Semestre d'automne 2021-2022

Contrôle Final – Durée 120 min – le mardi 4 janvier 2022 – correction

Exercice 1. Polynômes.

- 1. Le théorème de division euclidienne de A par B s'énonce ainsi : il existe un unique couple (Q, R) de polynômes à coefficients réels vérifiant les deux conditions suivantes
 - (a) A = BQ + R,
 - (b) deg(R) < deg(B)
 - (a) Si R est le reste de la division euclidienne de A par B, alors $\deg(R) < \deg(B) = 2$. Ainsi R est de degré ≤ 1 , donc de la forme R(X) = aX + b pour a et b dans \mathbb{R}
 - (b) Puisque A = BQ + R, on a A(2) = B(2)Q(2) + R(2). Comme B(2) = 0, il vient $R(2) = A(2) = (2-3)^{12} + (2-2)^6 2 = -1$. Un raisonnement analogue montre que $R(3) = A(3) = (3-3)^{12} + (3-2)^6 2 = -1$. Puisque R(2) = 2a + b et R(3) = 3a + b, on en déduit que les réels a et b vérifient 2a + b = -1 et 3a + b = -1. En soustrayant ces deux équations, on obtient a = 0, puis b = -1.
- 2. On procède par double implication.
 - \Rightarrow Supposons $A(\alpha) = B(\alpha) = 0$. Il est évident que $B(\alpha) = 0$. De plus, puisque A = BQ + R, on a $0 = A(\alpha) = B(\alpha)Q(\alpha) + R(\alpha) = 0 \cdot Q(\alpha) + R(\alpha) = R(\alpha)$. On a bien montré que $B(\alpha) = R(\alpha) = 0$.
 - \Leftarrow Supposons $B(\alpha) = R(\alpha) = 0$. Il est évident que $B(\alpha) = 0$. De plus, puisque A = BQ + R, on a $A(\alpha) = B(\alpha)Q(\alpha) + R(\alpha) = 0 \cdot Q(\alpha) + 0 = 0$. On a bien montré que $B(\alpha) = R(\alpha) = 0$.
- 3. (a) Le polynôme dérivé de A est $A' = 3X^2 + p$. On pose la division euclidienne de A par A'

pour obtenir que le reste est $R(X) = \frac{2p}{3}X + q$ et le quotient $Q(X) = \frac{1}{3}X$.

- (b) Supposons que α est racine au moins double de A. Par un théorème du cours, on a donc $A(\alpha) = A'(\alpha) = 0$. D'après la question 2., on en déduit que $R(\alpha) = 0$. A l'aide de la forme de R calculée à la question 3., on a $\frac{2p}{3}\alpha + q = 0$, donc $\alpha = -\frac{3p}{2q}$.
- (c) On calcule $A(-\frac{3q}{p})=-\frac{27q^3}{8p^3}-\frac{3q}{2}+q=-\frac{27q^3}{8p^3}-\frac{q}{2}=-\frac{q(27q^2+4p^3)}{8p^2}$. Pour montrer l'équivalence, on procède par double implication.
 - \Rightarrow Supposons que A a une racine au moins double, que l'on note α . Par la question (b), on a $\alpha = -\frac{3q}{2p}$. On a donc

$$0 = A\left(-\frac{3q}{p}\right) = -\frac{q(27q^2 + 4p^3)}{8p^2}$$

et donc q=0 ou $27q^2+4p^3=0$. Si q=0, alors $\alpha=0$. Comme α est racine au moins double, on a $A'(0)=0=\frac{2p}{3}$, donc p=0, ce qui est absurde. On a donc $q\neq 0$ et donc nécessairement $27q^2+4p^3=0$.

 \Leftarrow Supposons que $4p^3 + 27q^2 = 0$. Posons $\alpha = -\frac{3p}{2q}$. On calcule $A(\alpha) = -\frac{q(27q^2 + 4p^3)}{8p^2} = 0$ et $A'(\alpha) = 3\alpha^2 + p = 3\frac{9q^2}{4p^2} + p = \frac{27q^2 + 4p^3}{4p^2} = 0$, donc α est racine au moins double de P.

Exercice 2. Arithmétique.

