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Abstract. An important problem in quantum information theory is the mathematical character-
ization of the phenomenon of quantum catalysis: when can the surrounding entanglement be used
to perform transformations of a jointly held quantum state under LOCC (local operations and clas-

sical communication) ? Mathematically, the question amounts to describe, for a fixed vector y, the
set T (y) of vectors x such that we have x ⊗ z ≺ y ⊗ z for some z, where ≺ denotes the standard
majorization relation.

Our main result is that the closure of T (y) in the ℓ1 norm can be fully described by inequalities
on the ℓp norms: ‖x‖

p
6 ‖y‖

p
for all p > 1. This is a first step towards a complete description of

T (y) itself. It can also be seen as a ℓp-norm analogue of Ky Fan dominance theorem about unitarily
invariant norms. The proofs exploits links with another quantum phenomenon: the possibiliy of

multiple-copy transformations (x⊗n ≺ y⊗n for given n). The main new tool is a variant of Cramér’s
theorem on large deviations for sums of i.i.d. random variables.

1. Introduction

The increasing interest that quantum entanglement has received in the past decade is due, in
part, to its use as a resource in quantum information processing. We investigate the problem of
entanglement transformation: under which conditions can an entangled state |φ〉 be transformed into
another entangled state |ψ〉 ? We restrict ourselves to LOCC protocols: Alice and Bob share |φ〉
and have at their disposal only local operations (such as unitaries UA ⊗ IB for Alice) and classical
communication. Nielsen showed in [13] that such a transformation is possible if and only if λφ ≺ λψ,
where “≺” is the majorization relation and λφ, λψ are the Schmidt coefficients vectors of |φ〉 and |ψ〉
respectively. Practically in the same time, Jonathan and Plenio [8] discovered a striking phenomenon:
entanglement can help LOCC communication, without even being consumed. Precisely, they have
found states |φ〉 and |ψ〉 such that |φ〉 cannot be transformed into |ψ〉, but, with the help of a catalyst
state |χ〉, the transformation |φ〉 ⊗ |χ〉 → |ψ〉 ⊗ |χ〉 is possible. When such a catalyst exists, we say
that the state |φ〉 is trumped by |ψ〉 and we write λφ ≺T λψ. We say then that |φ〉 can be transformed
into |ψ〉 by entanglement-assisted LOCC or ELOCC. It turns out that the trumping relation is much
more complicated that the majorization relation; one can easily check on two given states |φ〉 and
|ψ〉 whether λφ ≺ λψ is satisfifted or not, but there is no direct way to determine if λφ ≺T λψ.
Later, Bandyopadhyay et al. [1] discovered that a similar situation occurs when trying to transform
by LOCC multiple copies of |φ〉 into |ψ〉. It may happen that the transformation |φ〉 → |ψ〉 is not
possible, but when considering n copies, one can transform |φ〉⊗n into |ψ〉⊗n. The phenomenon of
multiple simultaneous LOCC transformations, or MLOCC, has been intensively studied in the last
years and many similarities with ELOCC have been found [6, 7].

In this note, we make some progress towards a complete characterization of both ELOCC and
MLOCC. We show that a set of inequalities involving ℓp norms (see the remark on Conjecture 1 at
the end of the paper) is equivalent to the fact that |φ〉 can be approached by a sequence of states |φn〉
which are MLOCC/ELOCC-dominated by |ψ〉. An important point is that we allow the dimension
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of |φn〉 to exceed the dimension of |φ〉. Our proof uses probabilistic tools; we introduce probability
measures associated to |φ〉 and |ψ〉 and we use large deviation techniques to show the desired result.

Interestingly, the result can be reversed to give a characterization of ℓp norms that is similar to
the Ky Fan characterization of unitarily invariant norms. We refer the interested reader to Section 3.
The rest of the paper is organized as follows: in Section 2 we introduce the notation and the general
framework of entanglement transformation of bipartite states. We also state our main result, Theorem
1. The theorem is proved in Section 4. Conclusions and some directions for further study are sketched
in Section 5. The appendix at the end of the paper contains basic results from large deviation theory
needed in the proof of the main theorem.

Acknowledgement: we thank the referees for several helpful remarks that improved the presen-
tation of the paper.

