Exercice 1.

On considère la polynôme suivant $A = X^4 + 4X^3 + 8X^2 + 8X + 4$ dans $\mathbb{C}[X]$.

- 1. Calculer B = A'/4, où A' désigne le polynôme dérivée de A.
- 2. Vérifier par l'algorithme d'Euclide que $pgcd(A, B) = X^2 + 2X + 2$.
- 3. Montrer en utilisant les deux questions précédentes qu'il existe un polynôme P dans $\mathbb{R}[X]$, de degré 2 tel que : $A = P^2$.
- 4. En déduire les racines de A dans C.

Correction exercice 1

1.

$$B = \frac{1}{4}(4X^3 + 12X^2 + 16X + 8) = X^3 + 3X^2 + 4X + 2$$

2.

$$\begin{array}{c|cccc}
X^3 + 3X^2 + 4X + 2 & X^2 + 2X + 2 \\
X^3 + 2X^2 + 2X & X + 1 \\
\hline
X^2 + 2X + 2 & X + 2 \\
X^2 + 2X + 2 & 0
\end{array}$$

Le dernier reste non nul est $pgcd(A, B) = X^2 + 2X + 2$, qui est bien un polynôme unitaire.

3. Première méthode

Le résultat des deux divisions de la question précédente donne

$$A = (X + 1)B + X^2 + 2X + 2$$

Et

$$B = (X+1)(X^2 + 2X + 2)$$

On remplace B dans la première égalité

$$A = (X+1)B + X^{2} + 2X + 2 = A = (X+1)(X+1)(X^{2} + 2X + 2) + (X^{2} + 2X + 2)$$

$$= ((X+1)^{2} + 1)(X^{2} + 2X + 2) = (X^{2} + 2X + 2)(X^{2} + 2X + 2) = (X^{2} + 2X + 2)^{2}$$

$$P = X^{2} + 2X + 2 \in \mathbb{R}[X]$$

Deuxième méthode

A se divise par pgcd(A, B)

A se divise par
$$pgcd(A, B)$$

$$X^{4} + 4X^{3} + 8X^{2} + 8X + 4$$

$$X^{4} + 2X^{3} + 2X^{2}$$

$$2X^{3} + 6X^{2} + 8X + 4$$

$$2X^{3} + 4X^{2} + 4X$$

$$2X^{2} + 4X + 4$$

$$2X^{2} + 4X + 4$$

$$0$$

$$A = (X^2 + 2X + 2)^2$$

4. On cherche les racines de P, $\Delta = 4 - 8 = -4 = (2i)^2$

$$X_1 = \frac{-2 - 2i}{2} = -1 - i$$
 et $X_2 = \frac{-2 + 2i}{2} = -1 + i$

Donc A admet deux racines doubles $-(1 \pm i)$.

Exercice 2.

On considère deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par récurrence de la façon suivantes :

$$\forall n \in \mathbb{N}, \quad \begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n + 2v_n}{3} \end{cases} \quad \text{et} \quad \begin{cases} v_0 = 12 \\ v_{n+1} = \frac{u_n + 3v_n}{4} \end{cases}$$

- 1. Montrer que $(v_n u_n)_{n \in \mathbb{N}}$ est une suite géométrique de raison 1/12 dont il faudra préciser également le premier terme.
- 2. En déduire l'expression de $(v_n u_n)_{n \in \mathbb{N}}$ en fonction de n.
- 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 4. Montrer que $(v_n)_{n\in\mathbb{N}}$ est décroissante.
- 5. Montrer que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ converge vers la même limite.
- 6. On pose $(w_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $w_n=3u_n+8v_n$
 - a. Montrer que $(w_n)_{n\in\mathbb{N}}$ est une suite constante.
 - b. En déduire la limite de $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.

Correction exercice 2

1. Pour tout $n \in \mathbb{N}$

$$v_{n+1} - u_{n+1} = \frac{u_n + 3v_n}{4} - \frac{u_n + 2v_n}{3} = \frac{3(u_n + 3v_n) - 4(u_n + 2v_n)}{12} = \frac{v_n - u_n}{12}$$

Donc $(v_n - u_n)_{n \in \mathbb{N}}$ est une suite géométrique de raison 1/12 et de premier terme

$$v_0 - u_0 = 12 - 1 = 11$$

2. Pour tout $n \in \mathbb{N}$

$$v_n - u_n = \left(\frac{1}{12}\right)^n \times 11 = \frac{11}{12^n}$$

3. Pour tout $n \in \mathbb{N}$

$$u_{n+1} - u_n = \frac{u_n + 2v_n}{3} - u_n = \frac{u_n + 2v_n - 3u_n}{3} = 2\frac{v_n - u_n}{3} = \frac{22}{3 \times 12^n} > 0$$

La suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

4. Pour tout $n \in \mathbb{N}$

$$v_{n+1} - v_n = \frac{u_n + 3v_n}{4} - v_n = \frac{u_n + 3v_n - 4v_n}{4} = \frac{u_n - v_n}{4} = -\frac{11}{4 \times 12^n} < 0$$

La suite $(v_n)_{n\in\mathbb{N}}$ est décroissante.

