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4Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, Canada A1C 5S7
(Received 7 January 2012; published 12 March 2012)

For a system of N identical particles in a random pure state, there is a threshold k0 = k0(N ) ∼ N/5 such that
two subsystems of k particles each typically share entanglement if k > k0, and typically do not share entanglement
if k < k0. By “random” we mean here uniformly distributed on the sphere of the corresponding Hilbert space. The
analogous phase transition for the positive partial transpose (PPT) property can be described even more precisely.
For example, for N qubits the two subsystems of size k are typically in a PPT state if k < k1 := N/4 − 1/2
and typically in a non-PPT state if k > k1. Since, for a given state of the entire system, the induced state of a
subsystem is given by the partial trace, the above facts can be rephrased as properties of random induced states.
An important step in the analysis depends on identifying the asymptotic spectral density of the partial transposes
of such random induced states, a result which is interesting in its own right.
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I. INTRODUCTION

If all that we know about a quantum system is its dimension
n (the number of levels) and that it is well isolated from the
environment, a reasonable model—or at least a reasonable first
guess—for the state of the system is a unit vector selected
at random from the sphere of an n-dimensional complex
Hilbert space H. If the system interacts with some part of the
environment, represented by an ancilla space Ha , the quantum
formalism suggests as a model the so-called (random) induced
state, obtained after partial tracing, over Ha , a random pure
state on the space H ⊗ Ha . The same description applies if we
are primarily interested in a subsystem of an isolated system,
the setup that is addressed in the abstract.

The above is just one example of how a random paradigm
arises naturally in the quantum context. In the last few
years probabilistic considerations have become a very fruitful
approach in quantum information theory, the highlights being
the fundamental paper [1] by Hayden, Leung, and Winter and,
more recently, Hastings’s proof that suitably chosen random
channels provide a counterexample to the additivity conjecture
for classical capacity of quantum channels [2].

Although random states have been considered for many
years, their properties (e.g., are they typically entangled?)
remained elusive. In this Rapid Communication we describe a
reasonably general way to handle such questions. Of course,
the induced state ρ being random, we cannot expect to be
able to tell what ρ is. However, we may be able to infer
some properties of ρ if they are generic (that is, occur with
probability close to 1). As it turns out, for many natural
properties, a phenomenon of phase transition takes place (at
least when dimH is sufficiently large): the generic behavior
of ρ “flips” to the opposite one when s := dimHa changes

*aubrun@math.univ-lyon1.fr
†szarek@cwru.edu
‡deping.ye@mun.ca

from being a little smaller than certain threshold dimension s0

to being larger than s0.
For simplicity, we will focus on the random induced states

mentioned at the beginning of the Introduction. This leads
(see Refs. [3,4]) to a natural family of probability measures
on D(H), the set of states on H, where s, the dimension of
the ancilla space, is a parameter. For specificity, consider
H = Cd ⊗ Cd and let us concentrate on two properties:
entanglement and positive partial transpose (PPT). This
choice is based, first, on the importance of these concepts and,
second, on the differences in their respective mathematical
features, which allow to present the diverse techniques needed
to handle the problems.

Concerning the importance aspect, we note that detecting
and exploiting entanglement—originally discovered in the
1930s [5]—is a central problem in quantum information and
quantum computation, at least since Shor’s work [6] on integer
factoring. Next, the positive partial transpose is the simplest
test for entanglement (Peres-Horodecki PPT criterion; see
Refs. [7,8]) and is at the center of the important distillability
conjecture [9], a positive answer to which would give a
physical and operational meaning to the PPT property. On
the other hand, from the computational complexity point of
view, verifying the PPT property is easy (just check whether
the partial transpose of the state ρ is positive semidefinite),
while deciding whether ρ is entangled is a computationally
intractable problem (NP-hard) [10].

In the special case when n := dimH equals s = dimHa ,
partial tracing over the ancilla space Ha leads to the uni-
form distribution on D(Cn) (i.e., uniform with respect to
the Lebesgue measure, or Hilbert-Schmidt volume, denoted
by vol). More generally, when s � n, the corresponding
probability measure μn,s has a density with respect to the
Lebesgue measure on D(Cn), which has a simple form [3]

dμn,s

dvol
(ρ) = 1

Zn,s

(det ρ)s−n, (1)
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where Zn,s is a normalization factor. Note that Eq. (1) defines
the measure μn,s (in particular) for every real s � n, while
the partial trace construction makes sense only for integer
values of s. If s < n, the measure μn,s is concentrated on the
boundary of D(Cn), but still can be described analytically.
Another way to implement these measures is to start from
the complex Wishart-Laguerre matrices Wn,s (n × n, with s

degrees of freedom) [11], a classical ensemble in statistics and
mathematical physics, and to normalize them to have trace 1.