2. Notation and statement of the results

For d ∈ N
∗, let Pd be the set of d-dimensional probability vectors : Pd = {x ∈ R

d s.t. xi >

0,
∑

xi = 1}. If x ∈ Pd, we write x↓ for the decreasing rearrangement of x, i.e. the vector x↓ ∈ Pd
such that x and x↓ have the same coordinates up to permutation, and x↓i > x↓i+1. We shall also write

xmax for x↓1 and xmin for the smallest nonzero coordinate of x.
There is an operation on probability vectors that is fundamental in what follows: the tensor product

⊗. If x = (x1, . . . , xd) ∈ Pd and x′ = (x′1, . . . , x
′
d′) ∈ Pd′ , the tensor product x ⊗ x′ is the vector

(xix
′
j)ij ∈ Pdd′ ; the way we order the coordinates of x ⊗ x′ is immaterial for our purposes. We also

define the direct sum x⊕ x′ as the concatenated vector (x1, . . . , xd, x
′
1, . . . , x

′
d′) ∈ R

d+d′ .
It x ∈ Pd satisfies xd = 0, it will be useful to identify x with the truncated vector (x1, . . . , xd−1) ∈

Pd−1. This identification induces a canonical inclusion Pd−1 ⊂ Pd. Thus, every vector x ∈ Pd can be
thought of as a vector of Pd′ for all d′ > d by appending d′ − d null elements to x. We consider thus
the set of all probability vectors P<∞ =

⋃

d>0 Pd. In other words, P<∞ is the set of finitely supported
probability vectors.

Let us now introduce the classical majorization relation [11, 2]. If x, y ∈ R
d we define the subma-

jorization relation ≺w as follows

x ≺w y iff. ∀k ∈ {1, . . . d},

k
∑

i=1

x↓i 6

k
∑

i=1

y↓i ,

and the majorization relation ≺ as

x ≺ y iff.

d
∑

i=1

xi =

d
∑

i=1

yi and ∀k ∈ {1, . . . d− 1},

k
∑

i=1

x↓i 6

k
∑

i=1

y↓i .

We usually work with probability vectors, for which both relations coincide. However, it will be
useful in the proof to work with deficient vectors (of total mass less than 1) and to use submajorization.
We write Sd(y) for the set of vectors x in Pd which are majorized by y. It is well-known that Sd(y) is
a compact convex set whose extreme points are the vectors obtained by permuting the coordinates of
y; many other characterizations of Sd(y) are known [14, 3]. This relation behaves well with respect to
direct sums and tensor products: x ≺ y implies x⊕ z ≺ y⊕ z and x⊗ z ≺ y⊗ z for any z ∈ P<∞. The
majorization relation has been shown to have a very important role in quantum information. Nielsen
has proved [13] that a state |φ〉 belonging to Alice and Bob can be transformed into the state |ψ〉 by
using local operations and classical communication (LOCC) if and only if

λφ ≺ λψ,
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where λφ (respectively λψ) is the vector of eigenvalues of the density matrix for Alice’s system when
the joint system is in the state |φ〉 (respectively |ψ〉). Not long after Nielsen’s theorem, Jonathan
and Plenio have discovered a very intriguing phenomenon: there exist states |φ〉 and |ψ〉 such that
the transformation |φ〉 → |ψ〉 is impossible by LOCC, but, with the aid of a catalyst state |χ〉, the
transformation |φ〉⊗ |χ〉 → |ψ〉⊗ |χ〉 becomes possible; we say that |φ〉 can be transformed into |ψ〉 by
Entanglement-assisted LOCC or ELOCC. This result has motivated a more complex relation between
probability vectors: if x, y ∈ Pd, we say that y trumps x and write x ≺T y if there exists z ∈ P<∞

such that x⊗ z ≺ y ⊗ z. It is important to require that the auxiliary vector z (called the catalyst) is
finitely supported (see Remark 2). Given y ∈ Pd, we write Td(y) for the set of d-dimensional vectors
trumped by y, that is

Td(y) = {x ∈ Pd s.t. x ≺T y}.