5. On a

$$\lim_{n \to +\infty} (v_n - u_n) = \lim_{n \to +\infty} \frac{11}{12^n} = 0$$

que $(u_n)_{n\in\mathbb{N}}$ est croissante et que $(v_n)_{n\in\mathbb{N}}$ est décroissante, d'après le théorème des suites adjacentes, ces deux suites convergent vers la même limite l.

6.

a. Pour tout $n \in \mathbb{N}$

$$w_{n+1} = 3u_{n+1} + 8v_{n+1} = 3\frac{u_n + 2v_n}{3} + 8\frac{u_n + 3v_n}{4} = u_n + 2v_n + 2(u_n + 3v_n)$$
$$= 3u_n + 8v_n = w_n$$

La suite $(w_n)_{n\in\mathbb{N}}$ est constante.

b. D'après a. pour tout $n \in \mathbb{N}$,

$$w_n = w_0 = 3u_0 + 8v_0 = 3 + 8 \times 12 = 99$$

On a donc, pour tout $n \in \mathbb{N}$

$$99 = 3u_n + 8v_n$$

On fait tendre *n* vers l'infini

$$99 = 3l + 8l = 11l$$

D'où on déduit que l = 9

Exercice 3.

Soit f la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{3 - x^2}{2} & \text{si } x < 1\\ \frac{1}{x} & \text{si } x \ge 1 \end{cases}$$

- 1. Montrer que f est continue sur \mathbb{R} et plus particulièrement en 1.
- 2. Montrer que f est dérivable sur \mathbb{R} et plus particulièrement en 1.
- 3. Rappeler le théorème des accroissements finis.
- 4. Utiliser ce théorème pour montrer qu'il existe $c \in]02[$ tel que : 2f'(c) = f(2) f(0)
- 5. Déterminer toutes les valeurs possible de c.

Correction exercice 3

Pour x < 1 f est un polynôme donc f est continue, pour x > 1, $x \ne 0$ donc $x \mapsto \frac{1}{x}$ est continue. Donc f est continuee sur \mathbb{R}

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} \frac{1}{x} = 1 = f(1) \quad \text{et} \quad \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{3 - x^{2}}{2} = 1 = f(1)$$

Ce qui montre que la fonction est continue en x = 1

Pour x < 1, f est un polynôme donc f est continue, pour x > 1, $x \ne 0$ donc $x \mapsto \frac{1}{x}$ est continue.

Donc f est continue sur \mathbb{R}

2. Première méthode

Pour x < 1:

$$f'(x) = \frac{1}{2}(-2x) = -x$$
$$\lim_{x \to 1^{-}} f'(x) = \lim_{x \to 1^{-}} -x = -1$$

Pour x > 1:

$$f'(x) = -\frac{1}{x^2}$$

$$\lim_{x \to 1^+} f'(x) = \lim_{x \to 1^+} -\frac{1}{x^2} = -1$$

 $\lim_{x \to 1^+} f'(x) = \lim_{x \to 1^+} -\frac{1}{x^2} = -1$ Le fait que f soit continue en 1 et que $\lim_{x \to 1^-} f'(x) = \lim_{x \to 1^+} f'(x)$, montre que f est dérivable en x = 1.

Deuxième méthode

Pour x < 1

$$\frac{f(x) - f(1)}{x - 1} = \frac{\frac{3 - x^2}{2} - 1}{x - 1} = \frac{3 - x^2 - 2}{2(x - 1)} = \frac{-(x^2 - 1)}{2(x - 1)} = -\frac{(x - 1)(x + 1)}{2(x - 1)} = -\frac{x + 1}{2} \xrightarrow{x \to 1^-} -1$$

Pour x > 1

$$\frac{f(x) - f(1)}{x - 1} = \frac{\frac{1}{x} - 1}{x - 1} = \frac{1 - x}{x(x - 1)} = -\frac{x - 1}{x(x - 1)} = -\frac{1}{x} \xrightarrow{x \to 1^{-}} - 1$$

Ce qui montre que $\frac{f(x)-f(1)}{x-1}$ admet une limite lorsque x tend vers 1, et que donc f est dérivable.

