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Feuille 10. Dérivabilité

Exercice 10-1 Pour chacune des fonctions f définies ci-dessous, calculer la fonction dérivée f ′ :

1) x4 + 3x2 − 6 2) 6x7/2 + 4x5/2 − 2x 3)
√
3x+ 3

√
x+

1

x
4) x(x+ 3)ex

5)
x3 + 1

x2 − x− 2
6)
√
1 + x

1 +
√
x

7)
lnx

x3
8)

sinx

1 + cos x

9) 3
√
x2 + x+ 1 10) sin(cos(3x)) 11) ln(sin2 x) 12) e−x

2

13) (1− x)7/3 14) ln(|2x|) 15) e2iπx 16) 2lnx

Réponse :

1. 4x3 + 6x

2. 21x5/2 + 10x3/2 − 2

3.
3

2
√
3x

+
1

3
x−2/3 − 1

x2

4. (x2 + 5x+ 3)ex

5.
x4 − 2x3 − 6x2 − 2x+ 1

(x2 − x− 2)2

6.
√
x− 1

2
√
x
√
1 + x(1 +

√
x)2

7.
1− 3 lnx

x4

8.
1

1 + cos x

9. 1/3(x2 + x+ 1)−2/3(2x+ 1)

10. −3 cos(cos(3x)) sin(3x)

11.
2 cosx

sinx

12. −2xe−x2

13. −7/3(1− x)4/3

14. 1/x

15. e2iπx2iπ

16.
1

x
ln(2)2lnx

Exercice 10-2 Déterminer a, b ∈ R tels que la fonction f définie sur R+ par :

f(x) =

{√
x, si 0 ≤ x ≤ 1,

ax2 + bx+ 1, si x > 1,
(1)

soit dérivable sur R+∗.

Réponse : La fonction est continue et dérivable sur ]0, 1[ et sur ]1,+∞[. Le seul problème est x = 1.
la fonction f est continue en x = 1 si et seulement si lim

x→1−
f(x) = lim

x→1+
f(x) = f(1), i.e. 1 = a+ b+1,
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i.e. a+ b = 0. Alors, f est dérivable si et seulement si ses dérivées à droite et à gauche en 1 existent

et sont égales, i.e. lim
x→1−

f(x)− f(1)
x− 1

= lim
x→1+

f(x)− f(1)
x− 1

, i.e.
1

2
= 2a+ b. Finalement, f est dérivable

sur ]0,+∞[ si et seulement si a+ b = 0 et 2a+ b =
1

2
, i.e. a =

1

2
et b = −1

2
.

Exercice 10-3

1. Étudier la continuité et la dérivabilité de la fonction f de R vers R définie par :

f(x) =


ex − x, si x < 0,

cos2(πx), si 0 ≤ x ≤ 1,

1 +
lnx

x
, si x > 1.

(2)

2. Même question avec : f(x) =
√
|x| .

Réponse : (1) La fonction est continue en dehors de 0 et 1 parce que chaque point x de R \ {0, 1}
appartient à un intervalle ouvert sur lequel f est définie de manière unique et par une fonction

continue, en l’occurrence par ex − x ou cos2(πx) ou 1 +
lnx

x
. Elle est continue à droite en 0 et à

gauche en 1 parce que la définition de la fonction en ces points est donnée par cos2(πx). Comme

lim
x→0−

ex − x = 1 = f(0), elle est aussi continue à gauche en 0 et comme lim
x→1+

1 +
lnx

x
= 1 = f(1) elle

est aussi continue à droite en 1. Elle est donc partout continue.
Pour x < 0, f est dérivable de dérivée f ′(x) = ex − 1. Pour 0 < x < 1, f est dérivable de dérivée

f ′(x) = −2π cos(πx) sin(πx). Pour x > 1, f est dérivable de dérivée f ′(x) =
1− lnx

x2
.

En 0, lim
x→0−

f(x)− f(0)
x

= lim
x→0−

x2

2x
= 0 et lim

x→0+

f(x)− f(0)
x

= lim
x→0+

cos2(πx)− 1

x
=

lim
x→0+

−(πx)2(cos(πx) + 1)

2x
= 0. La fonction f est donc dérivable en O de dérivée f ′(0) = 0.

