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HASTINGS’ ADDITIVITY COUNTEREXAMPLE VIA DVORETZKY’S

THEOREM

GUILLAUME AUBRUN, STANISŁAW SZAREK, AND ELISABETH WERNER

Abstract. The goal of this note is to show that Hastings’ counterexample to the additivity
of minimal output von Neumann entropy can be readily deduced from a sharp version of
Dvoretzky’s theorem.

Introduction

A fundamental problem in Quantum Information Theory is to determine the capacity
of a quantum channel to transmit classical information. The seminal Holevo–Schumacher–
Westmoreland theorem expresses this capacity as a regularization of the so-called Holevo
χ-quantity (which gives the one-shot capacity) over multiple uses of the channel; see, e.g.,
[15]. This extra step could have been skipped if the χ-quantity had been additive, i.e., if

(1) χ(Φ⊗Ψ) = χ(Φ) + χ(Ψ)

for every pair (Φ,Ψ) of quantum channels. It would have then followed that the χ-quantity and
the capacity coincide, yielding a single-letter formula for the latter. Determining the veracity
of (1) had been a major open problem for at least a decade (we refer, e.g., to the survey [11]).
A substantial progress was made by Shor [18] who showed that (1) was formally equivalent to
the additivity of the minimal output von Neumann entropy of quantum channels — a much
more tractable quantity. Using this equivalence, the equality (1) was eventually shown to be
false by Hastings [8], with appropriate randomly constructed channels as a counterexample.

In this note, we revisit Hastings’ counterexample from the viewpoint of Asymptotic Geo-
metric Analysis (AGA). This field — originally an offspring of Functional Analysis — aims at
studying geometric properties of convex bodies (or equivalently, norms) in spaces of high (but
finite) dimension. More specifically, our goal is to show that (a variant of) Hastings’ analysis
can be rephrased in the language of AGA, and his result deduced with only minor effort from
a sharp version of Dvoretzky’s theorem on almost spherical sections of convex bodies — a fun-
damental result of AGA. This makes the argument much more transparent and will hopefully
lead to a better understanding of the problem of capacity. Our approach is largely inspired
by Brandao–Horodecki [2], who were able to reformulate Hastings’ analysis in the framework
of concentration of measure.
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Notation

Throughout the paper, the letters C, c, C ′, ... denote absolute positive constants, indepen-
dent of the instance of the problem (most notably of the dimensions involved), whose values
may change from occurrence to occurrence. The values of these constants can be computed
by reverse-engineering the argument, but we will not pursue this task. We also use the fol-
lowing convention: whenever a formula is given for the dimension of a (sub)space, it is tacitly
understood that one should take the integer part.

Let Mk,d be the space of k × d matrices (with complex entries), and Md = Md,d. More
generally, M(H) will stand for the space of (bounded) linear operators on the Hilbert space

H. We will write ‖ · ‖p for the Schatten p-norm ‖A‖p =
(

Tr(A†A)p/2
)1/p

. The limit case
‖ · ‖∞ is the operator (or “spectral”) norm, while ‖ · ‖HS = ‖ · ‖2 is the Hilbert–Schmidt (or
Frobenius) norm. Let D(Cd) be the set of density matrices on C

d, i.e., positive semi-definite
trace one operators on C

d (or states on C
d). If ρ is a state on C

d, its von Neumann entropy
S(ρ) is defined as S(ρ) = −Tr ρ log ρ. If Φ : Mm → Mk is a quantum channel (completely
positive trace preserving map), its minimal output entropy is

Smin(Φ) = min
ρ∈D(Cm)

S(Φ(ρ)).

Concavity of S implies that the minimum is achieved on a pure state.

Channels as subspaces

The crucial insight allowing to relate analysis of quantum channels to high-dimensional
convex geometry is the observation that there is an essentially one-to-one correspondence
between channels and linear subspaces of composite Hilbert spaces. Specifically, let W be a
subspace of Ck ⊗ C

d of dimension m. Then Φ : M(W) → Mk defined by Φ(ρ) = TrCd(ρ)
is a quantum channel. Alternatively (and perhaps more properly), we could identify W with
C

m via an isometry V : Cm → C
k ⊗C

d whose range is W and and define, for ρ ∈ Mm, the
corresponding channel Φ : Mm → Mk by

(2) Φ(ρ) = TrCd(V ρV †).

