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For a random quantum state on H = Cd⊗Cd obtained by partial tracing a random pure
state on H⊗Cs, we consider the question whether it is typically separable or typically
entangled. We show the existence of a sharp threshold s0 = s0(d) of order roughly d3.
More precisely, for any ε > 0 and for d large enough, such a random state is entangled
with very large probability when s 6 (1−ε)s0, and separable with very large probability
when s > (1 + ε)s0.
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1. Random states

If all that we know about a quantum system is its dimension n (the number of
levels) and that it is well isolated from the environment, a reasonable model for the
state of the system—or at least a reasonable first guess—is a unit vector selected at
random from the sphere of an n-dimensional complex Hilbert space H. If the system
interacts with some part of the environment, represented by an ancilla space Ha,
the quantum formalism suggests as a model the so-called (random) induced state,
obtained after partial tracing, over Ha, a random pure state on the space H⊗Ha.
The same description applies if we are primarily interested in a subsystem of an
isolated system.

The above is just one example of how a random paradigm arises naturally in the
quantum context. Another important aspect is that the objects studied in quantum
information theory usually live in very large dimensions. For example, the quantum
state of 8 qubits (a “qubyte”) is described by a operator on (C2)⊗8, leading to
216−1 degrees of freedom. As opposed to numerical methods, which face the curse of
dimensionality, probabilistic considerations are usually boosted by large dimensions
and enjoy the blessing of dimensionality.

The use of high-dimensional random states has become a very fruitful approach
in quantum information theory [1]. A highlight was Hastings’s proof [2] that suitably
chosen random channels provide a counterexample to the additivity conjecture for
the classical capacity of quantum channels.

Although random states have been considered for many years, their properties
remained elusive. In this article, we answer in a very precise way the most funda-
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mental question one may ask about a random state: is it entangled ? Understanding
how prevalent is entanglement is certainly of importance. We note that detecting
and exploiting entanglement—originally discovered in the 1930’s [3]—is a central
problem in quantum information and quantum computation at least since Shor’s
work [4] on integer factoring.

For simplicity, we focus on the study of entanglement in bipartite balanced
systems. We assume that a random state is shared between two parties (Alice and
Bob), which play a symmetric role. Mathematically, we are going to consider states
on H = Cd ⊗Cd, with d > 2.

Let us first comment on the (trivial) case where Alice and Bob share a random
pure state, described by a uniformly distributed unit vector |ψ〉 ∈ Cd ⊗ Cd. Such
a pure state is separable if and only if |ψ〉 factorizes as |ψA〉 ⊗ |ψB〉. This happens
with proability zero: the set of product vectors is a manifold of lower dimension
(the Segré maniford) inside the projective space. Henceforth, random pure states
are almost surely entangled.

The situation becomes interesting when we consider random mixed states. The
“open system” paradigm mentioned earlier suggests to incorporate the influence
of the environment. We assume that the state shared by Alice and Bob is the
partial trace (over the environment Ha = Cs) of a pure state |φ〉 ∈ Cd ⊗Cd ⊗Cs.
When |φ〉 is uniformly distributed on the unit sphere, we say that the reduced state
ρ = trCs |φ〉〈φ| is a random state onCd⊗Cd, induced byCs. The distribution of such
random induced states enjoys nice properties [5]: for s > d2, it has a density with
respect to the Lebesgue measure which is proportional to (det ρ)s−d

2

. In particular,
for s = d2, random induced states are uniformly distributed on the set of states.

Other models of random mixed states have been proposed. For example, given s
indepedent Haar distributed pure states {|ψi〉} on Cd⊗Cd, one may consider their
uniform mixture

ρ =
1

s

s∑
i=1

|ψi〉〈ψi|. (1)

This models shares many properties with random induced states, and all results
stated here are true for both models, where s is understood either has the dimension
of the environment, or the number of terms in the mixture.

In the limit case when d is fixed and s tends to∞, the random states concentrate
towards the maximally mixed state ρ∗ = I/d2. This can be seen from the density,
since the maximally mixed state is the unique state with maximal determinant.
This is mathematically a manifestation of the law of large numbers, and physically
can be related to decoherence. Since ρ∗ lies in the interior of the set of separable
states, it follows that, with d fixed and s→∞, the probability that induced states
are separable tends to 1.