Ensuite lim
x→1−

f(x)− f(1)
x− 1

= lim
x→1−

cos2(πx)− 1

x− 1
= lim

y→0−

cos2(πy)− 1

y
= lim

y→0−

−(πy)2(cos(πy) + 1)

2y
=

0 et lim
x→1+

f(x)− f(1)
x− 1

= lim
x→1+

lnx

x(x− 1)
= lim

y→0+

ln(y + 1)

y(y + 1)
= 1. Donc f admet une dérivée à droite et

une dérivée à gauche en 1 mais n’est pas dérivable.
(2) La fonction f est continue en tout point de R puisqu’elle est la composée de deux fonctions

continues sur R, en l’occurrence √ et | |.
Elle est dérivable en tout point de R \ {0} car chaque réel non nul appartient à un intervalle

ouvert sur lequel f est définie par x 7→
√
x pour x > 0 et x 7→

√
−x pour x < 0.

En 0, lim
x→0−

√
−x− 0

x− 0
= lim

x→0+

√
x

−x
= −∞, tandis que lim

x→0+

√
x− 0

x− 0
= lim

x→0+

√
x

x
= +∞. Par

conséquent, f n’est pas dérivable en 0 ; elle ne l’est pas à gauche ni à droite non plus.

Exercice 10-4 Préciser pour chacune des fonctions suivantes de R vers R en quels points elles sont
dérivables, dérivables à droite, dérivables à gauche, et les valeurs de leurs dérivées, dérivées à droite,
dérivées à gauche.

1. f(x) = cos(cos x).
2. g(x) =

√
1 + cos x.

3. h(x) =
√
| sinx|.

Réponse :

1. La fonction cosx est dérivable sur R donc f(x) est aussi dérivable sur R de dérivée f ′(x) =
sin(cosx) sin(x).
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2. La fonction g est périodique de période 2π. En dehors de π, g est dérivable de dérivée g′(x) =
− sinx

2
√
1 + cos x

.

Pour les valeurs supérieures en π, lim
x→π+

√
1 + cos x

x− π
= lim

y→0+

√
1− cos y

y
= lim

y→0+

|y|√
2y

=
1√
2
. Ce

qui donne la valeur de la dérivée à droite. Par contre en π− on obtiendra − 1√
2
, ce qui donne

la valeur de la dérivée à gauche. Par conséquent, g n’est pas dérivable en π. Elle ne l’est qu’à
gauche et à droite. Par périodicité, le même manque de dérivabilité existe en tout point de R
de la forme (2k + 1)π.

3. La fonction h(x) est périodique de période π. Comme sinx est partout dérivable, que |x| est
dérivable en dehors de 0, et que

√
x est dérivable sur R∗+, la fonction h(x) est dérivable sur

]0, π[ de dérivée h′(x) =
cosx

2 sinx
.

Par contre en 0, h n’est ni dérivable à droite, ni à gauche, car lim
x→0+

h(x)

x
= lim

x→0+

1√
x

n’est pas

finie. Un raisonnement symétrique donne la même conclusion en 0−. Ce raisonnement s’étend
sur R par périodicité et h n’est pas dérivable en kπ pour tout k ∈ Z.

Exercice 10-5 Soit f la fonction réelle d’une variable réelle définie par :

f R −→ R

x 7−→

{
x+ exp(−1/x2), si x > 0

sinx, si x ≤ 0
.

1. Montrer que f est dérivable en tout point x de R∗ en calculant sa dérivée.
2. f est-elle dérivable en 0 ?
3. f ′ est elle continue en 0 ?
4. f est-elle deux fois dérivable en 0 ?

Réponse :
1. Tout d’abord, f est continue sur R∗ parce que chaque point de cet ensemble appartient à un

intervalle ouvert sur lequel f est uniquement définie comme composition de fonctions simples,
continues sur cet intervalle. Ensuite, comme lim

x→0+
x + exp(−1/x2) = 0 = f(0) elle est aussi

continue en 0.
f est dérivable sur R∗+, de dérivée f ′(x) = 1 + 2/x3 exp(−1/x2), et aussi sur R∗− de dérivée
f ′(x) = cos x.

