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These lecture notes study some mathematical aspects of the phenomenon of entangle-
ment from quantum mechanics. While the questions we consider are motivated by quantum
information theory, where entanglement plays a fundamental role, our exposition targets
mostly mathematicians who are not assumed to be familiar with quantum information
theory.

We look at entanglement through the prism of “Asymptotic Geometric Analysis”, a
branch of functional analysis also known as “local theory of Banach spaces” whose objects
of study are the normed spaces of large but finite dimension. Indeed, we especially focus
on the case of quantum systems of large dimension, for which numerical approaches are
usually doomed by the curse of dimensionality.

These notes are organized as follows: in Section 1 we introduce the dichotomy between
entangled vs separated states. In Section 2 we explain various approaches to quantify how
much entanglement contains a quantum state, notably the “entanglement of formation”.
Section 3 explains how to use concentration of measure in the form of Dvoretzky’s theorem
to prove that the entanglement of formation is not additive, a major result first obtain by
Hastings [19]. The last two sections study random states, and in particular the question
whether they are entangled or separable. The answer relies on volume estimates connected
to the convex body of separable states.

We also introduce notation which will be used throughout the text. We consider a
complex Hilbert space H of finite dimension. We denote by BpHq the set of operators
on H and BsapHq the subset of self-adjoint operators. We always identify operators with
matrices; we denote by Mk,d the space of k ˆ d matrices with complex entries.

We use the convention from physics to take the scalar product on H to be anti-linear
in the first variable and linear in the second variable. We also use Dirac notation: given
x, y P H, we denote by |xyxy| the rank one operator which maps z P H to xy, zyx.

Most of the material presented here will appear also in greater detail in the forthcoming
book [4], to which we refer the reader for more information. Other sources are [34] for
local theory of Banach spaces, [2] for random matrices theory and [31, 44] for quantum
information theory.
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1 The fundamental dichotomy: entanglement vs separability

1.1 Quantum states

A main object of interest in quantum information theory is the set of quantum states. A
quantum state on H is a positive self-adjoint operator with trace 1. The set of quantum
states is denoted

DpHq “ tρ P BsapHq : ρ ě 0,Tr ρ “ 1u.

The letter D stands for the alternative name “density matrix”. Note that for ρ P DpHq,
the linear form defined on BpHq by X ÞÑ TrpXρq if positive with norm 1 and is therefore a
state in the usual functional-analytic sense. In the following we simply say “state” to mean
“quantum state”.

The set DpHq is a compact convex set with (real) dimension d2 ´ 1. Its extreme points
are the pure states on H, i.e., the rank 1 orthogonal projections of the form |xyxx|. We
often consider abusively a unit vector x as a pure state; what is really meant is the pure
state |xyxx|. Note that |xyxx| “ |yyxy| if and only if x “ eiθy for some θ P R. In particular,
the set of pure states naturally identifies with the projective space on H.

Elements of DpHq are often called mixed states. Indeed, we know from the spectral
theorem that any quantum state is a convex combination (a “mixture”) of pure states:

DpHq “ convt|xyxx| : x P H, |x| “ 1u.

The “less pure” quantum state is the maximally mixed state ρ˚ :“ Id{d.
Whenever we apply concepts from Euclidean geometry to quantum states, it is tacitly

understood that the reference Euclidean structure is given by the Hilbert–Schmidt scalar
product on BsapHq, defined as xA,By “ TrpABq. The corresponding norm is denoted
} ¨ }HS. For example, it is a simple exercise to compute the inradius (=the radius of a
largest inscribed Hilbert–Schmidt ball) and the outradius (=the radius of the smallest
circumscribed Hilbert–Schmidt) of DpHq.
Exercise 1. Show that the outradius of DpHq equals

a

pd´ 1q{d and that the inradius of
DpHq equals 1{

a

dpd´ 1q.
For d “ 2, the in- and out-radii coincide: DpC2q is a Hilbert–Schmidt ball, called the

Bloch ball. This should be compared to the classical identification S2 » CP1 at the level of
pure states. This is specific to the 2-dimensional case: in higher dimensions, DpCdq should
rather be considered as the non-commutative analog of a simplex (incidentally, the radii
computed at Exercise 1 equal the radii of a pd´ 1q-dimensional simplex embedded in Rd).
Exercise 2. Describe the faces of DpHq of maximal dimension.

1.2 Symmetries of DpHq

It is often fruitful to classify the symmetries of a set. As we will see now, the study of the
symmetries of DpHq will put forward the transposition map.
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We denote by P pHq the projective space over H, equipped with the metric δ obtained
as the quotient metric from the geodesic metric on the sphere. Given a unit vector ψ P H,
let |ψy the corresponding element in P pHq, so that |eiθψy “ ψ for θ real.

A result known as Wigner’s theorem [43] states that isometries of the metric space
pP pHq, δq are of the form |ψy ÞÑ |Uψy or |ψy ÞÑ |Uψy where U is a unitary transformation
(the bar denotes complex conjugation with respect to a fixed basis in H).

This is especially transparent for d “ 2: as we already said, P pC2q » S2 so that Wigner’s
theorem is simply the decomposition of Op3q as SOp3q vs Op3qzSOp3q.

Exercise 3. State and prove the real version of Wigner’s theorem. Proving the complex
version is more delicate, see [38].

Note that
|ψyxψ| “ |ψyxψ| “ |ψyxψ|T ,

where T denotes the transposition with respect to the fixed basis.

Exercise 4. Let A ÞÑ AT and A ÞÑ AT
1 denote transpositions with respect to two different

bases. Check that AT 1 “ V ATV : for some unitary map V .

