, ni & gauche, car lim ——= = lim — n’est pas
z—0t X =0T /T

finie. Un raisonnement symétrique donne la méme conclusion en 0~. Ce raisonnement s’étend
sur R par périodicité et h n’est pas dérivable en kxm pour tout k € Z.

Exercice 10-5 Soit f la fonction réelle d'une variable réelle définie par :

f R — R

—1 /22 i
N x‘—i—exp( Jx?), s%x>0
sin x, six <0

1. Montrer que f est dérivable en tout point x de R* en calculant sa dérivée.
2. f est-elle dérivable en 07
3. [ est elle continue en 07

4. f est-elle deux fois dérivable en 07

Réponse :

1. Tout d’abord, f est continue sur R* parce que chaque point de cet ensemble appartient & un
intervalle ouvert sur lequel f est uniquement définie comme composition de fonctions simples,
continues sur cet intervalle. Ensuite, comme lim+x + exp(—1/2%) = 0 = f(0) elle est aussi

z—0

continue en 0.
[ est dérivable sur R*, de dérivée f'(z) = 1+ 2/2°exp(—1/2?), et aussi sur R* de dérivée

f'(z) = cos .
2. On a lim J@) = /) = lim 1+ 1/zexp(—1/2%) =1 et lim J@) = /) = lim —F
a—0t . —0 z—0+ a—0- = —0 z—0- T

Donc f est dérivable en 0 et f'(0) = 1.

3. Comme lim+ 1+ 2/2% exp(—1/2?) =1 et lim cosx = 1, f’ est continue en 0, et donc continue
z—0 z—0~

= 1.

sur R.
4. On a lim M
r—0Tt x—0

0, ot f est deux fois dérivable en 0, et f”(0) = 0.

"(z) — f'(0) cosz — 1
= lim 2/z* —1/22)=0et 1 M:y i
S 2/ exp(=1/e7) =0 et lim =2 = lim =

Exercice 10-6 Soit n € N. On définit f,, : R — R par

~ Jamsin(1/z), siz#0
f”(x)_{o, Siz=0

1. Pour quelles valeurs de n, f, est-elle continue ?



2. Pour quelles valeurs de n, est-elle f, dérivable?
3. Pour quelles valeurs de n, est-elle f/ continue?

4. Pour quelles valeurs de n, est-elle f dérivable?

Réponse :
1. Comme sin est une fonction bornée, on a lin% fo(x) = 0 si n # 0. Par contre liII(l) sin(1/x)
T— T—>

n’existe pas. Vérifions-le en utilisant deux suites de nombres (ay) et (b).

1
ap = ———— et by = ————.
g —5 + 2km ¥ 5+ 2km
Pour tout & € N, on a fy(ay) = =1 —— —1 et fo(br) =1 —— 1 avec a;, et by convergeant
k——+o0 k—+o0

vers 0, donc la limite de fy en 0 ne peut exister. Ainsi f, est continue sur R si et seulement si
n > 1.

2. En dehors de 0, f, est dérivable, de dérivée f (z) = nz™ 'sin(1/x) — 2" *cos(1/x). En 0 on
a lim In(@) = 1n(0)

z—0 xr —

auquel cas f!(0) = 0.

= liII(l) 2" sin(1/z). Ainsi f est dérivable en 0 si et seulement si n > 2,
xT—r

3. On a lin%) fr(z) = lin(l) na™ 'sin(1/z) — 2" % cos(1/x) = 0 seulement si n > 3, car quand n = 2,
z—> T—

lin% cos(1/x) n’existe pas, une conclusion a laquelle on peut aboutir par la méme méthode que
T—>

la non existence de la limite de sin(1/x) en 0. Donc f;, est continue si et seulement si n > 3.

/ Y,
4. fl est dérivable en dehors de 0. On a lim Ju(®) = 1,(0) = lim nz" ?sin(1/x) — 2" cos(1/x)
z—0 rz—0 z—0

et donc f] est dérivable en 0 si et seulement si n > 4.

Exercice 10-7 Appliquer le théoréme des accroissements finis pour démontrer les inégalités sui-
vantes :

1. |sinz| < |z| pour > 0;
2. In(1+4z) <z pour z > 0.

Réponse :

1. On considére f(t) = sint sur [0, z]. La fonction f est continue sur [0, z] et dérivable sur |0, z,
fz) = f(0)

par le théoréeme des accroissements finis il existe ¢ €]0, z[ telle que f'(c) = 5
T —

. Donc,
| cos(c)(x — 0)] = |sinz|. Puisque |cosc| <1 on a |sinz| < |z|.