It is now easy to define a natural family of random quantum channels. They will be associ-
ated, via the above scheme, to random m-dimensional subspaces W of Ck ⊗C

d, distributed
according to the Haar measure on the corresponding Grassmann manifold (for some fixed
positive integers m,d, k that will be specified later). Note that all reasonable parameters of
a channel defined by (2) such as Smin(Φ) depend only on the subspace W = V (Cm) and not
on a particular choice of the isometry V (this will be also obvious from what follows). In
particular, the language of “random m-dimensional subspaces of C

k ⊗ C
d ” is equivalent to

that of “random isometries from C
m to C

k ⊗C
d.”

The additivity conjectures and the main theorem

The following question has attracted considerable attention in the last few years: if Φ1 and
Φ2 are two quantum channels, is it true that

(3) Smin(Φ1 ⊗ Φ2) = Smin(Φ1) + Smin(Φ2) ?
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Shor [18] showed it to be formally equivalent to a number of central questions in quantum
information theory, including the additivity of the χ-quantity mentioned in the introduction.

Note that the inequality “6” always holds (consider product input states). However, as
was first proved by Hastings using random constructions [8], the reverse inequality is false in
general. The exegesis of Hastings’ argument has subsequently been carried out in [2] and [4].
We will show here that the analysis of (a variant of) Hastings’ example essentially amounts
to applying the right version of Dvoretzky’s theorem and leads to the conclusion that high-
dimensional random channels typically violate (3).

Theorem 1. Let k ∈ N, m = ck2 and d = Ck2 (c and C being appropriate absolute constants).
Let V : Cm → C

k⊗C
d be a random isometry and Φ : Mm → Mk be the corresponding random

channel given by (2). Then for k large enough, with large probability,

Smin(Φ⊗ Φ̄) < Smin(Φ) + Smin(Φ̄).

The expression “with large probability” in Theorem 1 and in what follows may be understood
as “with probability > θ, where θ ∈ (0, 1) is arbitrary but fixed in advance” (note that,
in particular, the threshold value of k could then depend on θ). However, much stronger
assertions are in fact true, for example the probability of the exceptional set in Theorem 1 can
be majorized by exp(−c′m). Another comment: one only uses in the proof are that m and d
are comparable, and larger than ck2.

The proof will be based on separately majorizing Smin(Φ ⊗ Φ̄), which is well-known and
relatively simple, and minorizing Smin(Φ) = Smin(Φ̄), which is the main point of the argument.

A question analogous to (3) can be asked for the minimal output p-Rényi entropy (p >
1). For the additivity of Rényi entropy, random counterexamples were constructed earlier
by Hayden–Winter [10]. It was shown in [1] that the Hayden–Winter analysis can also be
simplified (at least conceptually) by appealing to Dvoretzky’s theorem. Working with the von
Neumann entropy, however, requires more effort. First, while [1] relied on a straightforward
instance of Milman’s “tangible” version of Dvoretzky’s theorem for Schatten classes that was
documented in the literature already in the 1970’s, we now need a more subtle, sharp version
(which appears in the literature only implicitly). Second, this sharp version is not applied in
the most direct way and requires additional preparatory work (for which we mostly follow the
approach of Brandao–Horodecki [2]).

Lower bound for Smin(Φ) : the approach

Since we are going to consider channels with near-maximal minimal output entropy, the
following simple inequality (Lemma III.1 in [2], or formula (40) in [8]) will allow to replace S
by a smoother quantity.

Lemma 2. For every state σ ∈ D(Ck),

S(σ) > S

(

Id

k

)

− k

∥

∥

∥

∥

σ − Id

k

∥

∥

∥

∥

2

HS

.

