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Abstract: An important problem in quantum information theory is the mathematical
characterization of the phenomenon of quantum catalysis: when can the surrounding
entanglement be used to perform transformations of a jointly held quantum state under
LOCC (local operations and classical communication)? Mathematically, the question
amounts to describe, for a fixed vector y, the set T (y) of vectors x such that we have
x ⊗ z ≺ y ⊗ z for some z, where ≺ denotes the standard majorization relation.

Our main result is that the closure of T (y) in the �1 norm can be fully described by
inequalities on the �p norms: ‖x‖p � ‖y‖p for all p � 1. This is a first step towards
a complete description of T (y) itself. It can also be seen as a �p-norm analogue of the
Ky Fan dominance theorem about unitarily invariant norms. The proof exploits links
with another quantum phenomenon: the possibiliy of multiple-copy transformations
(x⊗n ≺ y⊗n for given n). The main new tool is a variant of Cramér’s theorem on large
deviations for sums of i.i.d. random variables.

1. Introduction

The increasing interest that quantum entanglement has received in the past decade is
due, in part, to its use as a resource in quantum information processing. We investigate
the problem of entanglement transformation: under which conditions can an entangled
state |φ〉 be transformed into another entangled state |ψ〉? We restrict ourselves to LOCC
protocols: Alice and Bob share |φ〉 and have at their disposal only local operations (such
as unitaries UA ⊗ IB for Alice) and classical communication. Nielsen showed in [15] that
such a transformation is possible if and only if λφ ≺ λψ , where “≺” is the majorization
relation and λφ , λψ are the Schmidt coefficients vectors of |φ〉 and |ψ〉, respectively.
Practically in the same time, Jonathan and Plenio [9] discovered a striking phenomenon:
entanglement can help LOCC communication, without even being consumed. Precisely,
they have found states |φ〉 and |ψ〉 such that |φ〉 cannot be transformed into |ψ〉, but, with
the help of a catalyst state |χ〉, the transformation |φ〉 ⊗ |χ〉 → |ψ〉 ⊗ |χ〉 is possible.
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When such a catalyst exists, we say that the state |φ〉 is trumped by |ψ〉 and we write
λφ ≺T λψ . We say then that |φ〉 can be transformed into |ψ〉 by entanglement-assisted
LOCC or ELOCC. It turns out that the trumping relation is much more complicated than
the majorization relation; one can easily check on two given states |φ〉 and |ψ〉 whether
λφ ≺ λψ is satisfied or not, but there is no direct way to determine if λφ ≺T λψ . Later,
Bandyopadhyay et al. [2] discovered that a similar situation occurs when trying to trans-
form by LOCC multiple copies of |φ〉 into |ψ〉. It may happen that the transformation
|φ〉 → |ψ〉 is not possible, but when considering n copies, one can transform |φ〉⊗n into
|ψ〉⊗n . The phenomenon of multiple simultaneous LOCC transformations, or MLOCC,
has been intensively studied in recent years and many similarities with ELOCC have
been found [7,8].

In this note, we make some progress towards a complete characterization of both
ELOCC and MLOCC. We show that a set of inequalities involving �p norms (see the
remark on Conjecture 1 at the end of the paper) is equivalent to the fact that |φ〉 can be
approached by a sequence of states |φn〉 which are MLOCC/ELOCC-dominated by |ψ〉.
An important point is that we allow the dimension of |φn〉 to exceed the dimension of
|φ〉. Our proof uses probabilistic tools; we introduce probability measures associated to
|φ〉 and |ψ〉 and we use large deviation techniques to show the desired result.

Interestingly, the result can be reversed to give a characterization of �p norms that is
similar to the Ky Fan characterization of unitarily invariant norms. We refer the interested
reader to Sect. 3. The rest of the paper is organized as follows: in Sect. 2 we introduce the
notation and the general framework of entanglement transformation of bipartite states.
We also state our main result, Theorem 1. The theorem is proved in Sect. 4. Conclusions
and some directions for further study are sketched in Sect. 5. The Appendix at the end
of the paper contains basic results from large deviation theory needed in the proof of the
main theorem.

