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Random Points in the Unit Ball of �n
p

Guillaume Aubrun

Abstract. We show that two limit results from random matrix theory, due to
Marčenko–Pastur and Bai–Yin, are also valid for matrices with independent
rows (as opposed to independent entries in the classical theory), when rows
are uniformly distributed on the unit ball of �n

p , under proper normalization.
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Let us start with the following classical results from Random Matrix Theory.
Let Z be a random variable such that

EZ = 0 and EZ2 = 1. (1)

Consider an infinite array (Zij) of i.i.d. copies of Z. For each couple (n,N) of
integers, let Gn,N be the N × n random matrix

Gn,N =
(

1√
N

Zij

)
1≤i≤N,1≤j≤n

. (2)

We consider also the matrix

An,N = G†
n,NGn,N .

We may drop subscripts and write simply G and A. The matrix A is sometimes
called a sample covariance matrix. Let (λi(A)) be the eigenvalues of A, arranged in
decreasing order. We write λmax(A) for λ1(A) and λmin(A) for λn(A). The spectral
measure of A is the probability measure on R defined as

µA =
1
n

∑
i

δλi(A).

In other words, µA(B) is the proportion of eigenvalues of A that fall in a Borel
set B ⊂ R. The following theorems describe the limit behaviour of the spectrum
of such large-dimensional matrices, in both global and local regime.
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Theorem (Marčenko–Pastur [6]). Let (n,N) be a sequence of sizes tending to infin-
ity in such a way that the ratio n/N has a limit β ∈]0, 1[. Let An,N = G†

n,NGn,N

with Gn,N defined as (2). Then, almost surely, the sequence of (empirical) spectral
measures (µAn,N

) converges weakly to the deterministic measure µ(β) supported on
the segment

[λ−(β), λ+(β)] := [(1 −
√

β)2, (1 +
√

β)2]

and with density
dµ(β)

dx
=

1
2πβx

√
(x − λ−(β))(λ+(β) − x).

Theorem (Bai–Yin [2]). Assume moreover that EZ4 < ∞. Let (n,N) be a sequence
of sizes tending to infinity in such a way that the ratio n/N has a limit β ∈]0, 1[.
Let An,N = G†

n,NGn,N with Gn,N defined as (2). Then, almost surely, we have

lim
n,N→∞

λmax(An,N ) = λ+(β) = (1 +
√

β)2,

lim
n,N→∞

λmin(An,N ) = λ−(β) = (1 −
√

β)2.

In some cases it is natural to consider a more general model of random matri-
ces, and to weaken the hypothesis “independence of entries” to “independence of
rows”. A random vector X in Rn is said to be isotropic if for every direction
θ ∈ Sn−1,

E〈X, θ〉 = 0 and E〈X, θ〉2 = 1. (3)

It is actually enough to check (3) for θ being a vector of the canonical basis. Condi-
tion (3) is the analogue of condition (1). Note also that any random vector (unless
it belongs almost surely to an affine hyplerplane) has an affine image which is
isotropic. Also, (3) can be rephrased as EX ⊗ X = Id: the inertia matrix of X
equals the identity matrix. Here x ⊗ x is the rank one positive operator on Rn

defined by (x ⊗ x)(y) = 〈x, y〉x. Let (Xi) be i.i.d. copies of X, and consider the
random matrices

Γn,N =
1√
N




X1

X2

...
XN


 (4)

and, as before

An,N = Γ†
n,NΓn,N =

1
N

N∑
i=1

Xi ⊗ Xi.

The matrix An,N is the empirical approximation of the inertia matrix of X, with
N sample points. A well-studied class of random vectors is the class of vectors
uniformly distributed on a convex body (see the survey [5]). If K is a convex body
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in Rn (i.e. a compact full-dimensional convex subset), the random vector XK is
defined as

P(XK ∈ B) =
vol(K ∩ B)

vol(K)
for any Borel set B ⊂ Rn. If XK is isotropic, we say that K is isotropic. It is nat-
ural to wonder whether the theorems mentioned before can be extended to large
classes of random vectors, especially uniformly distributed on convex bodies. We
show that this holds for the simplest examples of convex bodies, the unit balls of
the �n

p spaces, defined as for 1 ≤ p < +∞ by

Bn
p =

{
(x1, . . . , xn) ∈ Rn s.t.

n∑
i=1

|xi|p ≤ 1

}

and Bn
∞ = [−1, 1]n. We simply write Xn

p instead of XBn
p
. The random vector Xn

p

can be obtained by simple operations from one-dimensional random variables, as
shown by the following theorem due to Barthe–Guédon–Mendelson–Naor [3]:

Theorem (Representation of the uniform measure on Bn
p ). Let 1 ≤ p < +∞ and

(Yi) be a n-tuple of i.i.d. random variables distributed according to the probability
measure νp with density 1/(2Γ(1+1/p))e−|t|p (t ∈ R). Let also Z be an exponential
random variable independent from Y (i.e. the density of Z is e−t, t ≥ 0). Then the
random vector

(Y1, . . . , Yn)
(
∑n

i=1 |Yi|p + Z)1/p

is uniformly distributed on Bn
p .