2. Cette fois si on considére f(t) = In(1 + t) sur [0,z], « > 0. La fonction f est continue sur

[0, 2] et dérivable sur ]0, [, par le théoréme des accroissements finis il existe ¢ €]0, z[ telle que
In(l1+2)—-In1 1
z—0 14

T
.D In(1 =—<
- Donc n(l+z) 172

Exercice 10-8

1. Montrer que pour tous réels a et b avec 0 < a < b :

b_a< tan b t <b_a
—_— arctan o — arctan a .
1402 2

+a

2. En déduire que :

7T+3< ¢ 4 <7r+1
-+ — rctan | — -+ -
4 Ty S MM 3 S T



Réponse :
1. La fonction arctan est continue et dérivable sur R. Le théoréme des accroissements finis montre
alors qu’il existe ¢ €a, b[ tel que

arctan b — arctan a = arctan’ ¢(b — a)

1 - 1 - 1
14+062 14+c¢2  1+a2

1 . }
Comme arctan’ z = ——— est strictement décroissante sur R* on a
1+ 22 *
T
d’ou le résultat.

2. 1l suffit d’écrire I'encadrement précédent pour a = 1 et b = 4/3.

Exercice 10-9

1. Montrer que pour tous réels x et y : |cosy — cosz| < |y — z|.

2. Montrer que pour tous réels x et y tels que z # y : |cosy — cosz| < |y — z.

Réponse :

1. La fonction cosx est continue et dérivable sur R. Par conséquent, si = # y, disons x < y sans
perte de généralité, le théoréme des accroissements finis nous montre qu'il existe ¢ €]z, y[ tel
que

cos(z) —cos(y) = cos'(c)(x—y) = (—sin(c))(z —y)
En valeur absolue, on obtient

[cos() —cos(y)] = lcos'()lle—yl < Jx—y| .

parce que —1 <sin(c) < 1. Si z = y, bien sir I'inégalité large reste vraie.
2. On essaye d’affiner I'inégalité du premier point. Sans perte de généralité, on supposera x < y.
Il y a deux cas a considérer. Dans le premier il n’existe pas de k € Z tel que z < 5 < y. Sous

cette hypothése, pour tout ¢ €lx,y[, | cos(c)| < 1. Par conséquent, I'inégalité qui découle du
théoréme des accroissements finis devient

| cos(z) —cos(y)] = [cos'(O)llx —y| < [z—y| .

Mettons-nous maintenant dans le cas contraire. Comme l'intervalle |x,y[ est borné il existe
s
k € 7Z tel que x < E—i-kmgy. Alors,

| cos(x) — cos(y)| = |cos(x)— cos(g + km) + cos(g + km) — cos(cos(y)|
= [cos(x) = 0] + [0 — cos(y)|

< Jeos'(¢)||z — (g + k)| + | cos'(c1)| cos(g + k) —yl.

T T
Comme z < y, soit x < 3 + ki, soit 3 + km < y. Respectivement, soit |cos(c¢;)| < 1, soit

| cos(ca)| < 1. Ainsi

| cos(z) —cos(y)| < |z — (E + km)| + \cos(g + km) — g

2
= cos(g—i—lmr) - x+y — cos(g—l—lmr)
= |z =yl

Exercice 10-10 Soit f de [0, 1] vers R une fonction trois fois dérivable.




1. On suppose que f(0) = f'(0) = f“(0) = 0 et que f(1) = 0. Montrer que f” s’annule sur
Iintervalle 0, 1[.

2. On suppose ici que f(0) = f(1/3) = f(2/3) = f(1) = 0. Montrer le méme résultat. Généralisez
a une fonction k fois dérivable ayant n zéros, pour tous entiers k < n.

3. On suppose ici que f(0) = f(0) =0 et que f(1) = f'(1) = 0. Montrer le méme résultat.

Réponse : C’est une suite d’applications du théoréme de Rolle. L’existence de « et [3 est justifiée
par ce théoréme.

1. Comme f(0) = f(1) = 0 il existe a €]0, 1] tel que f'(a) = 0. Alors comme f'(0) = f'(a) =0
il existe 8 €]0,a] tel que f”(B8) = 0, et finalement, comme f”(0) = f"(8) = 0 il existe
v €]0, B[]0, 1] tel que f(v) = 0.