2. Notation and Statement of the Results

For d ∈ N∗, let Pd be the set of d-dimensional probability vectors: Pd = {x ∈
Rd s.t. xi � 0,

∑
xi = 1}. If x ∈ Pd , we write x↓ for the decreasing rearrangement of

x , i.e. the vector x↓ ∈ Pd such that x and x↓ have the same coordinates up to permuta-
tion, and x↓

i � x↓
i+1. We shall also write xmax for x↓

1 and xmin for the smallest nonzero
coordinate of x .

There is an operation on probability vectors that is fundamental in what follows: the
tensor product ⊗. If x = (x1, . . . , xd) ∈ Pd and x ′ = (x ′

1, . . . , x ′
d ′) ∈ Pd ′ , the tensor

product x ⊗ x ′ is the vector (xi x ′
j )i j ∈ Pdd ′ ; the way we order the coordinates of x ⊗ x ′

is immaterial for our purposes. We also define the direct sum x ⊕ x ′ as the concatenated
vector (x1, . . . , xd , x ′

1, . . . , x ′
d ′) ∈ Rd+d ′

.

It x ∈ Pd satisfies xd = 0, it will be useful to identify x with the truncated vector
(x1, . . . , xd−1) ∈ Pd−1. This identification induces a canonical inclusion Pd−1 ⊂ Pd .
Thus, every vector x ∈ Pd can be thought of as a vector of Pd ′ for all d ′ � d by
appending d ′ − d null elements to x . We consider thus the set of all probability vec-
tors P<∞ = ⋃

d>0 Pd . In other words, P<∞ is the set of finitely supported probability
vectors.
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Let us now introduce the classical majorization relation [13,3]. If x, y ∈ Rd we
define the submajorization relation ≺w as follows:

x ≺w y iff. ∀k ∈ {1, . . . , d},
k∑

i=1

x↓
i �

k∑

i=1

y↓
i ,

and the majorization relation ≺ as

x ≺ y iff.
d∑

i=1

xi =
d∑

i=1

yi and ∀k ∈ {1, . . . d − 1},
k∑

i=1

x↓
i �

k∑

i=1

y↓
i .

We usually work with probability vectors, for which both relations coincide. How-
ever, it will be useful in the proof to work with deficient vectors (of total mass less than 1)
and to use submajorization. We write Sd(y) for the set of vectors x in Pd which are maj-
orized by y. It is well-known that Sd(y) is a compact convex set whose extreme points
are the vectors obtained by permuting the coordinates of y; many other characterizations
of Sd(y) are known [16,4]. This relation behaves well with respect to direct sums and
tensor products: x ≺ y implies x ⊕ z ≺ y ⊕ z and x ⊗ z ≺ y ⊗ z for any z ∈ P<∞.
The majorization relation has been shown to have a very important role in quantum
information. Nielsen has proved [15] that a state |φ〉 belonging to Alice and Bob can be
transformed into the state |ψ〉 by using local operations and classical communication
(LOCC) if and only if

λφ ≺ λψ,

where λφ (respectively λψ ) is the vector of eigenvalues of the density matrix for Alice’s
system when the joint system is in the state |φ〉 (respectively |ψ〉). Not long after Nielsen’s
theorem, Jonathan and Plenio have discovered a very intriguing phenomenon: there exist
states |φ〉 and |ψ〉 such that the transformation |φ〉 → |ψ〉 is impossible by LOCC, but,
with the aid of a catalyst state |χ〉, the transformation |φ〉 ⊗ |χ〉 → |ψ〉 ⊗ |χ〉 becomes
possible; we say that |φ〉 can be transformed into |ψ〉 by Entanglement-assisted LOCC
or ELOCC. This result has motivated a more complex relation between probability vec-
tors: if x, y ∈ Pd , we say that y trumps x and write x ≺T y if there exists z ∈ P<∞
such that x ⊗ z ≺ y ⊗ z. It is important to require that the auxiliary vector z (called the
catalyst) is finitely supported (see Remark 2). Given y ∈ Pd , we write Td(y) for the set
of d-dimensional vectors trumped by y, that is