Consequently, for every quantum channel Φ : Md → Mk,

(4) Smin(Φ) > log(k) − k · max
ρ∈D(Cd)

∥

∥

∥

∥

Φ(ρ)− Id

k

∥

∥

∥

∥

2

HS

.
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It will be convenient to identify C
k ⊗C

d (or, to be more precise, Ck ⊗Cd — a distinction
we will ignore) with Mk,d via the canonical map induced by u⊗ v → |u〉〈v|. If x ∈ C

k ⊗C
d

is so identified with M ∈ Mk,d, then

(5) TrCd |x〉〈x| = MM †.

Via this identification, Schmidt coefficients of |x〉 coincide with singular values of M . While
the tensor and matrix formalisms are equivalent, the matrix formalism is arguably more trans-
parent, which sometimes leads to simpler arguments.

Denote by W ⊂ C
k ⊗ C

d the subspace inducing Φ. Note that the maximum in (4) is
necessarily attained on pure states which, in this identification, correspond to unit vectors
x ∈ W. For such states the action of Φ is given — in the matrix formalism — by (5), and so
the inequality (4) can be rewritten as

(6) Smin(Φ) > log(k)− k · max
M∈W , ‖M‖HS=1

∥

∥

∥

∥

MM † − Id

k

∥

∥

∥

∥

2

HS

.

The idea will be to show that, for a random subspace W, the maximum on the right is very
small; this will be formalized in the next proposition.

The main proposition and the derivation of the main theorem

The heart of the argument is the following proposition

Proposition 3. There are absolute constants c, C,C ′ > 0 so that for every k, for d = Ck2

and m = cd, a random Haar-distributed subspace W of dimension m in Mk,d satisfies

(7) max
M∈W ,‖M‖HS=1

∥

∥

∥

∥

MM † − Id

k

∥

∥

∥

∥

HS

6
C ′

k

with large probability (tending to 1 when k tends to ∞).

From the proposition one quickly deduces that the pair (Φ, Φ̄) is a counterexample to the
additivity of minimum output von Neumann entropy. Indeed, a straightforward calculation
shows that applying Φ⊗ Φ̄ to the maximally entangled state yields an output state with one
eigenvalue greater than or equal to dimW

dimMk,d
= m

kd = c
k ([10], Lemma III.3). Then, a simple

argument using just concavity of S(·) reduces the problem to calculating the entropy of the
state with one eigenvalue equal to c

k and all the remaining ones identical, which yields

Smin(Φ⊗ Φ̄) 6 2 log k − c log k

k
+

1

k

On the other hand, equation (6) together with Proposition 3 implies

Smin(Φ) > log(k)− C ′2

k
.

Since Smin(Φ̄) = Smin(Φ), the inequality of Theorem 1 follows if k is large enough, as required.
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Dvoretzky’s theorem : take one

We wish to point out that while Proposition 3 will be derived from a Dvoretzky-like theorem
for Lipschitz functions (Theorem 4 below), it can be rephrased in the language of the standard
Dvoretzky’s theorem. Indeed, its assertion says that for every M ∈ W with ‖M‖HS = 1 we
have

(8)
C2

k2
>

∥

∥

∥

∥

MM † − Id

k

∥

∥

∥

∥

2

HS

= Tr |M |4 − 2TrMM †

k
+

Tr Id

k2
= Tr |M |4 − 1

k
> 0.

Consequently,

(9) k−1/4‖M‖HS 6 ‖M‖4 6 k−1/4
(

1 +
C2

k

)1/4
‖M‖HS 6 k−1/4

(

1 +
C2

4k

)

‖M‖HS

for all M ∈ W. In other words, W is (1 + δ)-Euclidean, with δ = C2

4k , when considered as a

subspace of the normed space
(

Mk,d, ‖ · ‖4
)

, the Schatten 4-class.
In our prior work [1] we similarly observed that the crucial technical step of the Hayden-

Winter proof of non-additivity of p-Rényi entropy for p > 1 can be restated as an instance
of Dvoretzky’s theorem for the Schatten 2p-class. There is an important difference, however.
While in the case of p-Rényi entropy the needed Dvoretzky-type statement was known since
the 1970s, for the statement of the type (9) needed in the present context, the “off the shelf”

methods seem to yield only δ = O(k−1/4) as opposed to δ = O(k−1) above. This also suggests
that while for the p-Rényi entropy derandomization of the example — i.e., supplying explicit

channels for which the additivity fails — may be a feasible project (see section IX in [1] and ref-
erences therein), the analogous task for the von Neumann entropy is likely to be much harder.