From the two extreme cases s = 1 (pure states) and s = ∞, we may infer that
induced states are more likely to be separable when the environment has larger
dimension. As it turns out, a phase transition takes place (at least when d is suffi-
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ciently large): the generic behavior of ρ “flips” to the opposite one when s changes
from being a little smaller than certain threshold dimension s0 to being larger than
s0. We now state our main theorem in this direction.

Theorem 1.1. There exists a function s0(d) satisfying

d3 . s0(d) . d3 log2 d (2)

such that, if ρ is a random state on Cd ⊗Cd induced by Cs, for any ε > 0,

(1) if s 6 (1− ε)s0(d), we have

P(ρ is entangled) > 1− 2 exp(−c(ε)d3),

(2) is s > (1 + ε)s0(d), we have

P(ρ is separable) > 1− 2 exp(−c(ε)s),

where c(ε) is a constant depending only on ε.

Here and it what follows, the notation a . b means that there exists a numeric
constant C such that a 6 Cb. The value of this constant is not specified, although
it could be retrieved from the proofs. Note that the theorem is meaningful only for
large enough d.

Theorem 1.1 was proved in Ref. 6, and a non-technical high-level overview of
the proof can be found in Ref. 7. The sequel of this article is organized as follows: in
Sec. 2 we reformulate the main theorem, measuring local dimensions by numbers of
qubits. In Sec. 3, we compare with related results. Section 4 presents basic concepts
from convex geometry on which we rely. In Sec. 5, we sketch a proof of the “easy”
half of the theorem, and Sec. 6 covers the complete proof.

2. Threshold on the number of shared qubits

Here is a more appealing reformulation of the main theorem. Suppose Alice and Bob
are given a quantum state, prepared in the following way. We start with a system of
N qubits, which is in a global pure state. This state is described by a unit vector in
(C2)⊗N , and we assume that this unit vector is chosen at random, with respect to
the uniform measure on the 2N -dimensional sphere. Give k of these qubits to Alice,
k other qubits to Bob, and forget about the remaning N − 2k qubits (by taking the
partial trace over the corresponding subsystem). Do Alice and Bob typically share
entanglement ? In this formulation, the answer also exhibits a threshold property:
there is a critical value k0(N), equivalent to N/5 as N tends to infinity, such that

(1) If k > k0(N), then with overwhelming probability Alice and Bob do share some
entanglement.

(2) If k < k0(N), then with overwhelming probability Alice and Bob do not share
any entanglement.

What we mean by “overwhelming probability” is that the probability of failure tends
to 0 exponentially fast (as N tends to ∞).
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3. Related works

Let ρ be a random state on Cd⊗Cd induced by Cs. The following is an immediate
consequence of Theorem 1.1.

(i) If s 6 cd3, then ρ is typically entangled, while if s > d3polylog d, ρ is typically
separable.

Instead of the qualitative “entanglement vs. separability” dichotomy, we could
ask for a quantitative version of the problem: how much is a random state entan-
gled ? A popular way to quantify entanglement is the entanglement of formation,
defined for a pure state |ψ〉 ∈ Cd⊗Cd as Ef (|ψ〉〈ψ|) := −

∑
λi log λi, where λi are

the Schmidt coefficients of ψ, and extended to mixed states ρ by the convex roof
construction

Ef (ρ) = min
{∑

λkEf (|ψk〉〈ψk|) : ρ =
∑

λk|ψk〉〈ψk|
}
.

The following result was proved by Hayden–Leung–Winter [1].

(ii) If s 6 d2/polylog d, then the entanglement of formation of ρ is typically close
to maximal, while if s > d2polylog d, the entanglement of formation of ρ is
typically close to minimal.

A useful test to detect entanglement is the Peres criterion [8], which involves
the partial transposition ρΓ of a state ρ. A state which is separable must be PPT
(Positive Partial Transpose, i.e. with ρΓ > 0), and the converse is false except in
very low dimensions. A natural question is when random states are PPT. In that
case, the value of the threshold is known [9] to be precisely equal to 4d2.

(iii) If s < 4d2, then ρ id typically non-PPT, while if s > 4d2, then ρ is typically
PPT.

Comparing these results yields new insights on the behaviour of entanglement
in large-dimensional systems. A particularly interesting case is when s = dα with
2 < α < 3. By (i), in this range, random states are entangled. However, by (ii), their
entanglement of formation is close to minimal ! Moreover, by (iii), these states are
non-PPT. Such states are called “bound entangled” and cannot be distilled [10], i.e.
local operations cannot transform them into entangled qubits, making them useless
for purposes such as teleportation or superdense coding [11]. Our results show that
bound entangled states are not an anomaly: they are, in some sense, generic.