Td(y) = {x ∈ Pd s.t. x ≺T y}.
The set Td(y) is in general larger than Sd(y) [5] and much more complicated to describe.
Up to now, there is no known simple procedure to decide whether x ∈ Td(y) or not.
Hence, finding a tractable characterization of the relation ≺T (or, equivalently, of the set
Td(y)) has become an important open problem in quantum information theory [18]. The
geometry of Td(y) has been studied in [4,5]: it is a bounded convex set that it is neither
closed nor open (provided y is not too simple). We shall introduce now another impor-
tant extension of LOCC transformations. Bandyopadhyay et al. [2] found an example of
entangled states |φ〉 and |ψ〉 with the property that the LOCC transformation |φ〉 → |ψ〉
is impossible but, when one tries to transform multiple copies of the states, the trans-
formation |φ〉⊗n → |ψ〉⊗n becomes possible. We say that |ψ〉 MLOCC-dominates |φ〉.
We introduce the analogue of the trumping relation for probability vectors:

x ≺M y iff ∃n � 1 s.t. x⊗n ≺ y⊗n,



136 G. Aubrun, I. Nechita

and the set of probability vectors MLOCC-dominated by a given vector y:

Md(y) = {x ∈ Pd s.t. x ≺M y}.

Not much is known about the set Md(y). It has been studied in [7] and shown to have
many similarities with the set Td(y): for example it is neither closed nor open in general.
One important point is that, for all y, we have Md(y) ⊆ Td(y) (see [7]).

We report progress towards a description of the sets of Md(y) and Td(y). The main
ingredient of our approach is the following observation. Consider two vectors x, y ∈ Pd .
Whether x ≺ y, x ≺M y, x ≺T y or not depends only on the non-zero coordinates of x
and y. Thus, it is possible to ≺/≺M /≺T -compare vectors of different sizes by appending
the necessary amount of zero coordinates to the end of one of them. Hence, it seems
more natural (at least from a mathematical point of view) to consider the sets

T<∞(y) = {x ∈ P<∞ s.t. x ≺T y}
= {x ∈ P<∞ s.t. ∃z ∈ P<∞ s.t. x ⊗ z ≺ y ⊗ z} =

⋃

d ′�d

Td ′(y)

and

M<∞(y) = {x ∈ P<∞ s.t. x ≺M y}
= {x ∈ P<∞ s.t. ∃n � 1 s.t. x⊗n ≺ y⊗n} =

⋃

d ′�d

Md ′(y).

The important point here is that both T<∞(y) and M<∞(y) do not depend anymore
on the size of y, but only on the non-null coordinates of y. Of course, if y ∈ Pd ,
Td(y) = T<∞(y) ∩ Pd and Md(y) = M<∞(y) ∩ Pd ; this shows that the sets T<∞(y)
and M<∞(y) are not closed either in general (otherwise Td(y) and Md(y)would also be
closed). We then write T<∞(y) and M<∞(y) to denote the closure taken with respect to
the �1-norm, the natural topology in this setting (see Remark 3). Recall that for p � 1,
the �p norm of a vector x ∈ Pd is defined as

‖x‖p =
(

d∑

i=1

x p
i

)1/p

(1)

and ‖x‖∞ = max xi . We now come to our main result:

Theorem 1 Consider two vectors x, y ∈ P<∞. The following assertions are equivalent:

(a) x ∈ M<∞(y),
(b) x ∈ T<∞(y),
(c) ‖x‖p � ‖y‖p, ∀p � 1.

Remark 1. Note that instead of demanding that ‖x‖p � ‖y‖p for all p � 1, it suf-
fices to ask for x, y ∈ Pd that the inequality holds for all p ∈ [1, pmax (x, y)], where
pmax (x, y) = log d/(log ymax − log xmax ). The inequalities for p > pmax follow by
simple computation. For such results in a more general setting, see [14].
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Remark 2. It is important to see at this point how the set T<∞(y) is related to the set Td(y).
First of all, note that if we drop the closure, we have equality: T<∞(y) ∩ Pd = Td(y)
for y ∈ Pd . However, when taking the �1 closure of the left-hand side, we obtain a
strict inclusion: Td(y) � T<∞(y) ∩ Pd . An example for such a vector is provided
by the phenomenon of infinite-dimensional catalysis, discovered by Daftuar [4]. Take
y = (0.5, 0.25, 0.25) and x = (0.4, 0.4, 0.2). It is obvious that x /∈ Td(y) because
x3 < y3 and the condition xd � yd is necessary for x ∈ Td(y). However, there exists

an infinite-dimensional catalyst z = (1 − α)(1, α, α2, . . . , αk, . . .), where α = 2− 1
8 ,

such that x ⊗ z ≺ y ⊗ z and ||x ⊗ z||p � ||y ⊗ z||p for all p � 1. Note that z is
�p-bounded and thus ‖x‖p � ‖y‖p for all p � 1. By the preceding theorem, we have
that x ∈ T<∞(y) ∩ P3. For further remarks on this topic, see Sect. 5.