Dvoretzky’s theorem : take two

We use the following definitions : if f is a function from a metric space (X, d) to R, and
µ ∈ R, the oscillation of f around µ on a subset A ⊂ X is

osc(f,A, µ) = sup
A

|f − µ|.

A function f : SCn → R is called circled if f(eiθx) = f(x) for any x ∈ SCn , θ ∈ [0, 2π]. If X is
a real random variable, we will say that µ is a central value of X if µ is either the mean of X, or
any number between the 1st and the 3rd quartile of X (i.e., if min{P(X > µ),P(X 6 µ)} > 1

4 ;
this happens in particular if µ is the median of X).

We will need the following version of Dvoretzky’s theorem.

Theorem 4 (Dvoretzky’s theorem for Lipschitz functions). If f : SCn → R is a 1-Lipschitz
circled function, then for every ε > 0, if E ⊂ C

n is a random subspace (Haar-distributed) of
dimension c0nε

2, we have with large probability

osc(f, SCn ∩ E,µ) 6 ε,

where µ is any central value of f (with respect to the normalized Lebesgue measure on SCn) and
c0 is an absolute constant. If the function is L-Lipschitz, the dimension changes to c0n(ε/L)

2.
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A striking application of the theorem above is to the case when f is the gauge function of a
convex body, or a norm: it leads to the fact that any high-dimension convex body has almost
spherical sections.

At the heart of Dvoretzky-like phenomena lies the concentration of measure, which in our
framework is expressed by

Lemma 5 (Lévy’s lemma [13]). If f : Sn−1 → R is a 1-Lipschitz function, then for every
ε > 0,

P(|f(x)− µ| > ε) 6 C1 exp(−c1nε
2),

where x is uniformly distributed on Sn−1, µ is any central value of f , and C1, c1 are absolute
constants.

Results such as Theorem 4 or Lévy’s lemma are usually stated with µ equal to the median
or the mean of f . However, once we know that the result is true for some central value (or,
for that matter, for any µ ∈ R), it holds a posteriori for any such value (up to changes in the
constants) as, for 1-Lipschitz functions, all central values differ at most by C/

√
n.

The obvious idea to prove Theorem 4 is to use Lévy’s lemma and an ε-net argument —
using the fact that an ε-net in SCn = S2n−1 can be chosen to have cardinality 6 (1 + 2/ε)2n

(see [16], Lemma 4.10). However, this only gives a subspace E of dimension cnε2/ log(1/ε).
For many applications (including our previous paper [1]), this extra logarithmic factor is not
an issue. However, in the present case, having the optimal dependence on ε is crucial.

The classical framework of convex geometry is the real case (with or without the assumption
“circled,” which in that context just means then that the function is even). In that setting,
Theorem 4 was proved by Gordon [6] who used comparison inequalities for Gaussian processes.
A proof based on concentration of measure was later given by Schechtman [17]. The complex
case does not seem to appear in the literature. Actually, at the face of it, Gordon’s proof does
not extend to the complex setting, while Schechtman’s proof does. We sketch Schechtman’s
proof of Theorem 4 in Appendix A. It is not clear whether the assumption “f circled” in
Theorem 4 can be completely removed; we do know that it is needed at most for very small
values of ε.

Proof of the main proposition

Let SHS be the Hilbert–Schmidt sphere in Mk,d and let M be a random matrix uniformly
distributed on SHS. Let g̃(·) be the function defined on SHS by

g̃(M) =

∥

∥

∥

∥

MM † − Id

k

∥

∥

∥

∥

HS

.