Pour x < 1 f est un polynôme donc f est dérivable, pour x > 1, $x \ne 0$ donc $x \mapsto \frac{1}{x}$ est dérivable.

Donc f est dérivable sur \mathbb{R}

3. Soit f une fonction continue sur [a, b] et dérivable sur]a, b[, il existe $c \in]a, b[$ tel que :

$$f(b) - f(a) = f'(c)(b - a)$$

4. f est continue sur [0,2] et dérivable sur]0,2[, on peut appliquer le théorème des accroissements finis sur [0,2] donc il existe $c \in]02[$ tel que : f(2) - f(0) = (2 - 0)f'(c) = 2f'(c).

5. $f(2) = \frac{1}{2}$ et $f(0) = \frac{3 - 0^2}{2} = \frac{3}{2}$ Par conséquent

$$f(2) - f(0) = (2 - 0)f'(c) \Leftrightarrow \frac{1}{2} - \frac{3}{2} = 2f'(c) \Leftrightarrow f'(c) = -\frac{1}{2}$$

Supposons que $0 < c \le 1$ alors

$$f'(c) = -\frac{1}{2} \Leftrightarrow -c = -\frac{1}{2} \Leftrightarrow c = \frac{1}{2}$$

On vérifie que $0 \le \frac{1}{2} \le 1$ donc $c = \frac{1}{2}$ est une solution.

Supposons que 1 < c < 2 alors

$$f'(c) = -\frac{1}{2} \Leftrightarrow -\frac{1}{x^2} = -\frac{1}{2} \Leftrightarrow x^2 = 2 \Leftrightarrow x = \pm \sqrt{2}$$

On a $-\sqrt{2} \notin]1,2]$ et $\sqrt{2} \in]1,2]$, donc $\sqrt{2}$ est solution, il y a donc deux solutions $c=\frac{1}{2}$ et $c=\sqrt{2}$.

Exercice 4.

- 1. Exprimer le nombre complexe $z_1 = e^{\frac{17i\pi}{6}}$ sous la forme algébrique $\frac{a}{2} + i\frac{b}{2}$ avec a et b réels à déterminer.
- 2. On considère le nombre complexe $z_2 = 1 + i$.
 - a. Montrer que la racine carrée de partie imaginaire positive est

$$\sqrt{\frac{\sqrt{2}+1}{2}}+i\sqrt{\frac{\sqrt{2}-1}{2}}$$

- b. Donner le module et un argument de z_2 et écrire z_2 sous forme exponentielle.
- c. En déduire les valeurs de $\cos\left(\frac{\pi}{8}\right)$ et de $\sin\left(\frac{\pi}{8}\right)$.

Correction exercice 4

1.

$$z_1 = e^{\frac{17i\pi}{6}} = e^{\frac{(12+5)i\pi}{6}} = e^{\frac{12i\pi}{6}} e^{\frac{5i\pi}{6}} = e^{2i\pi} \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i \right) = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$$

$$a = -\sqrt{3} \quad \text{et} \quad b = 1$$

2.

a. Première méthode (la bonne)

On cherche $x \in \mathbb{R}$ et $y \in \mathbb{R}^{+*}$ tels que $(x + iy)^2 = 1 + i$ (*)

$$(*) \Leftrightarrow x^2 - y^2 + 2ixy = 1 + i \Leftrightarrow L_1 \begin{cases} x^2 - y^2 = 1 \\ 2xy = 1 \end{cases}$$

D'autre part, en prenant le module dans l'égalité (*)

$$|(x+iy)^2| = |1+i| \Leftrightarrow |x+iy|^2 = \sqrt{1^2+1^2} \Leftrightarrow x^2+y^2 = \sqrt{2} \ L_3$$