Remark 3. The use of the �1 norm is natural in this context from a mathematical point of
view since P<∞ is a subset of the norm-closed hyperplane of �1 defined by

∑
xi = 1.

Let us explain also how it relates to other physically motivated distances between the
approaching states |φn〉 and the original state |φ〉. Recall that x is the eigenvalue vector
of the reduced density matrix corresponding to Alice’s (or, equivalently to Bob’s) part of
the system. From the details of the proof (see also Sect. 5), one sees that the size of the
approaching vectors xn increases with n. So, in order to compare ρ and ρn , we have
to realize them as density matrices on the same Hilbert space H. Moreover, we can
suppose that the two states are diagonalizable in the same basis (Alice can achieve this
by applying a local unitary basis change). As usually, we append the necessary number
of zero eigenvalues to x in order to have the same size as xn . We obtain the following
equality:

‖x − xn‖1 = ‖ρ − ρn‖tr .

So, for Alice’s part of the system, we obtain a convergence in the trace norm sense.
It is well known that the trace norm distance is related to the probability that the two
states can be distinguished by some measurement. Moreover, by using some classical
inequalities (see [17], Chapter 9), the fidelity F(ρ, ρn) can be shown to converge to 1.

3. A � p Version of Ky Fan Theorem

In this section, we explain how Theorem 1 can be seen as an analogue of Ky Fan domi-
nance theorem. We refer to [3] for background. We denote by Md the space of complex
d×d matrices. A norm |||·||| on Md is said to be unitarily invariant if |||U AV ||| = |||A|||
for all unitary matrices U, V . A norm || · || on Rd is said to be symmetric if

||(x1, . . . , xd)|| = ||(±xσ(1), . . . ,±xσ(d))||
for all choices of signs in {±1}d and all permutations σ ∈ Sd . It is well-known ([3],
Theorem IV.2.1) that unitarily invariant norms on Md are in 1-to-1 correspondance with
symmetric norms on Rd (consider the restriction of ||| · ||| to diagonal matrices).

Examples of unitarily invariant norms are given by Ky Fan norms, defined for
k = 1, 2, . . . , d by

|||A|||(k) =
k∑

j=1

s j (A),
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where s1(A) � · · · � sd(A) denote the ordered singular values of a matrix A. The Ky
Fan dominance theorem asserts that these norms are extremal among unitarily invariant
norms in the following sense: if A, B satisfy |||A|||(k) � |||B|||(k) for any k = 1, · · · , d,
then |||A||| � |||B||| for any unitarily invariant norm; this condition can also be formu-
lated as s(A) ≺w s(B), where s(·) denotes the vector of singular values of a matrix.

This gives a way to derive an infinite family of inequalities from a finite one. However,
this may be too strong a requirement and one can wonder what happens for an important
special class of unitarily invariant norms: the Schatten p-norms (or noncommutative �p
norms), defined for p � 1 by

|||A|||p =
⎛

⎝
d∑

j=1

s j (A)
p

⎞

⎠

1/p

.

To state our result, we need to compare matrices of different sizes. If d < d ′ we iden-
tify Md with the top-left corner of Md ′ ; this gives a natural inclusion Md ⊂ Md ′ and
we write M<∞ = ⋃

d Md . Note that the tensor product of matrices is a well-defined
operation on M<∞.

Theorem 2 Let A, B ∈ Md . The following are equivalent

(1) |||A|||p � |||B|||p for all p � 1.
(2) There exists in M<∞ a sequence (An) so that limn→∞ |||An − A|||1 = 0 and

|||A⊗n
n ||| � |||B⊗n

n ||| for all unitarily invariant norms |||.||| (or, equivalently, so
that s(A⊗n

n ) ≺w s(B⊗n)).

Of course, a main difference between this result and Ky Fan dominance theorem is
that condition (ii) here is hard to check and involves infinitely many inequalities.