2. On a lim
x→0+

f(x)− f(0)
x− 0

= lim
x→0+

1 + 1/x exp(−1/x2) = 1 et lim
x→0−

f(x)− f(0)
x− 0

= lim
x→0−

sinx

x
= 1.

Donc f est dérivable en 0 et f ′(0) = 1.
3. Comme lim

x→0+
1 + 2/x3 exp(−1/x2) = 1 et lim

x→0−
cosx = 1, f ′ est continue en 0, et donc continue

sur R.

4. On a lim
x→0+

f ′(x)− f ′(0)
x− 0

= lim
x→0+

2/x4 exp(−1/x2) = 0 et lim
x→0−

f ′(x)− f ′(0)
x− 0

= lim
x→0−

cosx− 1

x
=

0, d’où f est deux fois dérivable en 0, et f ′′(0) = 0.

Exercice 10-6 Soit n ∈ N. On définit fn : R −→ R par

fn(x) =

{
xn sin(1/x), si x 6= 0

0, si x = 0
.

1. Pour quelles valeurs de n, fn est-elle continue ?
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2. Pour quelles valeurs de n, est-elle fn dérivable ?
3. Pour quelles valeurs de n, est-elle f ′n continue ?
4. Pour quelles valeurs de n, est-elle f ′n dérivable ?

Réponse :

1. Comme sin est une fonction bornée, on a lim
x→0

fn(x) = 0 si n 6= 0. Par contre lim
x→0

sin(1/x)

n’existe pas. Vérifions-le en utilisant deux suites de nombres (ak) et (bk).

ak =
1

−π
2
+ 2kπ

et bk =
1

π
2
+ 2kπ

.

Pour tout k ∈ N, on a f0(ak) = −1 −−−−→
k→+∞

−1 et f0(bk) = 1 −−−−→
k→+∞

1 avec ak et bk convergeant
vers 0, donc la limite de f0 en 0 ne peut exister. Ainsi fn est continue sur R si et seulement si
n ≥ 1.

2. En dehors de 0, fn est dérivable, de dérivée f ′n(x) = nxn−1 sin(1/x) − xn−2 cos(1/x). En 0 on

a lim
x→0

fn(x)− fn(0)
x− 0

= lim
x→0

xn−1 sin(1/x). Ainsi f est dérivable en 0 si et seulement si n ≥ 2,

auquel cas f ′n(0) = 0.
3. On a lim

x→0
f ′n(x) = lim

x→0
nxn−1 sin(1/x)− xn−2 cos(1/x) = 0 seulement si n ≥ 3, car quand n = 2,

lim
x→0

cos(1/x) n’existe pas, une conclusion à laquelle on peut aboutir par la même méthode que
la non existence de la limite de sin(1/x) en 0. Donc f ′n est continue si et seulement si n ≥ 3.

4. f ′n est dérivable en dehors de 0. On a lim
x→0

f ′n(x)− f ′n(0)
x− 0

= lim
x→0

nxn−2 sin(1/x) − xn−3 cos(1/x)
et donc f ′n est dérivable en 0 si et seulement si n ≥ 4.

Exercice 10-7 Appliquer le théorème des accroissements finis pour démontrer les inégalités sui-
vantes :

1. | sinx| ≤ |x| pour x ≥ 0 ;
2. ln(1 + x) ≤ x pour x ≥ 0.

Réponse :

1. On considére f(t) = sin t sur [0, x]. La fonction f est continue sur [0, x] et dérivable sur ]0, x[,

par le théorème des accroissements finis il existe c ∈]0, x[ telle que f ′(c) =
f(x)− f(0)

x− 0
. Donc,

| cos(c)(x− 0)| = | sinx|. Puisque | cos c| ≤ 1 on a | sinx| ≤ |x|.
2. Cette fois si on considère f(t) = ln(1 + t) sur [0, x], x ≥ 0. La fonction f est continue sur

[0, x] et dérivable sur ]0, x[, par le théorème des accroissements finis il existe c ∈]0, x[ telle que
ln(1 + x)− ln 1

x− 0
=

1

1 + c
. Donc ln(1 + x) =

x

1 + c
≤ x.