2. Pour f’ on a trois racines distinctes, une entre 0 et 1/3, une entre 1/3 et 2/3 et une entre 2/3
et 1, donc 2 racines distinctes pour f” et finalement 1 pour f”.
On montre la généralisation par récurrence sur k < n, pour n fixé. Soit g une fonction ayant n
zéros. On consideére le prédicat P(k) : si g est k fois dérivable, alors g™ a au moins n — k zéros.
Initialisation : P(0) est évidemment vrai.
Hérédité : Soit 0 < & < n. On suppose P(k — 1) vrai. Montrons que P(k) l'est. Si g est k
fois dérivable, elle est k — 1 fois dérivable, et par hypothése de récurrence ¢*~Y a au moins
n — k + 1 zéros. On applique le théoréme de Rolle & cette fonction, et on obtient bien que ¢*)
admet au moins n — k zéros.
Conclusion : P(0) est vrai et la propriété est héréditaire donc pour tout k < n, si g est k fois
dérivable, ¢ admet au moins n — k zéros.

3. f(0) = f(1) = 0 nous donne une troisiéme racine pour f’, on conclut comme ci dessus.

Exercice 10-11 On considére P : R — R une fonction polynomiale de degré n € N, c’est a dire
qu’il existe des nombres réels ag, ay, ..., a, tels que a, # 0 et

Vr € R, P(z) =ao+ a1z + - - aza™.

Montrer qu’il existe au plus n solutions réelles a I’équation P(x) = 0.

Solution :

On utilise la généralisation du 2) de l'exercice précédent : Si P avait strictement plus que n
racines, alors sa dérivée n-éme, qui est une constante non nulle, aurait au moins un zéro, ce qui est
absurde.

Remarque : On peut le montrer directement par récurrence : pour n > 1 entier, notons P(n) la
proposition suivante :

Pour tout polynome réel P de degré n, il existe au plus n nombres réels distincts z; <
To < -+ < x, tels que, pour tout 1 < k <n, P(x;) =0.

Initialisation : Une fonction affine a au plus un zéro.

Hérédité : On considére un entier n > 2 tel que P(n — 1) soit vraie. Montrons que P(n) est
également vraie.

On effectue un raisonnement par ’absurde. Supposons que P soit une fonction polynomiale de
degré n, et supposons qu’il existe n + 1 solutions distinctes 1 < s < --- < x, < 2,1 de ’équation
P(x) = 0. Alors

0= P(z1) = P(xg) =+ = P(x,) = P(xp41).

Le théoréme de Rolle appliqué a la fonction P : R — P (qui est dérivable en chaque point de R)
sur les intervalles Iy, I, ..., I, définis par

Vk € {1, ...,n}, I, :].’Ek,.iEk+1[



fournit n» nombres réels y; € I, ys € I, ..., y, € I, tels que

0=P'(y) =Py2) == P'yn).

Cependant, la fonction P’ est une fonction polynomiale de degré n. L’hypothése de récurrence ap-
pliquée a P’ montre que nécessairement P’ = 0. On en déduit que P est un polynéme constant, ce
qui est une contradiction.

1
Exercice 10-12 Montrer que 100 + 200 est une approximation par excés de v 10001, et que 'erreur

d’approximation est inférieure & .
PP 4-106

1
Réponse : On applique le théoréme des accroissements finis & f(z) = v/z, de dérivée F En effet,
—_— x
d’aprés le théoréme des accroissements finis, il existe ¢ €]10000, 10001] tel que V10001 — /10000 =

. 1 L. 1 1 )
Comme la fonction x — ——= est décroissante < = ——. Par conséquent,

2y/c ) 2iﬁ " 2y/c " 24/10000 200
v/10001 = 100 + W < 100 + 200° La valeur absolue de la différence entre la valeur exacte et
c
I’approximation est
1 \/E — 100
2¢/c 200

1 c— 104 _ !
2 |100y/c(y/c + 100)| 4. 106

Exercice 10-13 Montrer que pour tout entier k > 1 : %H <In(k+1) —1In(k) < % En déduire
que pour tout entier n > 1, on a In(n + 1) < 1+%+%+---+% <1+ 1n(n) .

Déterminer ngrfooH" ou H, =1+ % + % + - —I—%
Réponse : La fonction In est continue et dérivable sur R’ , de dérivée 1/x. Comme pour k > 1,
1/k <1, le théoréme des accroissements finis montre que pour k > 1, %H <In(k+1)—Ink < %

n—1
1
Les sommes téléscopiques impliquent In(n + 1) Z In(k+1)—Ink < H,,et H, =1+ Z 1 <
k=1

n—1
1+ E In(k+1)—Ink = 1+1In(n) d’ot le résultat. Comme lim Inn = oo, on conclut que H,, diverge
n—oo
k=1
aussi.