In spite of the explicitness of the formula (1), it is not
easy to find—even approximately, and even for s = n = d2—
the probability that a random induced state has PPT or is
entangled. This is because these traits are not encoded in a
simple way in the spectral properties of ρ. It was shown in
Ref. [12]—via methods of high-dimensional probability—that
the proportion of states (measured in the sense of μn,n, i.e.,
the Legesgue measure) that are unentangled, or separable, is
extremely small in large dimensions. This was extended to the
case when s = dimHa is slightly larger than n = d2 in [13],
while, on the other hand, it was proved in Ref. [1] that random
induced states on Cd ⊗ Cd are typically separable when s

is proportional to n2 = d4. The paper [12] also established
that unentangled states are extremely rare even among PPT
states (again, when s = n = d2). However, even such a simple
question as Does the proportion of the PPT states among all
states go to 0 as the dimension increases?, originally asked in
Ref. [14], has not been rigorously addressed prior to the work
that we describe in this Rapid Communication. The results we
summarize go a long way in filling the gaps in understanding
the phenomena in question (see Refs. [15,16] for details and
references). We show that the threshold between entanglement
and separability occurs when s is roughly of order n3/2 = d3,
and that the threshold between NPT (i.e., non-PPT) and PPT
is when s ∼ 4n = 4d2.

The heuristics behind the consequences stated in the
Abstract is now as follows. If we have a system of N particles
(with D levels each) which is in a random pure state, and
two subsystems of k particles each, then the “joint state”
of the subsystems is modeled by a random induced state
on Cd ⊗ Cd with d = Dk and s = DN−2k . In particular, the
relation k = N/5, or N = 5k, corresponds exactly to s = d3.
A similar argument applies to the PPT property.

Another consequence of the results is that, for a large
range of parameters, when the ancilla dimension s is roughly
between 4d2 and d3, a generic random state is both PPT and
entangled. Such states are bound entangled, or undistillable [9]
and, in spite of being entangled, are useless for purposes such
as teleportation or superdense coding (cf. Ref. [17]). However,
since for small systems (2 ⊗ 2 and 2 ⊗ 3; see Refs. [18,19])
PPT is equivalent to separability, one is tempted to think that
bound entangled states are an anomaly, and that the PPT
property remains a good proxy for separability in higher
dimensions. Our results imply that this heuristic becomes
misleading for large systems and that PPT and separability
are quantitatively very different properties.

While, as we postulated, random induced states form the
most natural family of probability measures on D(Cn), our
methods are fairly robust and allow handling of other random
models. For example, another popular way to construct random
states is to consider mixtures of pure states. Our analysis

applies to this model as well: if νn,s is the distribution of
1
s

∑s
i=1 |ψi〉〈ψi |, where (ψi) are independent uniform pure

states, then all the results presented for the measures μn,s

remain valid mutatis mutandis for νn,s .

II. RESULTS

We recapitulate the setting: n = dimH, ψ is a (random)
unit vector uniformly distributed on the sphere of H ⊗ Cs ,
and ρ = trCs |ψ〉〈ψ | is a random state on H whose distribution
is denoted by μn,s . Further, we assume that n = d2 > 1 and
H = Cd ⊗ Cd ; states on H will be considered entangled, PPT,
etc., with respect to this particular splitting. For definiteness,
the partial transpose � will be the transposition in the second
factor, i.e., defined (by its action on product states) via (τ1 ⊗
τ2)� = τ1 ⊗ τT

2 . The first result describes the phase transition
between generic entanglement and generic separability.

Theorem 1 [16]. There exist effectively calculable constants
C,c > 0 and a threshold function s0 = s0(d) satisfying

cd3 � s0(d) � Cd3 ln2 d, (2)

such that if ρ is a random state on Cd ⊗ Cd distributed
according to the measure μd2,s and if ε > 0, then

(i) for s � (1 − ε)s0(d) we have
P(ρ is separable) � 2 exp[−c(ε)d3] and

(ii) for s � (1 + ε)s0(d) we have
P(ρ is entangled) � 2 exp[−c(ε)s],

where c(ε) > 0 depends only on ε. �
Let us mention that our methods extend also to the

multipartite setting and to “unbalanced” systems such as
Cd1 ⊗ Cd2 , d1 �= d2–see Ref. [16] for precise statements.