Proof (sketch). Because of the bijective correspondence between unitarily invariant
norms on matrices and symmetric norms on vectors, it is enough to prove the theorem
for positive diagonal matrices. This is almost the content of the equivalence (a) ⇐⇒ (c)
of Theorem 1. The only slight remark that we need in order to get condition (2) as stated
here is the following: in Lemma 2 below, it follows from the proof that we can actually
choose the integer n so that x⊗N ≺w y⊗N for any N � n. ��

4. The Proof of Theorem 1

We shall prove the sequence of implications (a) ⇒ (b) ⇒ (c) ⇒ (a). The first two are
well known; we sketch their proof for completeness. The third is the most difficult one
and represents our contribution to the theorem.

(a) ⇒ (b) Because the closure is taken with respect to the same topology (�1) for both
M<∞(y) and T<∞(y), it is enough to show M<∞(y) ⊂ T<∞(y). Let x ∈ M<∞(y) and
consider n such that x⊗n ≺ y⊗n . The trick here (see [7]) is to use the following z as a
catalyst:

z = x⊗(n−1) ⊕ x⊗(n−2) ⊗ y ⊕ · · · ⊕ x ⊗ y⊗(n−2) ⊕ y⊗(n−1).

For simplicity we do not normalize z, but this is irrelevant. The vector z has been con-
structed such that

x ⊗ z = x⊗n ⊕ w and y ⊗ z = y⊗n ⊕ w,

wherew is the same in both expressions. This implies that x⊗z ≺ y⊗z, i.e. x ∈ T<∞(y).
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(b) ⇒ (c) Let z ∈ P<∞ be the catalyst for x ≺T y: x ⊗ z ≺ y ⊗ z. A function
ϕ : Rd → R is said to be Schur-convex if a ≺ b implies ϕ(a) � ϕ(b). It is well-known
(see [13,16]) that if h : R → R is a convex function, then ϕ : x �→ ∑d

i=1 h(xi ) is
Schur-convex. Consequently, the functions x �→ ‖x‖p

p are Schur-convex for p � 1.
Moreover, they satisfy the identity ‖x ⊗ z‖p = ‖x‖p‖z‖p, and similarly for y. Since
‖z‖p is finite, we get that ‖x‖p � ‖y‖p. To show that the same is true for x ∈ T<∞(y),
it suffices to check that the set of x ∈ �1 such that ‖x‖p � ‖y‖p is norm-closed; this
follows from the inequality ‖ · ‖p � ‖ · ‖1.

(c) ⇒ (a) We will adapt some techniques used by G. Kuperberg in a slightly different
context [12]. In our proof, we allow deficient vectors, i.e. vectors with total mass smaller
than 1, and we use submajorization.

As in [12], we associate to a positive vector x ∈ Rd the measureµx = ∑d
i=1 xiδlog xi ,

where δz is the Dirac measure at point z. The basic property is that the tensor product
operation of vectors corresponds to the convolution of associated measures:

µx⊗y = µx ∗ µy .

The convolution of two measures µ and ν is defined by the relation

µ ∗ ν(A) = (µ× ν)({(x, y) ∈ R2 : x + y ∈ A}).
Moreover, if µ and ν are probability measures and Xµ and Xν denote independent
random variables with laws, respectively µ and ν, then µ ∗ ν is the law of Xµ + Xν .

The following lemma gives a way to prove majorization using comparison of the tails
of the associated measures.

Lemma 1. Let x and y be two vectors of Rd with non-negative components. Consider
the measuresµx andµy associated with x and y. Assume that, for all t ∈ R,µx [t,∞) �
µy[t,∞). Then x ≺w y.

Proof. Note that

µx [t,∞) =
∑

i :log xi �t

xi =
∑

i :xi �exp(t)

xi .

Thus, for all u > 0,
∑

i :xi �u xi �
∑

i :yi �u yi . For simplicity, we assume first that
all coordinates of y are distinct. We will show by induction on k ∈ {1, . . . , d} that
∑k

i=1 x↓
i �

∑k
i=1 y↓

i . For the first step; use u = y↓
1 to conclude that x↓

1 � y↓
1 . Now, fix

k ∈ {1, . . . , d −1} and suppose that
∑k

i=1 x↓
i �

∑k
i=1 y↓

i . If x↓
k+1 � y↓

k+1, the induction

step is obvious. If x↓
k+1 > y↓

k+1, we use u = x↓
k+1 to get

k+1∑

i=1

x↓
i �

∑

i :xi �x↓
k+1

xi �
∑

i :yi �x↓
k+1

yi �
∑

i :yi �y↓
k+1

yi =
k+1∑

i=1

y↓
i .