Another efficient criterion which parallels the Peres criterion is the realignment
criterion, also called computable cross-norm criterion [12, 13]. The realignment ρR

of a state ρ is obtained by applying a permutation to the indices of ρ. It has the
following property: a separable state ρ satisfies the inequality ‖ρR‖1 6 1. This
yields to a criterion to detect entanglement which is known to be neither stronger
nor weaker than the Peres criterion. We can prove [14] that the threshold for that
criterion equals ( 8

3π )
2d2
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(iv) If s < ( 8
3π )

2d2, then typically ‖ρR‖1 > 1, while if s > ( 8
3π )

2d2, then typically
‖ρR‖1 6 1.

Note that ( 8
3π )

2 ≈ 0.72. By comparing (iii) and (iv), we learn than in an asymp-
totic sense, the realignment criterion is weaker than the Peres criterion: for s = βd2

with ( 8
3π )

2 < β < 4, then typically the Peres criterion detects entanglement while
the realignment criterion does not. This range includes the case β = 1 (s = d2),
which corresponds to the Lebesgue measure.

4. Background from convex geometry

In this section, we introduce basic concepts associated to a convex body K ⊂ RN

containing the origin in the interior. The gauge of K is the function ‖ · ‖K defined
for x ∈ RN by

‖x‖K = inf{t > 0 : x ∈ tK}.

The polar (or dual) body of K is defined as

K◦ = {y ∈ RN : 〈x, y〉 6 1 ∀x ∈ K}.

The bipolar theorem states that (K◦)◦ = K. If u ∈ RN , the support function
of K in the direction u is hK(u) := maxx∈K〈x, u〉 = ‖u‖K◦ . Note that when u is a
unit vector, hK(u) + hK(−u) is the distance between the two hyperplanes tangent
to K and normal to u. The mean width of K is then defined as

w(K) :=

∫
SN−1

hK(u) dσ(u) =

∫
SN−1

‖u‖K◦dσ(u),

where dσ is the normalized spherical measure on the unit sphere SN−1.
In our setting, K = S is the set of separable states on Cd⊗Cd, and the ambient

space RN is the space of self-adjoint trace 1 operators on H (hence N = d4 −
1), where the maximally mixed state plays the role of the origin. The Euclidean
structure is induced by the Hilbert–Schmidt inner product, and the support function
of S is given, for a self-adjoint traceless operator W , by

hS(W ) = max
σ∈S

tr(Wσ) = max
|x〉,|y〉∈Cd

〈x⊗ y|W |x⊗ y〉.

By the Hahn–Banach separation theorem, a state ρ is entangled if and only if
there exists an entanglement witness, i.e. a self-adjoint traceless operator W such
that

hS(W ) < tr(Wρ). (3)

As we will see, the mean width of S and the mean width of S◦ play a central
role in our arguments.
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5. A single witness is enough

In this section we sketch an elementary proof of the “easy” part of the main theorem:
if s . d3 and ρ is a random state on Cd ⊗ Cd induced by Cs, then with large
probability, ρ is entangled. It is known [15] that the problem of deciding whether
a state is entangled is algorithmically hard, and we have to seek the entanglement
witness among a huge group of candidates. We are going to bypass this issue by
testing only a single witness. This idea looks naive from a low-dimension perspective,
but becomes reasonable when dimension gets higher.

The most naive choice for a witness is W0 := ρ − I/d2. Geometrically, this
amounts to checking whether some hyperplane orthogonal to the segment joining ρ
to the maximally mixed state separates ρ from S. The following lemma estimates
the support function of S in the (random) direction W0.

Lemma 5.1. If s > d2, then with large probability,

hS(W0) .
1

d3/2s1/2

For W = W0, the right-hand side of Eq. (3) can be estimated easily: tr(W0ρ)

is the square of the Hilbert–Schmidt distance between ρ and the maximally mixed
state, and is of order 1/s. Together with Lemma 5.1, this implies whenever s . d3,
Eq. (3) is satisfied and therefore ρ is entangled.

Proof of Lemma 5.1. We proceed via an elementary discretization argument.
Consider an ε-net N inside the unit sphere of Cd. Denote also N ⊗ N the set of
tensor products of two elements from N . If ε is small enough (e.g. ε = 1/24), we
obtain [16]

hS(W0) 6 2 max
ψ∈N⊗N

|〈ψ|W0|ψ〉|.