The set Td(y) is in general larger than Sd(y) [4] and much more complicated to describe. Up to now,
there is no known simple procedure to decide whether x ∈ Td(y) or not. Hence, finding a tractable
characterization of the relation ≺T (or, equivalently, of the set Td(y)) has become an important open
problem in quantum information theory [16]. The geometry of Td(y) has been studied in [3, 4]: it is a
bounded convex set that it is neither closed nor open (provided y is not too simple). We shall introduce
now another important extension of LOCC transformations. Bandyopadhyay et al [1] found an example
of entangled states |φ〉 and |ψ〉 with the property that the LOCC transformation |φ〉 → |ψ〉 is impossible
but, when one tries to transform multiple copies of the states, the transformation |φ〉⊗n → |ψ〉⊗n

becomes possible. We say that |ψ〉 MLOCC-dominates |φ〉. We introduce the analogue of the trumping
relation for probability vectors:

x ≺M y iff ∃n > 1 s.t.x⊗n ≺ y⊗n,

and the set of probability vectors MLOCC-dominated by a given vector y:

Md(y) = {x ∈ Pd s.t. x ≺M y}.

Not much is known about the set Md(y). It has been studied in [6] and shown to have many similarities
with the set Td(y): for example it is neither closed nor open in general. One important point is that,
for all y, we have Md(y) ⊆ Td(y) (see [6]).

We report progress towards a description of the sets of Md(y) and Td(y). The main ingredient of
our approach is the following observation. Consider two vectors x, y ∈ Pd. Whether x ≺ y, x ≺M y,
x ≺T y or not depends only on the non-zero coordinates of x and y. Thus, it is possible to ≺/≺M/≺T -
compare vectors of different sizes by appending the necessary amount of zero coordinates to the end
of one of them. Hence, it seems more natural (at least from a mathematical point of view) to consider
the sets

T<∞(y) = {x ∈ P<∞ s.t. x ≺T y} = {x ∈ P<∞ s.t. ∃z ∈ P<∞ s.t. x⊗ z ≺ y ⊗ z} =
⋃

d′>d

Td′(y)

and

M<∞(y) = {x ∈ P<∞ s.t. x ≺M y} = {x ∈ P<∞ s.t. ∃n > 1 s.t. x⊗n ≺ y⊗n} =
⋃

d′>d

Md′(y).

The important point here is that both T<∞(y) and M<∞(y) do not depend anymore on the size
of y, but only on the non-null coordinates of y. Of course, if y ∈ Pd, Td(y) = T<∞(y) ∩ Pd and
Md(y) = M<∞(y) ∩ Pd; this shows that the sets T<∞(y) and M<∞(y) are not closed either in general

(otherwise Td(y) and Md(y) would be also closed). We then write T<∞(y) and M<∞(y) to denote the
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closure taken with respect to the ℓ1-norm, the natural topology in this setting (see Remark 3). Recall
that for p > 1, the ℓp norm of a vector x ∈ Pd is defined as

(1) ‖x‖p =

(

d
∑

i=1

xpi

)1/p

and ‖x‖∞ = maxxi. We now come to our main result:

Theorem 1. Consider two vectors x, y ∈ P<∞. The following assertions are equivalent:

(a) x ∈M<∞(y),

(b) x ∈ T<∞(y),
(c) ‖x‖p 6 ‖y‖p ∀p > 1.

Remark 1. Note that instead of demanding that ‖x‖p 6 ‖y‖p for all p > 1, it suffices to ask for x, y ∈
Pd that the inequality holds for all p ∈ [1, pmax(x, y)], where pmax(x, y) = log d/(log ymax − log xmax).
The inequalities for p > pmax follow by simple computation. For such results in a more general setting,
see [12].

Remark 2. It is important to see at this point how the set T<∞(y) is related to the set Td(y). First
of all, note that if we drop the closure, we have equality: T<∞(y) ∩ Pd = Td(y) for y ∈ Pd. However,

when taking the ℓ1 closure of the left hand side, we obtain a strict inclusion: Td(y) ( T<∞(y)∩Pd. An
example for such a vector is provided by the phenomenon of infinite-dimensional catalysis, discovered
by Daftuar [3]. Take y = (0.5, 0.25, 0.25) and x = (0.4, 0.4, 0.2). It is obvious that x /∈ Td(y) because

x3 < y3 and the condition xd > yd is necessary for x ∈ Td(y). However, there exist an infinite-

dimensional catalyst z = (1 − α)(1, α, α2, . . . , αk, . . .), where α = 2−
1
8 , such that x ⊗ z ≺ y ⊗ z and

||x⊗ z||p 6 ||y ⊗ z||p for all p > 1. Note that z is ℓp-bounded and thus ‖x‖p 6 ‖y‖p for all p > 1. By

the preceding theorem, we have that x ∈ T<∞(y) ∩ P3. For further remarks on this topic, see Section
5.