Exercice 10-14

1. Utiliser I'exercice précédent pour montrer que pour o < 1

li L _
n1—>n§o — ke -
_ a—1 1 1
2. On suppose maintenant a > 1. Pour k > 2, comparer et —

ko (k _ 1)04—1 ka—l'

3. Toujours pour a > 1, montrer que

"1
lim Zk—azé, avec £ <

n—o00 a—1"



Réponse :

n

1 "1
< . 1oy 1_
1. Sia <1, alors nhjEO E o = nhig kg_l ’ 00.

k=1

a—1
2. Lafonction f(x) = 1/z%"" est continue et dérivable sur R’ , de dérivée ————. Par le théoréme
T

ey a WICE

des accroissements finis, appliqué sur l'intervalle [k—1, k|,

a—1

£ =1) = () >

Q

n
3. On a donc par les sommes télescopiques, Z
k=1

-1 “La—1 1
=—a—1 <1-— —1.
o « -+ kZQ o a1 + «

n n
a—1 1 «
A la limite, on obtient lim g T < a. Ceci équivaut a lim E o <
k=1 k=1

n—00 n—00 o — 1

Exercice 10-15
Soit n > 1 un nombre entier et ag, aq, ..., a, € R tels que

Montrer que I'équation d’inconnue x € R
ap+ax+---+a,xz" =0

a au moins une solution = dans l'intervalle |0, 1].

Solution :
On considére les deux fonctions polynomiales P, () : R — R définies par

P(z) =ao+ a1z + - - aza”

Qo ar o An pi1
)= —x+ —a°+ - "t
Q) 1 +2 + +n+1

Vo € R,

On commence par remarquer que @' = P (la fonction @ est polynomiale, donc dérivable). Ensuite,
I’hypothése de ’énoncé assure que

0=0Q(0) =Q(1).
Puisque @ est dérivable, le théoréme de Rolle assure donc l'existence de x €]0, 1 tel que Q'(x) =
0 = P(x), soit encore,
ag + arx + -+ a,x” = 0.

Exercice 10-16
On condidére deux fonctions f,g: R — R telles que f soit deux fois dérivable et g continue.

1. Soit ¢ € R un maximum local de f. Montrer que f”(c) <O0.
2. De méme, si ¢ € R est un minimum local de f, montrer que f”(c) > 0.
3. On suppose que

Ve eR,  f(z)+g(z)f(z) - f(z)=0.

. On suppose de plus qu'il existe a,b € R tels que a < b et f(a) = f(b) = 0. Montrer que
f(z) = 0 pour tout x € [a, b].

Solution :



1. On raisonne par 'absurde : supposons, en vue d’obtenir une contradiction, que f”(c) > 0, ¢’est

a dire que
1" : f/(C h) — f/(C) : f/(C h)
f(e) }L1—>0 h }Ll—>o h

> 0.

En effet, f'(c) = 0 puisque ¢ est un extremum (local) de f. On en déduit que f'(c+ h)h ™" est
positif pour h # 0 assez petit : il existe o > 0 tel que

f'(c+h)>0  pour h€)0,d]
f'(c+h) <0  pour heg]—40[

En particulier, h — f(c+ h) est décroissante sur | — 6, 0] et croissante sur |0, §[. La fonction f
admet donc un minimum local en ¢. Mais comme ¢ est aussi un maximum local, cela signifie
que f est constante sur un petit intervalle I =]c — n, ¢ + n[ contenant a (avec n > 0). On en
déduit que f”(c) = 0, ce qui est une contradiction.

2. En posant F' = — f et en utilisant la question précédente a F'; on montre que f”(c) > 0.

3. Supposons, en vue d’obtenir une contradiction, que f ne soit pas constamment nulle sur [a, b].
Comme f est continue, elle admet un maximum ¢ et un minimum ¢’ sur le segment [a, b], ¢’est
a dire que
Vo €fa,b],  f(d) < flx) < fo).
En particulier, f(¢') < 0 = f(a) = f(b) < f(c). Comme nous avons supposé que f est non
identiquement nulle sur [a, b], nécessairement f(c¢') < 0 ou f(c) > 0.

Plagons-nous d’abord dans le cas ot f(¢) > 0. En évaluant I’équation vérifiée par f en ¢ on
trouve

f(e) +g(e)f'(c) = flc) = 0.
Mais comme ¢ est un maximum (global) de f (sur [a,b]), on a d’une part f'(c) = 0, et d’autre
part f”(c) < 0 grace a la question 1. La relation précédente devient

0 < f(e) = f"(c) + g(e)f'(c) = f"(c) <0,

ce qui est une contradiction. Dans le cas ou f(c') < 0, on montre de maniére symétrique que
0< () = f"(d) + f(c)g(c) = f(c) <0,

ce qui est aussi une contradiction.