Exercice 10-8

1. Montrer que pour tous réels a et b avec 0 ≤ a < b :

b− a
1 + b2

< arctan b− arctan a <
b− a
1 + a2

.

2. En déduire que :

π

4
+

3

25
< arctan

(
4

3

)
<
π

4
+

1

6
.
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Réponse :

1. La fonction arctan est continue et dérivable sur R. Le théorème des accroissements finis montre
alors qu’il existe c ∈]a, b[ tel que

arctan b− arctan a = arctan′ c(b− a) .

Comme arctan′ x =
1

1 + x2
est strictement décroissante sur R∗+ on a

1

1 + b2
<

1

1 + c2
<

1

1 + a2
d’où le résultat.

2. Il suffit d’écrire l’encadrement précédent pour a = 1 et b = 4/3.

Exercice 10-9

1. Montrer que pour tous réels x et y : | cos y − cosx| ≤ |y − x|.
2. Montrer que pour tous réels x et y tels que x 6= y : | cos y − cosx| < |y − x|.

Réponse :

1. La fonction cosx est continue et dérivable sur R. Par conséquent, si x 6= y, disons x < y sans
perte de généralité, le théorème des accroissements finis nous montre qu’il existe c ∈]x, y[ tel
que

cos(x)− cos(y) = cos′(c)(x− y) = (− sin(c))(x− y) .

En valeur absolue, on obtient

| cos(x)− cos(y)| = | cos′(c)||x− y| ≤ |x− y| .

parce que −1 ≤ sin(c) ≤ 1. Si x = y, bien sûr l’inégalité large reste vraie.
2. On essaye d’affiner l’inégalité du premier point. Sans perte de généralité, on supposera x < y.

Il y a deux cas à considérer. Dans le premier il n’existe pas de k ∈ Z tel que x <
π

2
< y. Sous

cette hypothèse, pour tout c ∈]x, y[, | cos(c)| < 1. Par conséquent, l’inégalité qui découle du
théorème des accroissements finis devient

| cos(x)− cos(y)| = | cos′(c)||x− y| < |x− y| .

Mettons-nous maintenant dans le cas contraire. Comme l’intervalle ]x, y[ est borné il existe
k ∈ Z tel que x ≤ π

2
+ kπ ≤ y. Alors,

| cos(x)− cos(y)| = | cos(x)− cos(
π

2
+ kπ) + cos(

π

2
+ kπ)− cos(cos(y)|

= | cos(x)− 0|+ |0− cos(y)|
≤ | cos′(c1)||x− (

π

2
+ kπ)|+ | cos′(c1)| cos(

π

2
+ kπ)− y|.

Comme x < y, soit x <
π

2
+ kπ, soit

π

2
+ kπ < y. Respectivement, soit | cos(c1)| < 1, soit

| cos(c2)| < 1. Ainsi

| cos(x)− cos(y)| < |x− (
π

2
+ kπ)| + | cos(π

2
+ kπ)− y|

= cos(
π

2
+ kπ) − x+ y − cos(

π

2
+ kπ)

= y − x
= |x− y|.

Exercice 10-10 Soit f de [0, 1] vers R une fonction trois fois dérivable.
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1. On suppose que f(0) = f ′(0) = f ′′(0) = 0 et que f(1) = 0. Montrer que f ′′′ s’annule sur
l’intervalle ]0, 1[.

2. On suppose ici que f(0) = f(1/3) = f(2/3) = f(1) = 0. Montrer le même résultat. Généralisez
à une fonction k fois dérivable ayant n zéros, pour tous entiers k < n.

3. On suppose ici que f(0) = f ′(0) = 0 et que f(1) = f ′(1) = 0. Montrer le même résultat.

Réponse : C’est une suite d’applications du théorème de Rolle. L’existence de α et β est justifiée
par ce théorème.