Remark 3. The use of the ℓ1 norm is natural in this context from a mathematical point of view since
P<∞ is a subset of the norm-closed hyperplane of ℓ1 defined by

∑

xi = 1. Let us explain also how
it relates to other physically motivated distances between the approaching states |φn〉 and the original
state |φ〉. Recall that x is the eigenvalue vector of the reduced density matrix corresponding to Alice’s
(or, equivalently to Bob’s) part of the system. From the details of the proof (see also Section 5), one
sees that the size of the approaching vectors xn increases with n. So, in order to compare ρ and ρn, we
have to realize them as density matrices on the same Hilbert space H. Moreover, we can suppose that
the two states are diagonalizable in the same basis (Alice can achieve this by applying a local unitary
basis change). As usually, we append the necessary number of zero eigenvalues to x in order to have
the same size as xn. We obtain the following equality:

‖x− xn‖1 = ‖ρ− ρn‖tr.

So, for Alice’s part of the system, we obtain a convergence in the trace norm sense. It is well known
that the trace norm distance is related to the probability that the two states can be distinguished by
some measurement. Moreover, by using some classical inequalities (see [15], Chapter 9), the fidelity
F (ρ, ρn) can be shown to converge to 1.

3. A ℓp version of Ky Fan theorem

In this section, we explain how Theorem 1 can be seen as an analogue of Ky Fan dominance theorem.
We refer to [2] for background. We denote by Md the space of complex d× d matrices. A norm ||| · |||
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on Md is said to be unitarily invariant if |||UAV ||| = |||A||| for all unitary matrices U, V . A norm || · ||
on R

d is said to be symmetric if

||(x1, . . . , xd)|| = ||(±xσ(1), . . . ,±xσ(d))||

for all choices of signs in {±1}d and all permutations σ ∈ Sd. It is well-known ([2], Theorem IV.2.1)
that unitarily invariant norms on Md are in 1-to-1 correspondance with symmetric norms on R

d

(consider the restriction of ||| · ||| to diagonal matrices).
Examples of unitarily invariant norms are given by Ky Fan norms, defined for k = 1, 2, . . . , d by

|||A|||(k) =
k
∑

j=1

sj(A),

where s1(A) > · · · > sd(A) denote the ordered singular values of a matrix A. The Ky Fan dominance
theorem asserts that these norms are extremal among unitarily invariant norms in the following sense:
if A,B satisfy |||A|||(k) 6 |||B|||(k) for any k = 1, · · · , d, then |||A||| 6 |||B||| for any unitarily invariant
norm ; this condition can also be formulated as s(A) ≺w s(B), where s(·) denotes the vector of singular
values of a matrix.

This gives a way to derive an infinite family of inequalities from a finite one. However this may be
a too strong requirement and one can wonder what happens for an important special class of unitarily
invariant norms: the Schatten p-norms (or noncommutative ℓp norms), defined for p > 1 by

|||A|||p =





d
∑

j=1

sj(A)p





1/p

.

To state our result, we need to compare matrices of different sizes. If d < d′ we identify Md with the
top-left corner of Md′ ; this gives a natural inclusion Md ⊂ Md′ and we write M<∞ =

⋃

d Md. Note
that the tensor product of matrices is a well-defined operation on M<∞.

Theorem 2. Let A,B ∈ Md. The following are equivalent

(1) |||A|||p 6 |||B|||p for all p > 1.
(2) There exists in M<∞ a sequence (An) so that limn→∞ |||An−A|||1 = 0 and |||A⊗n

n ||| 6 |||B⊗n
n |||

for all unitarily invariant norms |||.||| (or, equivalently, so that s(A⊗n
n ) ≺w s(B

⊗n)).

Of course, a main difference between this result and Ky Fan dominance theorem is that condition
(ii) here is hard to check and involves infinitely many inequalities.