The idea behind the proof of Theorem 1, based on tools
from high-dimensional convexity, is quite general and can be
used to estimate thresholds for other properties of random
induced states (beyond separability), provided the set of states
with given property is a convex subset K ⊂ D(H) and has
some minimal invariance properties. However, in the special
case of PPT we have a more precise result.

Theorem 2 [15]. Let ρ be a random state on Cd ⊗ Cd

distributed according to μd2,s . Set s1(d) = 4d2 and let ε > 0.
Then

(i) for s � (1 − ε)s1(d) we have
P(ρ is PPT) � 2 exp[−c(ε)d2] and

(ii) for s � (1 + ε)s1(d) we have
P(ρ is non-PPT) � 2 exp[−c(ε)s],

where c(ε) > 0 depends only on ε. �
As noted in Ref. [15], it is likely that the sharp estimate in (i)

is of order exp (−c(ε)d4); this conjecture leads to interesting
large deviation problems for matrices ρ� .

The proof of Theorem 2 (except for the exponential
estimates on the probabilities, which require a unified approach
common to both theorems) depends on methods of random
matrix theory and, specifically, on the following result that
identifies asymptotic spectral density of the partial transpose
of random induced states, and which is of independent interest.

If A is a Hermitian matrix, we will denote by λmax(A)
and λmin(A) the largest and the smallest eigenvalues of A.
If a ∈ R and σ > 0, the semicircular distribution μSC(a,σ 2)

is the probability measure with support [a − 2σ,a + 2σ ]
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FIG. 1. Histogram showing distribution of the eigenvalues of ρ� , where ρ is a random state on C50 ⊗ C50 chosen according to the distribution
μ2500,2500 (α = 1, left) or μ2500,10000 (α = 4, right). In both cases the median eigenvalue is about 1

2500 = 4 × 10−4.

and density (2πσ 2)−1
√

4σ 2 − (x − a)2. We then have the
following theorem.

Theorem 3 [15]. Given α > 0, let ρd be a random mixed
state on Cd ⊗ Cd distributed according to μd2,	αd2
. Then, as
d tends to +∞, the eigenvalue distributions of ρ�

d approaches
the deterministic measure μSC(1,1/α) in the following sense: for
any interval I ⊂ R, the proportion of eigenvalues of ρ�

d inside
the rescaled interval 1

d2 I converges (in probability) toward
μSC(1,1/α)(I ).

Moreover, we also have convergence of the extreme eigen-
values λmax(d2ρ�

d ) and λmin(d2ρ�
d ) to respectively 1 + 2/

√
α

and 1 − 2/
√

α, the endpoints of the support of μSC(1,1/α). �
It is easy to numerically “check” the conclusion of

Theorem 3 (this was first noticed in Ref. [20]). For example,
Fig. 1 shows sample distributions of eigenvalues of a partially
transposed random state on C50 ⊗ C50, when α = 1 and α = 4
(sample size 1 in each case).

Because of the link between random induced states and
the Wishart ensemble Wn,s , Theorem 3 holds also for that
ensemble (real or complex, although it is the complex setting
that is most relevant to the quantum theory); in that case the
rescaling factor d2 is not needed. We emphasize that this is
rather unexpected since the asymptotic spectral density of
the Wishart ensemble itself is given by the Marchenko-Pastur
distribution [21].

III. MATHEMATICS BEHIND THE RESULTS

Although Theorems 2 and 3 have similar statements, the
tools used in their proofs are very different, which parallels
the differences in the computational complexity of PPT vs that
of entanglement. However, combining all the tools is often
necessary to obtain the full strength of the results.