1. On effectue l'algorithme d'Euclide

$$741 = 2 \times 351 + 39$$
$$351 = 9 \times 39 + 0$$

Le dernier reste non nul est 39, donc le PGCD de 741 et 351 est 39. Puisque $39 = 1 \times 741 - 2 \times 351$, le couple (u, v) = (1, -2) est un couple de coefficients de Bézout pour (741, 351).

2. Les entiers 19 et 25 sont premiers entre eux. On a $19 \times 25 = 475$. Par un théorème du cours («théorème chinois»), l'ensemble des solutions du système de congruences est de la forme $\{k_0 + 475\mathbb{Z}\}$ pour un $k_0 \in \mathbb{Z}$ à déterminer. Déterminons d'abord des coefficients de Bézout pour (19, 25). On obtient (par tâtonnement, ou bien à l'aide de l'algorithme d'Euclide) la relation $4 \times 19 - 3 \times 25 = 1$. Si x est solution du système de congruences, alors $25x \equiv 7 \times 25 = 175 \mod 475$ et $19x \equiv 13 \times 19 = 247 \mod 475$. On a donc $x = 4 \times 19x - 3 \times 25x \equiv (4 \times 247 - 3 \times 175) \mod 475$, donc $x \equiv 463 \mod 475$. L'ensemble des solutions est donc $\{463 + 475\mathbb{Z}\}$.

Remarque : il était parfaitement correct, et plus rapide, de remarquer que x=-12 est une solution "évidente" du système

Exercice 3. Les complexes.

1. Le discriminant du trinôme est

$$\Delta = (1 - 3i)^2 - 4(-4 - 3i) = -6i - 8 + 16 + 12i = 8 + 6i$$

Cherchons les racines carrées complexes de 8+6i sous la forme z=a+ib. L'égalité des parties réelle et imaginaire de l'équation $z^2=8+6i$ donne les équations $a^2-b^2=8$ et 2ab=6. L'égalité des modules donne $a^2+b^2=\sqrt{8^2+6^2}=10$. On en déduit que $a^2=9$ et $b^2=1$, puis que les solutions sont $\pm(3+i)$. Les solutions de l'équation de l'énoncé sont donc

$$\frac{-1+3i+(3+i)}{2} = 1+2i \quad \text{ et } \frac{-1+3i-(3+i)}{2} = -2+i$$

2. Soit z=x+iy avec x,y réels. La condition $\left|\frac{z-1}{z-4}\right|=2$ équivaut à $|z-1|^2=4|z-4|^2$ ou encore à $4|z-4|^2-|z-1|^2=0$. En développant, cette condition peut se réécrire sous les formes équivalentes suivantes

$$4(x-4)^{2} + 4y^{2} - (x-1)^{2} - y^{2} = 0$$

$$4x^{2} - 32x + 64 + 4y^{2} - x^{2} + 2x - 1 - y^{2} = 0$$

$$3x^{2} - 30x + 3y^{2} + 63 = 0$$

$$x^{2} - 10x + y^{2} + 21 = 0$$

$$(x-5)^{2} - 25 + y^{2} + 21 = 0$$

$$(x-5)^{2} + y^{2} = 4$$

L'ensemble des solutions est donc le cercle de centre le point (5,0) et de rayon 2.

Exercice 4. Suites.

- 1. (a) Puisque x+y>0, l'inégalité demandée équivaut à l'inégalité $4xy\le (x+y)^2$. Puisque $(x+y)^2-4xy=x^2+y^2-2xy=(x-y)^2\ge 0$, cette inégalité est vraie.
 - (b) Si n=0, on a $u_0=a\leq b=b_0$. Si n>0, l'inégalité demandée est une conséquence immdiate du (a) appliqué à $x=u_{n-1}$ et $y=v_{n-1}$.
- 2. (a) Soit n un entier. On a

$$w_{n+1} = \frac{u_n + v_n}{2} - \frac{2u_n v_n}{u_n + v_n} = \frac{(u_n + v_n)^2 - 4u_n v_n}{2(u_n + v_n)} = \frac{(v_n - u_n)^2}{2(u_n + v_n)} \le \frac{v_n - u_n}{2} = \frac{w_n}{2},$$

2

où on a utilisé les inégalités $0 \le v_n - u_n \le v_n + u_n$.