Proof (sketch). Because of the bijective correspondance between unitarily invariant norms on matrices
and symmetric norms on vectors, it is enough to prove the theorem for positive diagonal matrices.
This is almost the content of the equivalence (a) ⇐⇒ (c) of Theorem 1. The only slight remark that
we need in order to get condition (2) as stated here is the following: in Lemma 2 below, it follows from
the proof that we can actually choose the integer n so that x⊗N ≺w y

⊗N for any N > n. �

4. The proof of the theorem

We shall prove the sequence of implications (a) ⇒ (b) ⇒ (c) ⇒ (a). The first two are well known; we
sketch their proof for completeness. The third is the most difficult one and represents our contribution
to the theorem.

(a) ⇒ (b) Because the closure is taken with respect to the same topology (ℓ1) for both M<∞(y)

and T<∞(y), it is enough to show M<∞(y) ⊂ T<∞(y). Let x ∈ M<∞(y) and consider n such that
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x⊗n ≺ y⊗n. The trick here (see [6]) is to use the following z as a catalyst

z = x⊗(n−1) ⊕ x⊗(n−2) ⊗ y ⊕ · · · ⊕ x⊗ y⊗(n−2) ⊕ y⊗(n−1).

For simplicity we do not normalize z, but this is irrelevant. The vector z has been constructed such
that

x⊗ z = x⊗n ⊕ w and y ⊗ z = y⊗n ⊕ w,

where w is the same in both expressions. This implies that x⊗ z ≺ y ⊗ z, i.e. x ∈ T<∞(y).
(b) ⇒ (c) Let z ∈ P<∞ be the catalyst for x ≺T y: x⊗ z ≺ y ⊗ z. A function ϕ : Rd → R is said

to be Schur-convex if a ≺ b implies ϕ(a) 6 ϕ(b). It is well-known (see [11, 14]) that if h : R → R is a

convex function, then ϕ : x 7→
∑d
i=1 h(xi) is Schur-convex. Consequently, the functions x 7→ ‖x‖pp are

Schur-convex for p > 1. Moreover, they satisfy the identity ‖x⊗ z‖p = ‖x‖p‖z‖p, and similarly for y.

Since ‖z‖p is finite, we get that ‖x‖p 6 ‖y‖p. To show that the same is true for x ∈ T<∞(y), it suffices
to check that the set of x ∈ ℓ1 such that ‖x‖p 6 ‖y‖p is norm-closed; this follows from the inequality
‖ · ‖p 6 ‖ · ‖1.

(c) ⇒ (a) We will adapt some techniques used by G. Kuperberg in a slightly different context
[10]. In our proof, we allow deficient vectors, i.e. vectors with total mass smaller than 1, and we use
submajorization.

As in [10], we associate to a positive vector x ∈ R
d the measure µx =

∑d
i=1 xiδlog xi

, where δz
is the Dirac measure at point z. The basic property is that the tensor product operation of vectors
corresponds to the convolution of associated measures:

µx⊗y = µx ∗ µy.

The convolution of two measures µ and ν is defined by the relation

µ ∗ ν(A) = (µ× ν)
(

{(x, y) ∈ R
2 : x+ y ∈ A}

)

.

Moreover, if µ and ν are probability measures and Xµ and Xν denote independent random variables
with laws respectively µ and ν, then µ ∗ ν is the law of Xµ +Xν .

The following lemma gives a way to prove majorization using comparison of the tails of the associated
measures

Lemma 1. Let x and y be two vectors of R
d with non-negative components. Consider the measures

µx and µy associated with x and y. Assume that, for all t ∈ R, µx[t,∞) 6 µy[t,∞). Then x ≺w y.

Proof. Note that

µx[t,∞) =
∑

i:log xi>t

xi =
∑

i:xi>exp(t)

xi.

Thus, for all u > 0,
∑

i:xi>u
xi 6

∑

i:yi>u
yi. For simplicity, we assume first that all coordinates of y

are distinct. We will show by induction on k ∈ {1, . . . , d} that
∑k
i=1 x

↓
i 6

∑k
i=1 y

↓
i . For the first step;

use u = y↓1 to conclude that x↓1 6 y↓1 . Now, fix k ∈ {1, . . . , d−1} and suppose that
∑k
i=1 x

↓
i 6

∑k
i=1 y

↓
i .