We first describe the proof of Theorem 1, which is of
geometric nature and where the concept of mean width plays
a central role. To present it, let us introduce basic concepts
associated to a convex body K ⊂ Rm containing the origin in
the interior (see Ref. [22] for more background). The gauge of
K is the function ‖ · ‖K defined for x ∈ Rm by

‖x‖K = inf{t � 0 : x ∈ tK}.
The polar (or dual) body of K is defined as

K◦ = {y ∈ Rm : 〈x,y〉 � 1 ∀x ∈ K}.
If u is a vector from the unit sphere Sm−1, the support

function of K in the direction u is hK (u) := maxx∈K〈x,u〉 =

‖u‖K◦ . Note that hK (u) + hK (−u) is the distance between the
two hyperplanes tangent to K and normal to u. The mean
width of K is then defined as

w(K) :=
∫

Sm−1
hK (u) dσ (u) =

∫
Sm−1

‖u‖K◦dσ (u),

where dσ is the normalized spherical measure on Sm−1.
In our setting, the relevant convex body is K = S◦, where

S is the set of mixed separable states on H = Cd ⊗ Cd . The
ambient space Rm is the space of self-adjoint trace 1 operators
on H (hence m = d4 − 1), where the maximally mixed state
plays the role of the origin. Since K◦ = (S◦)◦ = S (the bipolar
theorem) and since separability of ρ is equivalent to ‖ρ‖S � 1,
the crucial question is whether w(S◦) is smaller or larger than
1. An analysis of this question leads to the following value of
the threshold function appearing in Theorem 1:

s0(d) = w(S◦)2.

Assertions (i) and (ii) can then be derived from concentration
of measure, and the heart of the proof is showing Eq. (2),
especially the upper bound.

Determining the threshold s0(d) requires finding the typical
value of the gauge associated to S, computing which, as
we mentioned, is a hard problem. We take an indirect route
and find the order of magnitude of the threshold using
the machinery of high-dimensional geometry, especially the
so-called MM∗-estimate.

The MM∗-estimate (see Refs. [22,23]) is a general theorem
which relates the mean width of a convex body and the
mean width of its polar. While the abstract formulation may
require an affine change of coordinates, in the present situation,
because of the symmetries of S (invariance under local unitary
conjugations), we can deduce via simple representation theory
the inequalities

1 � w(S)w(S◦) � C ln d,

where C > 0 is a universal constant. Since w(S) can be
estimated by standard techniques of high-dimensional prob-
ability [12], this allows to establish the order of magnitude of
w(S◦) [and hence of s0(d)] up to polylog factors.

As indicated earlier, the same scheme yields estimates for
the thresholds corresponding to other properties including
the PPT, but it does not allow us to recover the precise
order 4d2 appearing in Theorem 2. However, the latter result
(except for quantitative estimates on the probabilities, which
require further work, again based on the concentration of
measure) follows readily from Theorem 3, which describes
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very precisely the spectrum of the partial transpose of a
random induced state: the PPT condition is equivalent to
λmin(ρ�

d ) � 0, which is generic if 1 − 2/
√

α > 0; similarly,
λmin(ρ�

d ) < 0 is generic if 1 − 2/
√

α < 0—hence α = s
d2 = 4

is the critical value. In turn, to show Theorem 3 we use
the moment method, a standard technique from random
matrix theory. The idea is to identify the asymptotic spectral
density by computing its moments. This leads to problems
in asymptotic combinatorics: the moments of semicircular
distributions are given by the Catalan numbers, corresponding
to the dominant combinatorial terms, while the statements
about convergence of extreme eigenvalues are proved by
refining the calculations and carefully estimating contributions
of lower-order combinatorial terms.

IV. CONCLUSIONS

We established that random induced states on
H = Cd ⊗ Cd exhibit a phase-transition phenomenon
with respect to the dimension s of the ancilla space. We
exemplified the phenomenon on two properties: positive
partial transpose, for which the threshold value of s is 4d2,
and entanglement, for which the threshold is d3 (up to a
polylog factor). This allows us to determine whether two
subsystems of an isolated system typically share (or typically
do not share) entanglement when knowing only the sizes of
those subsystems, and similarly for the PPT property. In fact,
we provide a “black box” approach, which applies to many
natural properties of quantum states. Our results motivate
further study of the geometry of sets of quantum states,
and that of large deviation behavior of some random matrix
ensembles related to quantum information theory.

We expect the probabilistic methods to continue to play
a major role in quantum theory. Indeed, the latter field
usually involves high-dimensional objects; for example, the
quantum analog of a byte [a state on (C2)⊗8–a qubyte, one
may say] “lives” in a space of dimension 216 − 1 = 65 535.
While this makes numerical schemes mostly impractical (the
well-known curse of dimensionality), randomness is boosted
by the presence of many free parameters (one may call this
phenomenon the blessing of dimensionality). The current level
of understanding of these aspects of the theory is arguably
comparable to that of combinatorics in the 1950s, when the
power of the probabilistic method [24] began to be appreciated
and, subsequently, the study of random graphs became an
intensive area of research.
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