The next well-known lemma asserts that the singular values of a very rectangular random
matrix are very concentrated. This is a familiar phenomenon in random matrix theory that
goes back to [14]. Versions of this lemma appeared in the QIT literature under the tensor
formalism (see for example Lemma III.4 in [9]). However, these versions typically introduce
an unnecessary logarithmic factor which would imply that the main proposition holds with
d = Ck2 log k instead of d = Ck2. For completeness, we include a proof of Lemma 6 in
Appendix B.
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Lemma 6. There exist absolute constants C, c > 0 such that, if M is uniformly distributed on
the Hilbert–Schmidt sphere in Mk,d (d > C2k), then with probability larger than 1−exp(−ck),

(10) spec(MM †) ⊂
[

(

1√
k
− C√

d

)2

,

(

1√
k
+

C√
d

)2
]

.

We note that inclusion (10) can be reformulated as follows: all singular values of M differ

from 1/
√
k by less than C/

√
d. (Recall that the singular values of M correspond to the

Schmidt coefficients of a random pure state in C
k ⊗C

d.)

We will use in the sequel the following immediate corollary of Lemma 6.

Corollary 7. Under the hypotheses of Lemma 6 and denoting C1 = 3C
(a) with probability larger than 1− exp(−ck), all eigenvalues of MM † differ from 1/k by less

than C1/
√
kd; consequently, the median (or any fixed quantile) of g̃ is bounded by C1/

√
d

(b) if d > C2k, the median (or any fixed quantile) of ‖M‖∞ is bounded by 2/
√
k.

We point out that while we chose to present statements (a) and (b) above as consequences
of Lemma 6 for clarity and for “cultural” reasons (the lemma being familiar to the QIT com-
munity), more precise versions of these statements are available in (or can be readily deduced
from) the random matrix literature. Re (a), the study of the distribution of g̃ is, by (8), equiv-
alent to that of Tr |M |4, and a closed formula for the expected value of the latter is known (up
to terms of smaller order, its value is 1/k + 1/d); see, e.g., [7] (section 8) and its references.
Re (b), sharp estimates on the tail of ‖M‖∞ can also be found in [7] (proof of Lemma 7.3), in

particular every fixed quantile is 1/
√
k + 1/

√
d up to terms of smaller order. This result can

also be retrieved via methods of earlier papers [5, 19], which focused on the real case.

The function g̃ is 2-Lipschitz on SHS , and Corollary 7(a) implies that the median of g̃ is
as small as we want for large d. However, a direct application of Theorem 4 yields only a
bound of order 1/

√
k in (7). The trick — already present in the previous approaches — is

to exploit the fact that g̃ has a much smaller Lipschitz constant when restricted to a certain
large subset of SHS . As we will see, this bootstrapping argument is equivalent to applying
Theorem 4 twice.

The following lemma appears in [2] with a rather long proof, but using the matrix formalism
completely demystifies it.

Lemma 8. The function g̃ is 6/
√
k-Lipschitz when restricted to the set

Ω = {M ∈ SHS s.t ‖M‖∞ 6 3/
√
k}.

Proof. The lemma is a consequence of the following chain of matrix inequalities
∥

∥

∥

∥

MM † − Id

k

∥

∥

∥

∥

HS

−
∥

∥

∥

∥

NN † − Id

k

∥

∥

∥

∥

HS

6 ‖MM † −NN †‖HS

6 ‖M(M † −N †) + (M −N)N †‖HS

6 ‖M‖∞‖M † −N †‖HS + ‖M −N‖HS‖N †‖∞
6 (‖M‖∞ + ‖N‖∞)‖M −N‖HS

�
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The function ‖ · ‖∞ is 1-Lipschitz on SHS . By Corollary 7(b), its median is bounded by

2/
√
k for d > C2k. (Note that Lévy’s lemma shows that the measure of Ω is very small.) An

application of the standard Dvoretzky’s theorem (i.e.,Theorem 4 for norms, with µ equal to the

median of ‖·‖∞; note that the dimension of the ambient space is n = kd) with ε = 1/
√
k shows

that the intersection of SHS with a random subspace of dimension cd in Mk,d is contained in
Ω with large probability.