If x↓k+1 6 y↓k+1, the induction step is obvious. If x↓k+1 > y↓k+1, we use u = x↓k+1 to get

k+1
∑

i=1

x↓i 6
∑

i:xi>x
↓

k+1

xi 6
∑

i:yi>x
↓

k+1

yi 6
∑

i:yi>y
↓

k+1

yi =

k+1
∑

i=1

y↓i .

This completes the induction when y has distinct coordinates. The general case follows by approximat-
ing y by y+ εn, where (εn) is a suitable sequence of positive vectors tending to 0. The approximation
is possible since the set of vectors y majorizing a fixed x is closed. �
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We now get to the key lemma in our argument. We shall use a slightly modified version of Cramér
large deviations theorem — see Appendix.

Lemma 2. Let x, y in R
d, with nonnegative coordinates. Assume that for any 1 6 p 6 ∞, we have

the strict inequality ‖x‖p < ‖y‖p. Then there exists an integer n such that x⊗n ≺w y
⊗n.

Proof. Consider x and y satisfying the hypotheses of the lemma. We can assume by multiplying both
vectors by a positive constant K that ‖y‖1 = 1. Let p = 1 − ‖x‖1 > 0. We introduce the measures
µx and µy associated to x and y; µy is a probability measure but µx is not, so we add a mass at −∞
by setting µx = µx + pδ−∞. Let X and Y be random variables distributed according to µx and µy
respectively. We denote by (Xn) (resp. (Yn)) a sequence of i.i.d. copies of X (resp. Y). We are going
to show that for n large enough

(2) ∀t ∈ R, P(X1 + · · · +Xn > nt) 6 P(Y1 + · · · + Yn > nt).

This is equivalent to showing that
∫ ∞

nt

dµ∗n
x =

∫ ∞

nt

dµ∗n
x 6

∫ ∞

nt

dµ∗n
y ,

which, by the previous lemma implies x⊗n ≺w y
⊗n. Note that the asymptotic behavior of the quantities

appearing in (2) is governed by Cramér’s theorem. Let fn(t) = P(X1 + · · · + Xn > nt)1/n and
gn(t) = P(Y1 + · · · + Yn > nt)1/n. Applying Cramér’s theorem (see Appendix), we obtain

f(t) := lim
n→∞

fn(t) =

{

1 − p if t 6 E(X|X 6= −∞)

e−Λ∗
X(t) otherwise.

g(t) := lim
n→∞

gn(t) =

{

1 if t 6 E(Y )

e−Λ∗
Y (t) otherwise.

Note also that the log-Laplace of X, defined for λ ∈ R by ΛX(λ) = log EeλX , is related to the ℓp
norms of x:

∀λ > 0, ΛX(λ) = log ‖x‖λ+1
λ+1.

The same holds for Y : ΛY (λ) = log ‖y‖λ+1
λ+1 and thus we have ΛX(λ) < ΛY (λ) for λ > 0.

Let MX = esssupX = log ‖x‖∞ and MY = esssupY = log ‖y‖∞ ; by hypothesis MX < MY . First
of all, note that fn(t) = 0 for t > MX , so it suffices to show that fn 6 gn on (−∞,MX ], for n large
enough. We claim that f < g on (−∞,MY ), and thus on (−∞,MX ]. Indeed, for E(Y ) 6 t < MY ,
the supremum in the definition of Λ∗

Y (t) is attained at a point λ0 > 0 (cf Appendix), so we have that

f(t) 6 e−(λ0t− ΛX(λ0)) < e−(λ0t− ΛY (λ0)) = g(t),

where the strict inequality follows from the fact that ΛX(λ) < ΛY (λ), for all λ > 0. For t <
E(Y ), g(t) = 1 and f(t) 6 1 − p < 1. Moreover, the functions f and g admit finite limits in −∞:
limt→−∞ f(t) = 1 − p and limt→−∞ g(t) = 1. Thus, on the compact set [−∞,MX ], the functions f
and g are well-defined, non-increasing, continuous and satisfy f < g.