Exercice 10-101 Soit f : R — R dérivable. Calculer lim aflz)—@ f(&), pour un a € R.

z—a €T —qQ
Réponse : On a lim aflz) —x fla) = lim af(@) Zaf(a) +afla) ~fla) =af'(a) — f(a).
- r—a Tr — a r—a Tr — a

Exercice 10-102 Montrer que la fonction P de R vers R définie par P(z) = ' + az” 4 br + ¢
(a,b,c € R) a au plus 4 racines réelles.

Réponse : La dérivée seconde de P est 99002% +42ax°. Ce polynéme a au plus deux racines réelles,

—42a
0et ¥/ 9900 ° Par conséquent, P a au plus deux points d’inflexion. Ceci implique que P ait au plus

4 racines réelles.

Exercice 10-103 On définit

f: R — R
z +—— In(l+2?%) — arctanz



P ()

1. Montrer que pour tout n € N* et z € R, f((z) = m
xT n

ou P, est un polynome de degré
n qui satisfait les identités

(a) Pi(z) =2z —1,

(b) Poyi(z) = (2 + 1)P(z) — 22P,(x) .

2. Montrer que pour tout n € N*| le polynéome P, a n racines distinctes.

Réponse :
1. C’est un raisonnement par récurrence sur n € N*.

2. On se contente d’une indication. Pour n = 1, c’est clair. Pour n + 1 on évalue P, en les n
racines supposées distinctes de P, et étudie le changement de signe.

Exercice 10-104 Soit f : [a,b|— R une fonction continue, dérivable sur Ja,b[. Montrer que f est
dérivable a droite en a et f'(a) = lim+ f'(z), en supposant que cette limite est finie.
Tr—a

Réponse : On calcule lim M. Pour chaque = €]a, b], il existe ¢, €]a, z[ tel que fl@) — fla) =
T—a r—a r —a
f'(cz). La conclusion s’ensuit en utilisant ’hypothése que la limite lim+ f'(z) soit finie.
r—a

Exercice 10-105 Soient a < b deux réels. Existe-t-il une fonction dérivable f de [a,b] vers R telle
que l'on ait simultanément le comportement asymptotique lirgl f(z) = oo et la majoration |f'| <17
T—b—

Réponse : Non. En effet, pour tout a < by < b, il existe ¢ €]a, by[ tel que f(by) — f(a) = f'(c)(by—a).
En valeur absolue, on obtient |f(by) — f(a)| = |f'(c)||(bo — a)| < |bp — a|. Par conséquent la valeur
de f(by) est majorée par f(a) + |by — a|. Ceci empéche que lirgl f(z) = 0.

x—b—

Exercice 10-106 Soit f de [0, 1] vers R une application continue sur [0,1] telle que f(0) = 0 et

f) =1
On suppose que f est dérivable en 0 et en 1 et que 'on a f'(0) = f'(1) = 0.

1. Montrer qu'il existe un « dans |0, 1[ tel que

fl@) _ fle)-1

o a—1

— (0 1) —
En déduire que f(«) = a. [Indication : étudier la fonction g(x) = /() g( ) _ N i /() ]
T — -z
2. On suppose de plus que f est deux fois dérivable sur [0, 1]. Montrer qu'’il existe un 5 dans ]0, 1|
tel que | f”(B)| > 4. [Indication : raisonner par I’absurde et étudier les fonctions x + f(x) —2 z?

et v —1— f(x)—2(1—1)%]

Réponse : Suivez soigneusement les indications. Pensez a utiliser le théoréme des valeurs intermé-
diaires.

Exercice 10-107 Soit f la fonction définie par f(z) = zxlnz — z.

1. En appliquant a f le théoréme des accroissements finis, montrer que pour tout n > 1, on a :
Inn < f(n+1)— f(n) <Iln(n+1).
2. En déduire que pour tout n > 1, on a :

Inl+mm2+---+lnn<fn+1)+1<In2+m3+---+Inn+1).
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3. En déduire que pour tout n > 1, on a :
n 1 n+1
e<ﬁ> Snlge(n+ ) )
e e

Réponse :

1. f(z) est dérivable de dérivée In z, strictement croissante.
2. On fait la somme de 1 & n de ses inégalités pour obtenir le résultat.

3. Onadonc f(n)+1 < In(n!) < f(n+1)+1, soit 'encadrement désiré en passant a I’exponentielle.
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