Let g be a 6k−1/2-Lipschitz extension of g̃|Ω to SHS — in any metric space X, it is possible

to extend any L-Lipschitz function f̃ defined on a subset Y without increasing the Lipschitz
constant; use, e.g., the formula

f(x) = inf
y∈Y

[

f̃(y) + L dist(x, y)
]

.

This formula also guarantees that the extended function g is circled. Since g = g̃ on most of
SHS, the median of g is a central value of g̃ and vice versa. We apply Theorem 4 to g with
ε = 1/k and L = 6k−1/2 to get (µ being the median of g̃)

osc(g, SHS ∩ E,µ) 6 1/k.

on a random subspace E ⊂ Mk,d of dimension m = c0 · kd · (k−1/(6k−1/2))2 = cd. Using
Corollary 7(a), we obtain that µ 6 1/k for d > (C1k)

2. We then have

osc(g, SHS ∩ E, 0) 6 2/k.

If SHS ∩ E ⊂ Ω (which, as noticed before, holds with large probability), g and g̃ coincide
on SHS ∩ E and therefore osc(g̃, SHS ∩ E, 0) 6 2/k. This completes the proof of Proposition
3 and hence that of Theorem 1.
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Appendix A : Proof of Theorem 4 (après Schechtman)

We sketch here a proof of Theorem 4, following Schechtman [17]. As we already mentionned,
a simple use of a ε-net argument gives a parasitic factor log(1/ε). This can be improved by
a chaining argument, which goes back (at least) to Kolmogorov — a way to use η-nets for all
values of η simultaneously.

Consider the canonical inclusion C
m ⊂ C

n ; and let U ∈ U(n) be a random Haar-distributed
unitary matrix. Then F := U(Cm) is distributed according to the Haar measure on the
Grassmann manifold of m-dimensional subspaces. If f : SCn → R is a 1-Lipschitz circled
function with mean µ, we need to show that osc(f ◦ U,SCm , µ) 6 ε with large probability
provided m 6 c0nε

2. We first prove a lemma.

Lemma 9. Let f : SCn → R be a 1-Lipschitz circled function and U ∈ U(n) be a Haar random
unitary matrix. Then for any x, y ∈ SCn with x 6= y and for any λ > 0,

P(|f(Ux)− f(Uy)| > λ) 6 C exp

(

−cn
λ2

|x− y|2
)

Proof. Fix x, y ∈ SCn . Since f is circled (and U is C-linear), we may replace y by eiθy and
choose θ so that 〈x|y〉 is real nonnegative; note that this choice of θ minimizes |x − y| and
assures that x + y and y − x are orthogonal. (This is the only really new point needed to
acommodate the complex setting.) Set z = x+y

2 and w = y−x
2 , then x = z+w and y = z−w.

Further, set β = |w| = 1
2 |x − y| (we may assume that β 6= 0) and w′ = β−1w. Then,

conditionally on u = U(z), U(w′) is distributed uniformly on the sphere Su⊥ := SCn ∩ u⊥.
Since U(x) = u+βU(w′) and U(y) = u−βU(w′), it follows that the conditional (on u = U(z))
distribution of f(Ux)− f(Uy) is the same as that of fu : Su⊥ → R defined by

fu(v) = f(u+ βv)− f(u− βv).

As is readily seen, fu is 2β-Lipschitz and its mean is 0. From Lévy’s lemma, applied to fu and
to the (2n− 3)-dimensional sphere Su⊥ , we deduce that, conditionally on u = U(z),

P(|f(Ux)− f(Uy)| > λ) 6 C1 exp(−c1(2n− 2)λ2/|x− y|2),
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and hence the same inequality holds also without the conditioning. �

The end of the proof (the actual chaining argument) is identical to that in Schechtman’s
paper, so — rather than copying it — we present the general principle on which it is based.
Let (S, ρ) be a compact metric space and let

(

Xs

)

s∈S be a family of mean 0 random variables

(a stochastic process indexed by S). We say that
(

Xs

)

is subgaussian if, for all s, t ∈ S with
s 6= t and for all λ > 0,

P(|Xs −Xt| > λ) 6 A exp

(

−α
λ2

ρ(s, t)2

)