We now use the following elementary fact: if a sequence of non-increasing functions defined on a
compact interval I converges pointwise towards a continuous limit, then the convergence is actually
uniform on I (for a proof see [17] Part 2, Problem 127; this statement is attributed to Pólya or to
Dini depending on authors). We apply this result to (fn) and (gn) on the interval I = [−∞,MX ] to
conclude that the convergence is uniform for both sequences. As f < g, we can therefore find n large
enough such that fn 6 gn on I, and thus on R. This is equivalent to (2) and completes the proof of
the lemma. �
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Remark 4. It is possible to avoid the use of Cramér’s theorem by using low-technology estimates on
large deviations probability instead, as done in [10]. This requires additional care to get the required
uniform bounds and slightly obfuscates the argument. The only advantage is to give explicit bounds for
the value of n in Lemma 2, which our compactness argument does not. These bounds are quite bad
anyway, and for example do not allow to replace the ℓ1-closure in the main theorem by a ℓp-closure for
some p < 1.

Proof of (c) ⇒ (a) (continued) Recall that x and y are such that ‖x‖p 6 ‖y‖p for any p > 1 and
that we want to find, for any ε > 0 small enough, a vector xε ∈ M<∞(y) such that ‖x − xε‖1 6 ε.
Let dx (resp. dy) be the number of nonzero coordinates of x (resp. y). We proceed as follows : let
0 < ε < 2dxxmin and consider the (deficient) vector x′ε obtained from x by subtracting ε/2dx to each
of its nonzero coordinates. This implies that x′ε is a positive vector, ‖x − x′ε‖1 = ε/2 and that x′ε
satisfies the hypotheses of Lemma 2. Applying the lemma, we obtain the existence of an integer n
such that (x′ε)

⊗n ≺w y
⊗n.

Remember that x′ε is deficient; we now enlarge it into a vector xε ∈ P<∞ by adding mass ε/2. But
since we want to keep the property x⊗nε ≺w y⊗n (which is identical to x⊗nε ≺w y⊗n), a safe way to
do this is to add a large number of coordinates, each of them being very small. More precisely, let
xε = x′ε ⊕ δ⊕D, where δD = ε/2 and δ is a positive number such that δ(x′ε)

n−1
max 6 min((x′ε)

n
min, y

n
min).

We claim that x⊗nε ≺ y⊗n, that is, for any k > 1,

(3)

k
∑

i=1

(x⊗nε )↓i 6

k
∑

i=1

(y⊗n)↓i .

Indeed, δ has been chosen so that the dnx largest coordinates of x⊗nε are exactly the coordinates of
(x′ε)

⊗n, so when 1 6 k 6 dnx , (3) follows from the relation (x′ε)
⊗n ≺w y⊗n. If dx < k 6 dny , the

inequality also holds since the choice of δ guarantees (x⊗nε )↓k 6 (y⊗n)↓k. Finally if k > dny , (3) holds
trivially since the right-hand side equals 1.

In conclusion, x⊗nε ≺ y⊗n, and thus xε ∈ M<∞(y). But xε has been constructed such that ‖x −

xε‖1 6 ε and thus x ∈M<∞(y) which completes the proof of the theorem.

5. Conclusion and further remarks

In conclusion, we are able to give a nice description of the ℓ1-closure of the set T<∞(y). However,

this closure may be substantially larger than the usual closure Td(y) in Pd, and requires approximation
by vectors with growing support. Our result can be seen as a contribution to a conjecture attributed
to Nielsen [3]:

Conjecture 1. Fix a vector y ∈ Pd. Then a vector x ∈ Pd belongs to Td(y) if and only if the following
conditions are verified.

(1) For p > 1, ‖x‖p 6 ‖y‖p.
(2) For 0 < p 6 1, ‖x‖p > ‖y‖p.
(3) For p < 0, ‖x‖p > ‖y‖p.

M. Klimesh announced a proof of this conjecture in a short communication [9], but the solution
has not appeared in print yet. However, his methods are different from our approach (private com-
munication). Note that the definition of ‖ · ‖p given in (1) is extended to any p ∈ R

∗. For p < 1,
‖ · ‖p is not a norm in the usual sense. We have shown that the condition (1) above is equivalent

to x ∈ T<∞(y). Notice however that T<∞(y) is in general larger than Td(y); note also that the set
of x ∈ Pd that satisfy conditions (1–3) is closed. The “only if” part of the conjecture follows from
standard convexity/concavity properties of functionals ‖ · ‖p, see [14, 3].



CATALYTIC MAJORIZATION AND ℓp NORMS 9

This question also appears in [6] where it is formulated using the Rényi entropies. For any real
p 6= 1, the p-Rényi entropy is defined for x ∈ Pd as

Hp(x) =
sgn(p)

p− 1
log2

(

d
∑

i=1

xpi

)

.