En faisant la somme de L_3 et de L_1 , on trouve que $2x^2 = \sqrt{2} + 1$ et que donc

$$x = \pm \sqrt{\frac{\sqrt{2} + 1}{2}}$$

En faisant la différence entre L_3 et L_1 , on trouve que $2y^2 = \sqrt{2} - 1$ et que donc, puisque $y \ge 0$,

$$y = \sqrt{\frac{\sqrt{2} - 1}{2}}$$

Puis comme d'après L_2 , xy > 0, x est du même signe que y, finalement

$$x + iy = \sqrt{\frac{\sqrt{2} + 1}{2}} + i\sqrt{\frac{\sqrt{2} - 1}{2}}$$

Deuxième méthode

On vérifie aisément que
$$\sqrt{\frac{\sqrt{2}-1}{2}} > 0$$
 et on élève au carré

$$\left(\sqrt{\frac{\sqrt{2}+1}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}}\right)^2 = \frac{\sqrt{2}+1}{2} - \frac{\sqrt{2}-1}{2} + 2i\sqrt{\frac{\sqrt{2}+1}{2}}\sqrt{\frac{\sqrt{2}-1}{2}}$$

$$= \frac{\sqrt{2}+1-(\sqrt{2}-1)}{2} + 2i\sqrt{\frac{\sqrt{2}+1}{2}\sqrt{\frac{2}-1}} = \frac{2}{2} + 2i\sqrt{\frac{\sqrt{2}^2-1^2}{4}} = 1 + \frac{2i}{2}$$

$$= 1 + i$$
b. $|1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}$

$$1 + i = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = \sqrt{2} e^{i\frac{\pi}{4}}$$

Un argument de z_2 est $\frac{\pi}{4}$.

c. Les racines carrées de z_2 sont

$$\pm \left(\sqrt{2}\right)^{\frac{1}{2}} e^{i\frac{\pi}{8}} = \sqrt{\sqrt{2}} \left(\cos\left(\frac{\pi}{8}\right) + i\sin\left(\frac{\pi}{8}\right)\right) = \sqrt{\sqrt{2}} \cos\left(\frac{\pi}{8}\right) + i\sqrt{\sqrt{2}} \sin\left(\frac{\pi}{8}\right)$$

Comme $\sin\left(\frac{\pi}{8}\right) > 0$, on peut identifier $\sqrt{\sqrt{2}}\cos\left(\frac{\pi}{8}\right) + i\sqrt{\sqrt{2}}\sin\left(\frac{\pi}{8}\right)$ avec la carrée de partie imaginaire positive trouvée au 2.a.

$$\sqrt{\sqrt{2}}\cos\left(\frac{\pi}{8}\right) + i\sqrt{\sqrt{2}}\sin\left(\frac{\pi}{8}\right) = \sqrt{\frac{\sqrt{2}+1}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}} \Leftrightarrow \begin{cases} \sqrt{\sqrt{2}}\cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{\sqrt{2}+1}{2}} \\ \sqrt{\sqrt{2}}\sin\left(\frac{\pi}{8}\right) = \sqrt{\frac{\sqrt{2}-1}{2}} \end{cases}$$

$$\Leftrightarrow \begin{cases} \cos\left(\frac{\pi}{8}\right) = \frac{1}{\sqrt{\sqrt{2}}}\sqrt{\frac{\sqrt{2}+1}{2}} = \sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}} = \sqrt{\frac{(\sqrt{2}+1)\sqrt{2}}{2\sqrt{2}\sqrt{2}}} \end{cases}$$

$$\sin\left(\frac{\pi}{8}\right) = \frac{1}{\sqrt{\sqrt{2}}}\sqrt{\frac{\sqrt{2}-1}{2}} = \sqrt{\frac{(\sqrt{2}-1)\sqrt{2}}{2\sqrt{2}\sqrt{2}}}$$

$$\Leftrightarrow \begin{cases} \cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{(\sqrt{2}+1)\sqrt{2}}{2\sqrt{2}\sqrt{2}}} = \sqrt{\frac{2+\sqrt{2}}{2}} \end{cases}$$

$$\Leftrightarrow \begin{cases} \cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{(\sqrt{2}+1)\sqrt{2}}{2\sqrt{2}\sqrt{2}}} = \sqrt{\frac{2-\sqrt{2}}{2}} \end{cases}$$

$$\Leftrightarrow \begin{cases} \sin\left(\frac{\pi}{8}\right) = \sqrt{\frac{(\sqrt{2}-1)\sqrt{2}}{2\sqrt{2}\sqrt{2}}} = \sqrt{\frac{2-\sqrt{2}}{2}} \end{cases}$$

$$\Leftrightarrow \begin{cases} \sin\left(\frac{\pi}{8}\right) = \sqrt{\frac{(\sqrt{2}-1)\sqrt{2}}{2\sqrt{2}\sqrt{2}}} = \sqrt{\frac{2-\sqrt{2}}{2}} \end{cases}$$