(b) Montrons par récurrence l'inégalité

$$w_n \le \frac{b-a}{2^n} \tag{*}$$

pour tout entier n. L'inégalité (*) est vraie (c'est une égalité) pour n=0. Supposons (*) vraie pour un entier n; alors d'après la question (3a) on a $w_{n+1} \le \frac{w_n}{2} \le \frac{b-a}{2^{n+1}}$ et (*) est vraie pour l'entier n+1, ce qui termine la récurrence.

En utilisant la question (1b), on a $0 \le w_n \le \frac{b-a}{2^n}$ pour tout entier n. Puisque les suites $(0)_n$ et $(\frac{b-a}{2^n})_n$ tendent vers 0, le théorème des gendarmes implique que (w_n) tend vers 0.

3. Soit n un entier. On a

$$v_{n+1} - v_n = \frac{u_n + v_n}{2} - v_n = \frac{u_n - v_n}{2} \le 0$$

d'après la question (1b). La suite (v_n) est donc décroissante. On a également

$$u_{n+1} - u_n = \frac{2u_n v_n}{u_n + v_n} - u_n = \frac{2u_n v_n - u_n^2 - u_n v_n}{u_n + v_n} = \frac{u_n (v_n - u_n)}{u_n + v_n} \ge 0$$

d'après la question (1b). La suite (u_n) est donc croissante. D'après la question (2), la suite (v_n-u_n) tend vers 0. Le théorème des suites adjacentes permet d'affirmer que les suites (u_n) et (v_n) convergent vers la même limite ℓ .

4. Pour tout entier n, on a $u_{n+1}v_{n+1} = u_nv_n$. La suite (u_nv_n) est donc constante, et égale à son premier terme $u_0v_0 = ab$. Par ailleurs, elle converge vers ℓ^2 comme produit de deux suites convergentes. On en déduit $\ell^2 = ab$, donc $\ell = \sqrt{ab}$ car $\ell > 0$.

Exercice 5. Étude de fonctions.

1. La fonction ln est définie sur $]0,+\infty[$ et s'annule uniquement en 1. On en déduit que $D_f=[0,1[\cup]1,+\infty[$.

2. La fonction f est dérivable sur D_f comme composition et quotient de fonctions usuelles. On obtient, pour $x \in D_f$,

$$f'(x) = -\frac{1}{x \ln^2 x} e^{1/\ln x}$$

et on a donc f(x) < 0 pour tout x dans D_f .

3. Il faut étudier les limites en 0, 1 (à droite et à gauche) et $+\infty$.

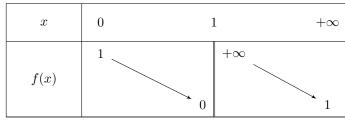
(a) en 0, on a $\lim_{x\to 0^+} \ln(x) = -\infty$, donc $\lim_{x\to 0^+} 1/\ln(x) = 0$ et donc $\lim_{x\to 0^+} f(x) = 1$.

(b) en 1 à gauche, on a $\lim_{x\to 1^-} 1/\ln(x) = -\infty$ donc $\lim_{x\to 1^-} f(x) = 0$.

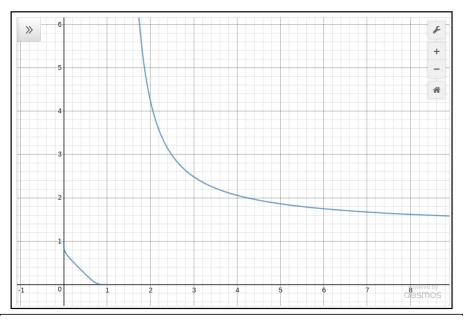
(c) en 1 à droite, on a $\lim_{x\to 1^+} 1/\ln(x) = +\infty$ donc $\lim_{x\to 1^+} f(x) = +\infty$.

(d) en $+\infty$, on a $\lim_{x\to +\infty} \ln(x) = +\infty$, donc $\lim_{x\to +\infty} 1/\ln(x) = 0$ et donc $\lim_{x\to +\infty} f(x) = 1$

4. On déduit des questions précédentes le tableau de variations de f



5. Voici le graphe de f.



Il admet deux asymptotes

- (a) la droite d'équation y=1 est une asymptote horizontale, puisque $\lim_{x\to +\infty} f(x)=1$
- (b) la droite d'équation x=1 est une asymptote vertic tale, puisque $\lim_{x\to 1^+} f(x)=+\infty$