1. Comme f(0) = f(1) = 0 il existe α ∈]0, 1[ tel que f ′(α) = 0. Alors comme f ′(0) = f ′(α) = 0
il existe β ∈]0, α[ tel que f ′′(β) = 0, et finalement, comme f ′′(0) = f ′′(β) = 0 il existe
γ ∈]0, β[⊂]0, 1[ tel que f ′′′(γ) = 0.

2. Pour f ′ on a trois racines distinctes, une entre 0 et 1/3, une entre 1/3 et 2/3 et une entre 2/3
et 1, donc 2 racines distinctes pour f ′′ et finalement 1 pour f ′′′.
On montre la généralisation par récurrence sur k < n, pour n fixé. Soit g une fonction ayant n
zéros. On considère le prédicat P (k) : si g est k fois dérivable, alors g(k) a au moins n−k zéros.
Initialisation : P (0) est évidemment vrai.
Hérédité : Soit 0 < k < n. On suppose P (k − 1) vrai. Montrons que P (k) l’est. Si g est k
fois dérivable, elle est k − 1 fois dérivable, et par hypothèse de récurrence g(k−1) a au moins
n− k + 1 zéros. On applique le théorème de Rolle à cette fonction, et on obtient bien que g(k)

admet au moins n− k zéros.
Conclusion : P (0) est vrai et la propriété est héréditaire donc pour tout k < n, si g est k fois
dérivable, g(k) admet au moins n− k zéros.

3. f(0) = f(1) = 0 nous donne une troisième racine pour f ′, on conclut comme ci dessus.

Exercice 10-11 On considère P : R −→ R une fonction polynomiale de degré n ∈ N, c’est à dire
qu’il existe des nombres réels a0, a1, ..., an tels que an 6= 0 et

∀x ∈ R, P (x) = a0 + a1x+ · · · anxn.

Montrer qu’il existe au plus n solutions réelles à l’équation P (x) = 0.

Solution :
On utilise la généralisation du 2) de l’exercice précédent : Si P avait strictement plus que n

racines, alors sa dérivée n-ème, qui est une constante non nulle, aurait au moins un zéro, ce qui est
absurde.

Remarque : On peut le montrer directement par récurrence : pour n ≥ 1 entier, notons P(n) la
proposition suivante :

Pour tout polynôme réel P de degré n, il existe au plus n nombres réels distincts x1 <
x2 < · · · < xn tels que, pour tout 1 ≤ k ≤ n, P (xk) = 0.

Initialisation : Une fonction affine a au plus un zéro.
Hérédité : On considère un entier n ≥ 2 tel que P(n − 1) soit vraie. Montrons que P(n) est

également vraie.
On effectue un raisonnement par l’absurde. Supposons que P soit une fonction polynomiale de

degré n, et supposons qu’il existe n+ 1 solutions distinctes x1 < x2 < · · · < xn < xn+1 de l’équation
P (x) = 0. Alors

0 = P (x1) = P (x2) = · · · = P (xn) = P (xn+1).

Le théorème de Rolle appliqué à la fonction P : R −→ P (qui est dérivable en chaque point de R)
sur les intervalles I1, I2, ..., In définis par

∀k ∈ {1, ..., n}, Ik =]xk, xk+1[
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fournit n nombres réels y1 ∈ I1, y2 ∈ I2, ..., yn ∈ In tels que

0 = P ′(y1) = P ′(y2) = · · · = P ′(yn).

Cependant, la fonction P ′ est une fonction polynomiale de degré n. L’hypothèse de récurrence ap-
pliquée à P ′ montre que nécessairement P ′ = 0. On en déduit que P est un polynôme constant, ce
qui est une contradiction.

Exercice 10-12 Montrer que 100+
1

200
est une approximation par excès de

√
10001, et que l’erreur

d’approximation est inférieure à
1

4 · 106
.