This completes the induction when y has distinct coordinates. The general case follows
by approximating y by y + εn , where (εn) is a suitable sequence of positive vectors
tending to 0. The approximation is possible since the set of vectors y majorizing a fixed
x is closed. ��
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We now get to the key lemma in our argument. We shall use a slightly modified
version of Cramér large deviations theorem—see Appendix.

Lemma 2. Let x, y in Rd , with nonnegative coordinates. Assume that for any 1 � p �
∞, we have the strict inequality ‖x‖p < ‖y‖p. Then there exists an integer n such that
x⊗n ≺w y⊗n.

Proof. Consider x and y satisfying the hypotheses of the lemma. We can assume by
multiplying both vectors by a positive constant K that ‖y‖1 = 1. Let p = 1−‖x‖1 > 0.
We introduce the measuresµx andµy associated to x and y;µy is a probability measure
but µx is not, so we add a mass at −∞ by setting µx = µx + pδ−∞. Let X and Y be
random variables distributed according to µx and µy respectively. We denote by (Xn)

(resp. (Yn)) a sequence of i.i.d. copies of X (resp. Y). We are going to show that for n
large enough

∀t ∈ R, P(X1 + · · · + Xn � nt) � P(Y1 + · · · + Yn � nt). (2)

This is equivalent to showing that

∞∫

nt

dµ∗n
x =

∞∫

nt

dµ∗n
x �

∞∫

nt

dµ∗n
y ,

which, by the previous lemma implies x⊗n ≺w y⊗n . Note that the asymptotic behav-
ior of the quantities appearing in (2) is governed by Cramér’s theorem. Let fn(t) =
P(X1 + · · · + Xn � nt)1/n and gn(t) = P(Y1 + · · · + Yn � nt)1/n . Applying Cramér’s
theorem (see Appendix), we obtain

f (t) := lim
n→∞ fn(t) =

{
1 − p if t � E(X |X �= −∞)

e−
∗
X (t) otherwise.

g(t) := lim
n→∞ gn(t) =

{
1 if t � E(Y )
e−
∗

Y (t) otherwise.

Note also that the log-Laplace of X , defined for λ ∈ R by 
X (λ) = log EeλX , is
related to the �p norms of x :

∀λ � 0, 
X (λ) = log ‖x‖λ+1
λ+1.

The same holds for Y : 
Y (λ) = log ‖y‖λ+1
λ+1 and thus we have 
X (λ) < 
Y (λ) for

λ � 0.
Let MX = esssup X = log ‖x‖∞ and MY = esssup Y = log ‖y‖∞; by hypothesis

MX < MY . First of all, note that fn(t) = 0 for t � MX , so it suffices to show that
fn � gn on (−∞,MX ], for n large enough. We claim that f < g on (−∞,MY ), and
thus on (−∞,MX ]. Indeed, for E(Y ) � t < MY , the supremum in the definition of

∗

Y (t) is attained at a point λ0 � 0 (cf. Appendix), so we have that

f (t) � e−(λ0t −
X (λ0)) < e−(λ0t −
Y (λ0)) = g(t),

where the strict inequality follows from the fact that
X (λ) < 
Y (λ), for all λ � 0. For
t < E(Y ), g(t) = 1 and f (t) � 1− p < 1. Moreover, the functions f and g admit finite
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limits in −∞: limt→−∞ f (t) = 1 − p and limt→−∞ g(t) = 1. Thus, on the compact
set [−∞,MX ], the functions f and g are well-defined, non-increasing, continuous and
satisfy f < g.

We now use the following elementary fact: if a sequence of non-increasing functions
defined on a compact interval I converges pointwise towards a continuous limit, then
the convergence is actually uniform on I (for a proof see [19] Part 2, Problem 127; this
statement is attributed to Pólya or to Dini depending on authors). We apply this result
to ( fn) and (gn) on the interval I = [−∞,MX ] to conclude that the convergence is
uniform for both sequences. As f < g, we can therefore find n large enough such that
fn � gn on I , and thus on R. This is equivalent to (2) and completes the proof of the
lemma. ��
Remark 4. It is possible to avoid the use of Cramér’s theorem by using low-technology
estimates on large deviations probability instead, as done in [12]. This requires addi-
tional care to get the required uniform bounds and slightly obfuscates the argument.
The only advantage is to give explicit bounds for the value of n in Lemma 2, which our
compactness argument does not. These bounds are quite bad anyway, and for example
do not allow to replace the �1-closure in the main theorem by a �p-closure for some
p < 1.