For fixed ε, it is well-known (e.g. Lemma 4.10 in Ref. 17) that one can choose
N with exponentially many points, i.e. card(N ⊗ N ) 6 card(N )2 6 Cd0 for some
constant C0. We now use an union bound argument. For a fixed unit vector |ψ〉 ∈
Cd ⊗ Cd, the deviations of the random variable |〈ψ|W0|ψ〉| can be estimated by
Lévy’s lemma (see e.g. Ref. 6). Indeed, recall that ρ was obtained as trCS |φ〉〈φ|,
where |φ〉 is a vector uniformly distributed on the unit sphere in Cd ⊗ Cd ⊗ Cs.
Using the fact that the function |φ〉 7→ 〈ψ|trCs |φ〉〈φ|||ψ〉1/2 is 1-Lipshitz on the unit
sphere, we obtain the following bound for any 0 < η < 1 (here C and c denote
numerical constants)

P
(
|〈ψ|W0|ψ〉| >

η

d2

)
6 C exp(−csη2). (4)

By the union bound, we obtain

P

(
hS(W0) >

2η

d2

)
6 card(N ⊗N )C exp(−csη2) 6 CCd0 exp(−csη2).
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This estimate is much smaller than 1 whenever η is proportional to
√
d/s. It follows

that, with high probability, hS(W0) is bounded by a multiple of 1/
√
d3s.

The proof of Lemma 5.1 depends crucially on the subgaussian behaviour in the
upper bound in Eq. (4). Other models of random states which satisfy the same
behaviour will enjoy the same conclusion. This includes the uniform mixtures of
independent pure states considered in Eq. (1) (the analogue of Eq. (4) appears as
Lemma II.3 in Ref. 18). This also includes the uniform measure on the Hilbert–
Schmidt sphere centered around the maximally mixed state. In that case, the argu-
ment yields an upper bound on the mean width of the convex body S, which reads
as

w(S) . 1

d3/2
. (5)

This upper bound is known to be sharp [16].

6. Gaussian approximation and the MM∗-estimate

The previous section presented an elementary argument for the easy part of Theo-
rem 1.1. However, the fact that random states are separable beyond the threshold
require more sophisticated ideas which we now sketch.

Let ρ be a random state on Cd ⊗ Cd induced by Cs. The separability of ρ is
equivalent to ‖ρ‖S 6 1, or (since (S◦)◦ = S) to hS◦(ρ) 6 1 — a problem about the
width of S◦. To compute the expected value of ‖ρ‖S , we are going to approximate
ρ by a simpler probabilistic model, using a quantitative version of a central limit
theorem for random induced states. The Gaussian approximation suggests that a
random state ρ on Cd ⊗Cd, induced by Cs, should be compared to

ρ ≈ I
d2

+
1

d2
√
s
G,

where G is a GUE random matrix conditioned to have trace zero. We prove that,
in the regime when d and s/d2 tend to infinity, this approximation is valid and
allows to compute the expected value of ‖ρ‖S using Gaussian matrices. Once this
is known, the threshold function appearing in Theorem 1.1 is naturally defined as

s0(d) = w(S◦)2.

and assertions (i) and (ii) in Theorem 1.1 can be derived using concentration of
measure.

The heart of the proof is showing Eq. (2), especially the upper bound. Deter-
mining the threshold s0(d) requires finding the typical value of the gauge associated
to S, computing which—as we mentioned—is a hard problem. We take an indi-
rect route and find the order of magnitude of the threshold using the machinery of
high-dimensional geometry, in particular the so-called MM∗-estimate.

The MM∗-estimate [17, 19] is a general theorem which relates the mean width
of a convex body and the mean width of its polar. While the abstract formulation
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may require an affine change of coordinates, in the present situation, because of the
symmetries of S (invariance under local unitary conjugations), we can deduce via
simple representation theory the inequalities

1 6 w(S)w(S◦) . log d. (6)

The left inequality is obvious and corresponds to what we did in the previous
section: detecting entanglement using a single witness. The MM∗-estimate guaran-
tees that this trivial lower bound is sharp, up to logarithmic factors. Once Eq. (6) is
obtained, the rest of the proof follows: the mean width w(S) was computed in the
previous section (see Eq. (5)), and the inequalities (6) then allow to establish the
order of magnitude of w(S◦) (and hence of s0(d)) up to polylog factors. Whether
these logarithmic factors can be removed is an interesting open problem.
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