Réponse : On applique le théorème des accroissements finis à f(x) =
√
x, de dérivée

1

2
√
x
. En effet,

d’après le théorème des accroissements finis, il existe c ∈]10000, 10001[ tel que
√
10001−

√
10000 =

1

2
√
c
. Comme la fonction x 7→ 1

2
√
c
est décroissante,

1

2
√
c
<

1

2
√
10000

=
1

200
. Par conséquent,

√
10001 = 100 +

1

2
√
c
< 100 +

1

200
. La valeur absolue de la différence entre la valeur exacte et

l’approximation est∣∣∣∣ 1

2
√
c
− 1

200

∣∣∣∣ =
1

2

∣∣∣∣√c− 100

100
√
c

∣∣∣∣ =
1

2

∣∣∣∣ c− 104

100
√
c(
√
c+ 100)

∣∣∣∣ < 1

4 . 106
.

Exercice 10-13 Montrer que pour tout entier k ≥ 1 :
1

k + 1
< ln(k + 1) − ln(k) ≤ 1

k
. En déduire

que pour tout entier n ≥ 1, on a ln(n+ 1) ≤ 1 +
1

2
+

1

3
+ · · ·+ 1

n
≤ 1 + ln(n) .

Déterminer lim
n→+∞

Hn où Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n

Réponse : La fonction ln est continue et dérivable sur R∗+, de dérivée 1/x. Comme pour k ≥ 1,

1/k ≤ 1, le théorème des accroissements finis montre que pour k ≥ 1,
1

k + 1
≤ ln(k + 1)− ln k ≤ 1

k
.

Les sommes téléscopiques impliquent ln(n+1) =
n∑
k=1

ln(k+1)− ln k ≤ Hn, et Hn = 1+
n−1∑
k=1

1

k + 1
≤

1+
n−1∑
k=1

ln(k+1)− ln k = 1+ln(n) d’où le résultat. Comme lim
n→∞

lnn =∞, on conclut que Hn diverge

aussi.

Exercice 10-14

1. Utiliser l’exercice précédent pour montrer que pour α ≤ 1

lim
n→∞

n∑
k=1

1

kα
=∞.

2. On suppose maintenant α > 1. Pour k ≥ 2, comparer
α− 1

kα
et

1

(k − 1)α−1
− 1

kα−1
.

3. Toujours pour α > 1, montrer que

lim
n→∞

n∑
k=1

1

kα
= `, avec ` <

α

α− 1
.
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Réponse :

1. Si α ≤ 1, alors lim
n→∞

n∑
k=1

1

kα
≥ lim

n→∞

n∑
k=1

1

k
=∞.

2. La fonction f(x) = 1/xα−1 est continue et dérivable sur R∗+, de dérivée −
α− 1

xα
. Par le théorème

des accroissements finis, appliqué sur l’intervalle [k−1, k], 1

(k − 1)α−1
− 1

kα−1
= f(k−1)−f(k) =

|f(k − 1)− f(k)| > α− 1

kα
.

3. On a donc par les sommes télescopiques,
n∑
k=1

α− 1

kα
= α− 1 +

n∑
k=2

α− 1

kα
< 1− 1

nα−1
+ α− 1.

A la limite, on obtient lim
n→∞

n∑
k=1

α− 1

kα
< α. Ceci équivaut à lim

n→∞

n∑
k=1

1

kα
<

α

α− 1
.

Exercice 10-15
Soit n ≥ 1 un nombre entier et a0, a1, ..., an ∈ R tels que

a0
1

+
a1
2

+ · · ·+ an
n+ 1

= 0.

Montrer que l’équation d’inconnue x ∈ R

a0 + a1x+ · · ·+ anx
n = 0

a au moins une solution x dans l’intervalle ]0, 1[.

Solution :
On considère les deux fonctions polynomiales P,Q : R −→ R définies par

∀x ∈ R,
P (x) = a0 + a1x+ · · · anxn

Q(x) =
a0
1
x+

a1
2
x2 + · · ·+ an

n+ 1
xn+1.

On commence par remarquer que Q′ = P (la fonction Q est polynomiale, donc dérivable). Ensuite,
l’hypothèse de l’énoncé assure que

0 = Q(0) = Q(1).