Proof of (c) ⇒ (a) (continued). Recall that x and y are such that ‖x‖p � ‖y‖p for any
p � 1 and that we want to find, for any ε > 0 small enough, a vector xε ∈ M<∞(y)
such that ‖x − xε‖1 � ε. Let dx (resp. dy) be the number of nonzero coordinates of
x (resp. y). We proceed as follows : let 0 < ε < 2dx xmin and consider the (deficient)
vector x ′

ε obtained from x by subtracting ε/2dx to each of its nonzero coordinates. This
implies that x ′

ε is a positive vector, ‖x − x ′
ε‖1 = ε/2 and that x ′

ε satisfies the hypotheses
of Lemma 2. Applying the lemma, we obtain the existence of an integer n such that
(x ′
ε)

⊗n ≺w y⊗n .
Remember that x ′

ε is deficient; we now enlarge it into a vector xε ∈ P<∞ by adding
mass ε/2. But since we want to keep the property x⊗n

ε ≺w y⊗n (which is identical to
x⊗n
ε ≺ y⊗n), a safe way to do this is to add a large number of coordinates, each of them

being very small. More precisely, let xε = x ′
ε⊕δ⊕D , where δD = ε/2 and δ is a positive

number such that δ(x ′
ε)

n−1
max � min((x ′

ε)
n
min, yn

min). We claim that x⊗n
ε ≺ y⊗n , that is, for

any k � 1,
k∑

i=1

(x⊗n
ε )

↓
i �

k∑

i=1

(y⊗n)
↓
i . (3)

Indeed, δ has been chosen so that the dn
x largest coordinates of x⊗n

ε are exactly the coor-
dinates of (x ′

ε)
⊗n , so when 1 � k � dn

x , (3) follows from the relation (x ′
ε)

⊗n ≺w y⊗n .

If dx < k � dn
y , the inequality also holds since the choice of δ guarantees (x⊗n

ε )
↓
k �

(y⊗n)
↓
k . Finally if k � dn

y , (3) holds trivially since the right-hand side equals 1.
In conclusion, x⊗n

ε ≺ y⊗n , and thus xε ∈ M<∞(y). But xε has been constructed such
that ‖x − xε‖1 � ε and thus x ∈ M<∞(y) which completes the proof of the theorem.

5. Conclusion and Further Remarks

In conclusion, we are able to give a nice description of the �1-closure of the set T<∞(y).
However, this closure may be substantially larger than the usual closure Td(y) in Pd ,
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and requires approximation by vectors with growing support. Our result can be seen as
a contribution to a conjecture attributed to Nielsen [4]:

Conjecture 1. Fix a vector y ∈ Pd. Then a vector x ∈ Pd belongs to Td(y) if and only
if the following conditions are verified:

(1) For p � 1, ‖x‖p � ‖y‖p.
(2) For 0 < p � 1, ‖x‖p � ‖y‖p.
(3) For p < 0, ‖x‖p � ‖y‖p.

M. Klimesh announced a proof of this conjecture in a short communication [10],
but the solution has not appeared in print yet. However, his methods are different from
our approach (private communication). Note that the definition of ‖ · ‖p given in (1) is
extended to any p ∈ R∗. For p < 1, ‖ · ‖p is not a norm in the usual sense. We have
shown that the condition (1) above is equivalent to x ∈ T<∞(y). Notice however that
T<∞(y) is in general larger than Td(y); note also that the set of x ∈ Pd that satisfy
conditions (1–3) is closed. The “only if” part of the conjecture follows from standard
convexity/concavity properties of functionals ‖ · ‖p, see [16,4].

This question also appears in [7] where it is formulated using the Rényi entropies.
For any real p �= 1, the p-Rényi entropy is defined for x ∈ Pd as

Hp(x) = sgn(p)

p − 1
log2

(
d∑

i=1

x p
i

)

.

The limit case p = 1 corresponds to the usual Shannon entropy. The conditions (1–3)
of the conjecture can be concisely reformulated as “Hp(x) � Hp(y) for all p”.