The limit case p = 1 corresponds to the usual entropy. The conditions (1–3) of the conjecture can be
concisely reformulated as “Hp(x) 6 Hp(y) for all p”.

An intermediate notion is the following: for y ∈ Pd, let T<∞(y)
b

be the set of vectors x ∈ Pd such
that there is a sequence (xn) in T<∞(y) tending to x, with a uniform bound on the size of the support

of xn. We think that a description of T<∞(y)
b

could be related to the set of vectors which satisfy
conditions (1) and (2) — but not necessarily (3) — in Conjecture 1.

There is one more consequence of our main theorem we would like to discuss. Recall that when
defining catalysis, we insisted on the fact that the catalyst should be finitely-supported. Let P∞ ⊂ ℓ1
be the set of infinite-dimensional probability vectors, and for y in P<∞, define the set T ′(y) of (finitely
supported) vectors trumped by y using infinite catalysts:

T ′(y) = {x ∈ P<∞ s.t. ∃z ∈ P∞ s.t. x⊗ z ≺ y ⊗ z}.

As shown in [3] (Section 4.3), in general T<∞(y) 6= T ′(y). However, since x ∈ T ′(y) implies ‖x‖p 6 ‖y‖p
for all p > 1, it follows from our main theorem that T<∞(y) = T ′(y).

6. Appendix: On Cramér’s theorem

We review here some facts from large deviations theory. A complete reference for all the material
contained here is [5]. Let X be a random variable taking values in [−∞,∞). We allow X to equal
−∞ with positive probability; this is a nonstandard hypothesis. We however exclude the trivial case
P(X = −∞) = 1. We write E for the expectation. We assume also that the conditional expectation
E(X|X 6= −∞) is finite. The cumulant generating function ΛX of the random variable X is defined
for any λ ∈ R by

ΛX(λ) = log EeλX .

It is a convex function taking values in (−∞,+∞]. Its convex conjugate Λ∗
X , sometimes called the

Cramér transform, is defined as

(4) Λ∗
X(x) = sup

λ∈R

λx− ΛX(λ).

Note that ΛX is a smooth and strictly convex function on [0,+∞]. Moreover, Λ′
X(0) = E(X|X 6=

−∞) and limλ→+∞ Λ′
X(λ) = esssup(X). Consequently, for any x such that E(X|X 6= −∞) < x <

esssup(X), the supremum in (4) is attained at a unique point λ > 0. We now state Cramér’s theorem
in a suitable formulation

Proposition 1. Let X be a [−∞,+∞)-valued random variable such that ΛX(λ) < +∞ for any λ > 0.
Let (Xi) be a sequence of i.i.d. copies of X. Then for any t ∈ R

lim
n→∞

1

n
log P(X1 + · · · +Xn > tn) =

{

log P(X 6= −∞) if t 6 E(X|X 6= −∞)

−Λ∗
X(t) otherwise.

Proof. Let X̂ denote the random variable X conditioned to be finite, that is for any Borel set B ⊂ R

P(X̂ ∈ B) =
1

1 − p
P(X ∈ B),
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where p = P(X = −∞). A consequence of the classical Cramér theorem ([5], Corollary 2.2.19) states
that

(5) ∀t ∈ R, lim
n→∞

1

n
log P(X̂1 + · · · + X̂n > tn) = − inf

s>t
Λ∗

X̂
(s).

One checks that ΛX̂ = ΛX − log(1 − p), and consequently

(6) Λ∗

X̂
= Λ∗

X + log(1 − p).

Note also that

(7) P(X1 + · · · +Xn > tn) = (1 − p)nP(X̂1 + · · · + X̂n > tn).

Finally, note that the infimum on the right hand side of (5) is null for t 6 E(X̂) and equals Λ∗

X̂
(t)

for t > E(X̂). This follows from the fact that the convex function t 7→ Λ∗

X̂
(t) attains its zero minimum

at t = E(X̂) and is increasing for t > E(X̂). Thus, we can rewrite equation (5) as:

(8) lim
n→∞

1

n
log P(X̂1 + · · · + X̂n > tn) =

{

0 if t 6 E(X̂)

−Λ∗

X̂
(t) otherwise.

The proposition follows from the equations (6), (7) and (8). �
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