Puisque Q est dérivable, le théorème de Rolle assure donc l’existence de x ∈]0, 1[ tel que Q′(x) =
0 = P (x), soit encore,

a0 + a1x+ · · ·+ anx
n = 0.

Exercice 10-16
On condidère deux fonctions f, g : R −→ R telles que f soit deux fois dérivable et g continue.
1. Soit c ∈ R un maximum local de f . Montrer que f ′′(c) ≤ 0.
2. De même, si c ∈ R est un minimum local de f , montrer que f ′′(c) ≥ 0.
3. On suppose que

∀x ∈ R, f ′′(x) + g(x)f ′(x)− f(x) = 0.

. On suppose de plus qu’il existe a, b ∈ R tels que a < b et f(a) = f(b) = 0. Montrer que
f(x) = 0 pour tout x ∈ [a, b].

Solution :
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1. On raisonne par l’absurde : supposons, en vue d’obtenir une contradiction, que f ′′(c) > 0, c’est
à dire que

f ′′(c) = lim
h→0

f ′(c+ h)− f ′(c)
h

= lim
h→0

f ′(c+ h)

h
> 0.

En effet, f ′(c) = 0 puisque c est un extremum (local) de f . On en déduit que f ′(c+ h)h−1 est
positif pour h 6= 0 assez petit : il existe δ > 0 tel que

f ′(c+ h) > 0 pour h ∈]0, δ[
f ′(c+ h) < 0 pour h ∈]− δ, 0[.

En particulier, h 7→ f(c+ h) est décroissante sur ]− δ, 0[ et croissante sur ]0, δ[. La fonction f
admet donc un minimum local en c. Mais comme c est aussi un maximum local, cela signifie
que f est constante sur un petit intervalle I =]c − η, c + η[ contenant a (avec η > 0). On en
déduit que f ′′(c) = 0, ce qui est une contradiction.

2. En posant F = −f et en utilisant la question précédente à F , on montre que f ′′(c) ≥ 0.
3. Supposons, en vue d’obtenir une contradiction, que f ne soit pas constamment nulle sur [a, b].

Comme f est continue, elle admet un maximum c et un minimum c′ sur le segment [a, b], c’est
à dire que

∀x ∈ [a, b], f(c′) ≤ f(x) ≤ f(c).

En particulier, f(c′) ≤ 0 = f(a) = f(b) ≤ f(c). Comme nous avons supposé que f est non
identiquement nulle sur [a, b], nécessairement f(c′) < 0 ou f(c) > 0.
Plaçons-nous d’abord dans le cas où f(c) > 0. En évaluant l’équation vérifiée par f en c on
trouve

f ′′(c) + g(c)f ′(c)− f(c) = 0.

Mais comme c est un maximum (global) de f (sur [a, b]), on a d’une part f ′(c) = 0, et d’autre
part f ′′(c) ≤ 0 grâce à la question 1. La relation précédente devient

0 < f(c) = f ′′(c) + g(c)f ′(c) = f ′′(c) ≤ 0,

ce qui est une contradiction. Dans le cas où f(c′) < 0, on montre de manière symétrique que

0 ≤ f ′′(c′) = f ′′(c′) + f ′(c′)g(c′) = f(c′) < 0,

ce qui est aussi une contradiction.

Exercice 10-101 Soit f : R→ R dérivable. Calculer lim
x→a

a f(x)− x f(a)
x− a

, pour un a ∈ R.

Réponse : On a lim
x→a

a f(x)− x f(a)
x− a

= lim
x→a

a f(x)− a f(a) + a f(a)− x f(a)
x− a

= af ′(a)− f(a).

Exercice 10-102 Montrer que la fonction P de R vers R définie par P (x) = x100 + ax7 + bx + c
(a, b, c ∈ R) a au plus 4 racines réelles.

Réponse : La dérivée seconde de P est 9900x98+42ax5. Ce polynôme a au plus deux racines réelles,

0 et 93

√
−42a
9900

. Par conséquent, P a au plus deux points d’inflexion. Ceci implique que P ait au plus
4 racines réelles.