,

where A,α > 0 are parameters. The classical Dudley’s inequality (see [3] for the original
article, [12] for a generalization to the subgaussian case that is relevant here, and [20] for a
book exposition) asserts then that, under some mild regularity conditions,

E sup
s,t∈S

|Xs −Xt| 6 C ′Aα−1/2

∫ ∞

0

√

logN(S, τ) dτ,

where N(S, τ) is the minimal cardinality of a τ -net of S (in particular the integrand is 0 if τ is
larger than the radius of S). In our case we choose S = SCm ∪ {0} (with the usual Euclidean
metric), Xs = f(Us)− µ if s ∈ SCm and X0 = 0. The underlying probability space is U(n),
and the subgaussian property is given by Lemma 9 if s, t ∈ SCm and directly by Lévy’s lemma
if s or t equals 0. Next, the bound N

(

SCm, τ
)

= N
(

S2m−1, τ
)

6 (1 + 2/τ)2m mentioned in
the comments following Lemma 5 leads to an estimate 2

√
m for the integral and to the bound

E := E sup
s∈S

|Xs| 6 E sup
s,t∈S

|Xs −Xt| 6 C ′C(cn)−1/2 · 2
√
m = C0

√

m

n
.

(For readers confused by different quantities appearing on the left side in different forms of
Dudley’s inequality, we point out that the first inequality above uses the fact that one of the
variables Xt equals 0, and that we always have sups,t |Xs −Xt| = supsXs + supt(−Xt).) The
assertion of Theorem 4 follows now from Markov’s inequality if ε is sufficiently larger than E.
A slightly more careful argument (such as that given in [17], or see [20]) or an application of
the appropriate concentration inequality (for functions on U(n)) yields a bound of the form
exp(−c′ε2n) on the probability of the exceptional set sups∈S |Xs| > C0

√

m
n + ε.

Let us comment here that the value of the constant c0 given by the proof of Theorem 4 is
probably the single most important obstacle to showing Theorem 1 for “reasonable” values of
k,m. An adaptation of the proof from [6] (which yields good constants) to the complex case
could be helpful here.

Appendix B : Proof of lemma 6

The lemma will follow if we show that with large probability,

‖∆‖∞ 6
C√
kd

,

where ∆ = MM † − Id/k ∈ Mk et ‖ · ‖∞ is the operator (or spectral) norm. Let N be a
1/4-net of SCk with cardinality bounded by (C0)

k. One checks that if x ∈ SCk and x̄ ∈ N
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with |x− x̄| 6 1/4, then

|〈x|∆|x〉| 6 |〈x̄|∆|x̄〉|+ |〈x− x̄|∆|x̄〉|+ |〈x|∆|x− x̄〉| 6 |〈x̄|∆|x̄〉|+ 2 · 1
4
‖∆‖∞,

so that taking supremum over x ∈ SCk , we get

‖∆‖∞ 6 2 sup
x̄∈N

|〈x̄|∆|x̄〉| .

An application of the union bound gives

P

(

‖∆‖∞ >
C√
kd

)

6 (C0)
k ·P

(

〈x0|∆|x0〉 >
C

2
√
kd

)

= (C0)
k ·P

(

|M †x0|2 >
1

k
+

C

2
√
kd

)

6 (C0)
k ·P

(

|M †x0| >
1√
k
+

C

5
√
d

)

where x0 ∈ C
k is any fixed unit vector (remember that d > C2k). The probabilities above

can be expressed in terms of Beta-type integrals, but it’s easier to estimate them using Lévy’s
lemma. The function M 7→ |M †x0| is 1-Lipschitz on the Hilbert–Schmidt sphere (if x0 is the
first vector of the canonical basis, then M †x0 is essentially the first row of M) and

E |M †x0| 6
(

E |M †x0|2
)1/2

=
√

1/k.

Hence, by Lévy’s lemma (with n = 2kd and ε = C
5
√
d
), we get

P

(

‖∆‖∞ >
C√
kd

)

6 exp(−ck)

for some choice of the constants C, c > 0, as required.
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