An intermediate notion is the following: for y ∈ Pd , let T<∞(y)
b

be the set of vectors
x ∈ Pd such that there is a sequence (xn) in T<∞(y) tending to x , with a uniform bound

on the size of the support of xn . We think that a description of T<∞(y)
b

could be related
to the set of vectors which satisfy conditions (1) and (2)—but not necessarily (3)—in
Conjecture 1.

There is one more consequence of our main theorem we would like to discuss. Recall
that when defining catalysis, we insisted on the fact that the catalyst should be finitely-
supported. Let P∞ ⊂ �1 be the set of infinite-dimensional probability vectors, and for y
in P<∞, define the set T ′(y) of (finitely supported) vectors trumped by y using infinite
catalysts:

T ′(y) = {x ∈ P<∞ s.t. ∃z ∈ P∞ s.t. x ⊗ z ≺ y ⊗ z}.
As shown in [4] (Sect. 4.3), in general T<∞(y) �= T ′(y). However, since x ∈ T ′(y)
implies ‖x‖p � ‖y‖p for all p � 1, it follows from our main theorem that T<∞(y) =
T ′(y).

6. Appendix: On Cramér’s Theorem

We review here some facts from large deviations theory. A complete reference for all the
material contained here is [6]. Let X be a random variable taking values in [−∞,∞).
We allow X to equal −∞ with positive probability; this is a nonstandard hypothesis.
We however exclude the trivial case P(X = −∞) = 1. We write E for the expectation.
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We assume also that the conditional expectation E(X |X �= −∞) is finite. The cumulant
generating function 
X of the random variable X is defined for any λ ∈ R by


X (λ) = log EeλX .

It is a convex function taking values in (−∞,+∞]. Its convex conjugate
∗
X , sometimes

called the Cramér transform, is defined as


∗
X (x) = sup

λ∈R
λx −
X (λ). (4)

Note that
X is a smooth and strictly convex function on [0,+∞]. Moreover,
′
X (0) =

E(X |X �= −∞) and limλ→+∞
′
X (λ) = esssup(X). Consequently, for any x such that

E(X |X �= −∞) < x < esssup(X), the supremum in (4) is attained at a unique point
λ � 0. We now state Cramér’s theorem in a suitable formulation

Proposition 1. Let X be a [−∞,+∞)-valued random variable such that
X (λ) < +∞
for any λ � 0. Let (Xi ) be a sequence of i.i.d. copies of X. Then for any t ∈ R,

lim
n→∞

1

n
log P(X1 + · · · + Xn � tn) =

{
log P(X �= −∞) if t � E(X |X �= −∞)

−
∗
X (t) otherwise.

Proof. Let X̂ denote the random variable X conditioned to be finite, that is for any Borel
set B ⊂ R,

P(X̂ ∈ B) = 1

1 − p
P(X ∈ B),

where p = P(X = −∞). A consequence of the classical Cramér theorem ([6], Corollary
2.2.19) states that

∀t ∈ R, lim
n→∞

1

n
log P(X̂1 + · · · + X̂n � tn) = − inf

s�t

∗

X̂
(s). (5)

One checks that 
X̂ = 
X − log(1 − p), and consequently


∗
X̂

= 
∗
X + log(1 − p). (6)

Note also that

P(X1 + · · · + Xn � tn) = (1 − p)nP(X̂1 + · · · + X̂n � tn). (7)

Finally, note that the infimum on the right hand side of (5) is null for t � E(X̂)
and equals 
∗

X̂
(t) for t > E(X̂). This follows from the fact that the convex function

t �→ 
∗
X̂
(t) attains its zero minimum at t = E(X̂) and is increasing for t � E(X̂). Thus,

we can rewrite Eq. (5) as:

lim
n→∞

1

n
log P(X̂1 + · · · + X̂n � tn) =

{
0 if t � E(X̂)
−
∗

X̂
(t) otherwise.

(8)

The proposition follows from the Eqs. (6)–(8). ��
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Note added in proof: Several preprints recently appeared on closely related topics. Proofs of Conjecture 1
were presented by Turgut in [20] and by Klimesh in [11]. Finally, we were able to pursue the large deviation

approach used here to obtain more precise results in [1] (in particular, we get a description of T<∞(y)b). The
analogue of Conjecture 1 remains open for MLOCC transformations.
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