Exercice 10-103 On définit

f : R −→ R
x 7−→ ln(1 + x2)− arctanx

.
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1. Montrer que pour tout n ∈ N∗ et x ∈ R, f (n)(x) =
Pn(x)

(1 + x2)n
où Pn est un polynôme de degré

n qui satisfait les identités
(a) P1(x) = 2x− 1,
(b) Pn+1(x) = (x2 + 1)P ′n(x)− 2xPn(x) .

2. Montrer que pour tout n ∈ N∗, le polynôme Pn a n racines distinctes.

Réponse :
1. C’est un raisonnement par récurrence sur n ∈ N∗.
2. On se contente d’une indication. Pour n = 1, c’est clair. Pour n + 1 on évalue Pn+1 en les n

racines supposées distinctes de Pn et étudie le changement de signe.

Exercice 10-104 Soit f : [a, b[−→ R une fonction continue, dérivable sur ]a, b[. Montrer que f est
dérivable à droite en a et f ′(a) = lim

x→a+
f ′(x), en supposant que cette limite est finie.

Réponse : On calcule lim
x→a+

f(x)− f(a)
x− a

. Pour chaque x ∈]a, b[, il existe cx ∈]a, x[ tel que
f(x)− f(a)

x− a
=

f ′(cx). La conclusion s’ensuit en utilisant l’hypothèse que la limite lim
x→a+

f ′(x) soit finie.

Exercice 10-105 Soient a < b deux réels. Existe-t-il une fonction dérivable f de [a, b[ vers R telle
que l’on ait simultanément le comportement asymptotique lim

x→b−
f(x) =∞ et la majoration |f ′| ≤ 1 ?

Réponse : Non. En effet, pour tout a < b0 < b, il existe c ∈]a, b0[ tel que f(b0)−f(a) = f ′(c)(b0−a).
En valeur absolue, on obtient |f(b0) − f(a)| = |f ′(c)||(b0 − a)| ≤ |b0 − a|. Par conséquent la valeur
de f(b0) est majorée par f(a) + |b0 − a|. Ceci empêche que lim

x→b−
f(x) =∞.

Exercice 10-106 Soit f de [0, 1] vers R une application continue sur [0, 1] telle que f(0) = 0 et
f(1) = 1.

On suppose que f est dérivable en 0 et en 1 et que l’on a f ′(0) = f ′(1) = 0.
1. Montrer qu’il existe un α dans ]0, 1[ tel que

f(α)

α
=

f(α)− 1

α− 1
.

En déduire que f(α) = α. [Indication : étudier la fonction g(x) =
f(x)− f(0)

x− 0
− f(1)− f(x)

1− x
.]

2. On suppose de plus que f est deux fois dérivable sur [0, 1]. Montrer qu’il existe un β dans ]0, 1[
tel que |f ′′(β)| ≥ 4. [Indication : raisonner par l’absurde et étudier les fonctions x 7→ f(x)−2x2

et x 7→ 1− f(x)− 2 (1− x)2.]

Réponse : Suivez soigneusement les indications. Pensez à utiliser le théorème des valeurs intermé-
diaires.

Exercice 10-107 Soit f la fonction définie par f(x) = x lnx− x.
1. En appliquant à f le théorème des accroissements finis, montrer que pour tout n ≥ 1, on a :

lnn ≤ f(n+ 1)− f(n) ≤ ln(n+ 1).

2. En déduire que pour tout n ≥ 1, on a :

ln 1 + ln 2 + · · ·+ lnn ≤ f(n+ 1) + 1 ≤ ln 2 + ln 3 + · · ·+ ln(n+ 1).
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3. En déduire que pour tout n ≥ 1, on a :

e
(n
e

)n
≤ n! ≤ e

(
n+ 1

e

)n+1

.

Réponse :

1. f(x) est dérivable de dérivée lnx, strictement croissante.
2. On fait la somme de 1 à n de ses inégalités pour obtenir le résultat.
3. On a donc f(n)+1 < ln(n!) < f(n+1)+1, soit l’encadrement désiré en passant à l’exponentielle.
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