L'ensemble $\{z\in {f C}: 1/z=-\overline{z}\}$ est O une droite		
O vide O un cercle	[Réponse attendue]	
Oun demi-plan		
Quelle transformation du plan complexe correspond à le $(0,1)$ et d'angle $\pi/2$? $\bigcirc z \mapsto iz+i$ $\bigcirc z \mapsto iz+1$	a rotation de centre	
$egin{array}{c} \bigcirc z \mapsto i\overline{z} \ \bigcirc z \mapsto iz + i + 1 \end{array}$	[Réponse attendue]	
La fonction de ${\bf C}$ dans ${\bf C}$ définie par $z\mapsto z^2$ est \bigcirc injective et non surjective		
Osurjective et non injective Obijective	[Réponse attendue]	
Oni injective, ni surjective		
Pour x réel, à quoi est égal $(2\cos x)^5$? $ \bigcirc 20\cos x + 10\cos(3x) + 2\cos(5x) $ $ \bigcirc \cos x + \cos(3x) + \cos(5x) $ $ \bigcirc \cos x + 4\cos(3x) + 6\cos(5x) $	[Réponse attendue]	
$\bigcirc 2\cos x + 10\cos(3x) + 20\cos(5x)$ Le nombre complexe $ie^{i\pi}$		
O a module i et argument $\pi/2$		
\bigcirc a module 1 et argument $-\pi/2$ \bigcirc a module 1 et argument π	[Réponse attendue]	
Soit z un nombre complexe de module 2 et d'argument $\pi/4$. L'écriture		
algébrique de z est $\bigcirc\sqrt{2}+i\sqrt{2}$ $\bigcirc\sqrt{2}-i\sqrt{2}$ $\bigcirc2+i$ $\bigcirc2-i$	[Réponse attendue]	
Soit $z=1+2i$. Quelle assertion est vraie ?		
$egin{aligned} egin{aligned} egin{aligned} egin{aligned} z &= \overline{z} \ egin{aligned} Oz^2 &= -3 + 4i \ egin{aligned} Oz \text{ est une racine de l'unit\'e} \ egin{aligned} z &= 5 \end{aligned}$	[Réponse attendue]	

1 sur 2 15/11/2021, 10:24

Combien de nombres complexes sont à la fois des racir l'unité et des racines sixièmes de l'unité ?	nes quatrièmes de
○ 0 ○ 3	
01	
$\bigcirc 2$	[Réponse attendue]
Laquelle de ces expressions n'est pas égale aux trois al 0 $e^{-i\pi/6}+e^{2i\pi/3}$ 0 $\frac{5-i}{2-3i}$ 0 $\sqrt{2}e^{i\pi/4}$ 0 $1-i$	utres ? [Réponse attendue]
Soit $ heta \in \mathbf{R}$. Alors $e^{i heta} \in \mathbf{R}$ si et seulement si \bigcirc il existe $k \in \mathbf{Z}$ tel que $\theta = k \pi$ \bigcirc il existe $k \in \mathbf{Z}$ tel que $\theta = 2k \pi$ \bigcirc $\theta = 0$ \bigcirc $\theta = \pi$	[Réponse attendue]

2 sur 2 15/11/2021, 10:24