We write cn,p for the unique positive number such that cn,pB
n
p is isotropic,

and write B̃n
p = cn,pB

n
p :

cn,p =

(
1

vol(Bn
p )

∫
Bn

p

x2
1dx1 . . . dxn

)−1/2

.

We prove the following results

Theorem 1. Let (n,N) be a sequence of sizes tending to infinity in such a way that
the ratio n/N has a limit β ∈]0, 1[. Let An,N = Γ†

n,NΓn,N with Γn,N defined as
(4), where (Xi) are independent and uniformly distributed on B̃n

p . Then, almost
surely, the sequence of empirical spectral measures (µAn,N

) converges weakly to the
Marčenko–Pastur limit µ(β).

Remark. Theorem 1 has been obtained independently by Pajor and Pastur [7]
using the Stieltjes transform method.

Theorem 2. Let (n,N) be a sequence of sizes tending to infinity in such a way that
the ratio n/N has a limit β ∈]0, 1[. Let An,N = Γ†

n,NΓn,N with Γn,N defined as (4),
where (Xi) are independent and uniformly distributed on B̃n

p . Then, almost surely,
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lim
n,N→∞

λmax(An,N ) = λ+(β),

lim
n,N→∞

λmin(An,N ) = λ−(β).

Remark. The author was able in [1] to adapt the techniques used by Bai–Yin
to the setting of random vectors uniformly distributed on unconditional convex
bodies, leading to a weaker conclusion (with estimates 1±C

√
β instead of 1±√

β,
for some absolute constant C).

The proof uses the following lemma, which is an immediate consequence of
the Barthe–Guédon–Mendelson–Naor representation theorem.

Lemma 1. Let Γ be defined as (4), where (Xi) are i.i.d. copies of cn,pX
n
p . Let

B = (bij) be a N × n random matrix whose entries are independent and dis-
tributed according to νp. Let ∆ be a N × N diagonal matrix with entries δjj =
(
∑n

i=1 |bij |p + Zj)−1/p, where Zj are i.i.d. exponential random variables indepen-
dent from B. Then the random matrices Γ and cn,p√

N
∆·B have the same distribution

(here · is the usual matrix product).

Proof of theorems 1 and 2. With notations from lemma 1, the matrices Γn,N and
cn,p√

N
∆ · B have the same distribution. We set

B′ =
1
γp

B,

∆′ = cn,pγp∆,

where γp = (Eb2
11)

1/2. We claim that

‖∆′ − Id‖op −→
n→∞ 0 almost surely. (5)

Using strong versions of the law of large numbers (see [2], Lemma 2) — note that
E|bij |q < ∞ for all q — we get that, almost surely

lim
n,N→∞

sup
1≤j≤N

∣∣∣∣∣
1
n

n∑
i=1

|bij |p − E|bij |p
∣∣∣∣∣ = 0.

Since limn,N→∞ supj | 1
nZj | = 0 almost surely, we deduce that

lim
n,N→∞

sup
1≤j≤N

∣∣∣(nE|b11|p) 1
p δjj − 1

∣∣∣ = 0.

Now (5) follows from the fact that

cn,p ∼
n→∞

n1/p(E|b11|p)1/p

(Eb2
11)1/2

.

Consider now An,N = Γ†
n,NΓn,N and A′

n,N = ( 1√
N

B′)†( 1√
N

B′). The normalization
was chosen so that the matrix B′ has independent entries with variance 1, so it
enters the setting of the Marčenko–Pastur and the Bai–Yin theorems. We now use
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the following inequalities, which are proved using the min-max characterization of
eigenvalues

1
‖∆′−1‖2

λi(A′
n,N ) ≤ λi(An,N ) ≤ ‖∆′‖2λi(A′

n,N ). (6)

Theorem 2 is now a direct consequence of (5), (6) and the Bai–Yin theorem applied
to the matrices (A′

n,N ). Similarly, the use of Marčenko–Pastur theorem on the
matrices (A′

n,N ) gives that for every interval I ⊂ R, the sequence (µAn,N
(I)) con-

verges almost surely to µ(β)(I). We conclude by arguing that it is enough to test
the weak convergence on intervals with rational endpoints (see [4], Theorem 2.2).
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