An easy consequence of Wigner’s theorem is the description of the isometry group of
DpHq (“isometry” is meant with respect to the Hilbert–Schmidt Euclidean structure): since
isometries on DpHq induce isometries at the level of extreme points, they must be of the
form

ρ ÞÑ UρU :

or
ρ ÞÑ UρTU :

for some unitary map U .

1.3 Entanglement vs separability

We now assume thatH is a multipartite Hilbert space, i.e., of the formH “ H1b¨ ¨ ¨bHk (we
often consider the simpler bipartite case H “ Cd bCd). There are canonical isomorphisms

BpHq » BpH1q b ¨ ¨ ¨ bBpHkq,

BsapHq » BsapH1q bR ¨ ¨ ¨ bR BsapHkq. (1)

Note that the analogue of (1) would be false for real Hilbert spaces!
A state ρ P DpHq is a product state if

ρ “ ρ1 b ¨ ¨ ¨ b ρk

for some states ρi P DpHiq. We now introduce the most important definition of these notes:
the notion of a separable state which was introduced by Werner [42]
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A state is called separable if it can be written as a convex combination of product states

States which are not separable are called entangled. We denote by SeppH1 b ¨ ¨ ¨ bHkq
or simply SeppHq the set of all separable states on H. It is easily checked that

SeppHq “ convtρ1 b ¨ ¨ ¨ b ρk : ρi P DpHiqu
“ convt|ψ1 b ¨ ¨ ¨ b ψkyxψ1 b ¨ ¨ ¨ b ψk| : ψi P Hi, |ψi| “ 1u.

Given closed convex sets K Ă Rn and K 1 Ă Rn1 , we may define

K pbK 1 “ convtxb x1 : x P K,x1 P K 1u (2)

(the closure operation may be dropped when K and K 1 are compact. If K and K 1 are unit
balls for some norms, we recover the notion of projective tensor product of normed spaces.
We have

SeppH1 bH2q “ DpH1qpbDpH2q.

Exercise 5. Show that K and K 1 have both non-empty interior if and only if K pbK 1 has
nonempty interior.

We denote the symmetrization of a convex compact set K as Ksym “ convp´K XKq
(this operation increases dimension by 1 if 0 R K). Then the symmetrization of the set of
states is the self-adjoint part of the trace class unit ball

DpHqsym “ tA P B
sapH1q : }A}1 ď 1u.

It also holds (denoting H “ H1 bH2) that

SeppHqsym “ DpH1qsympbDpH2qsym,

from which one checks that

dim SeppHq “ dimpHq2 ´ 1 “ dim DpHq,

and similarly for larger number of factors.
Exercise 6. Define LpHq as the smallest integer N such that any separable state ρ P SeppHq
can we written as a convex combination of length N of pure product states

ρ “
N
ÿ

i“1

λi|ψ
i
1 b ¨ ¨ ¨ b ψ

i
kyxψ

i
1 b ¨ ¨ ¨ b ψ

i
k|.

Show that, for some constant c

cd3 ď LpCd b Cdq ď d4

(the right inequality follows from Carathéodory’s theorem and the left inequality from a
dimension-counting argument, see [12]). The asymptotic growth of LpCdbCdq is unknown.
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1.4 The Barnum–Gurvits theorem

Let H be a multipartite Hilbert space. Although SeppHq is a smaller set than DpHq (being
defined via the convex hull of a smaller set), they both have the same dimension. A
remarkable result due to Barnum and Gurvits is that in the bipartite case both sets also
have the same inradius.

Theorem 1 (Barnum–Gurvits, [17]). Let H “ Cd1 b Cd2 and denote n “ d1d2 “ dimH.
If a state ρ P DpHq satisfies }ρ´ ρ˚}HS ď

1?
npn´1q

, then ρ is separable.

We give a sketch of proof due to Hans-Jürgen Sommers [39]. Denote

K “

#

ρ P DpHq : }ρ´ ρ˚}HS ď
1

a

npn´ 1q

+

the Hilbert–Schmidt ball inscribed inside DpHq. The inclusion K Ă SeppHq is equivalent
to the inclusions of cones R`K Ă R`SeppHq. By the Hahn–Banach separation theorem,
this is further equivalent to the following statement: whenever M P BsapHq satisfies

TrMρ ě 0 for any ρ P SeppHq, (3)

then TrMρ ě 0 for any ρ P K. A matrix M satisfying the condition (3) is called block-
positive. Block positivity means that xψ1 b ψ2|M |ψ1 b ψ2y ě 0 for any ψ1 P Cd1 , ψ2 P Cd2 .
A simple computation using the Pythagorean theorem reduces the proof of Theorem 1 to
the following statement: for any block-positive matrix M , TrpM2q ď pTrMq2. We use the
following lemma.

Lemma 2. If M “

ˆ

A B
B: C

˙

is block-positive, then }B}2HS ď }A}1}C}1.

Let M be a block-positive matrix on H. Denote M “ pMklq1ďk,lďd1 , where each block
Mkl is an element of BpCd2q. Diagonal blocks (of the form Mkk) are positive operators. By
Lemma 2, we have }Mkl}

2
HS ď }Mkk}1}Mll}1 “ pTrMkkqpTrMllq. Summing over k, l gives

the inequality }M}2HS ď pTrMq2.

Exercise 7. Prove Lemma 2.

1.5 Partial transposition

We now investigate symmetries of SeppHq. For notational simplicity we consider only the
bipartite case.

Proposition 3 (see [1]). The group of isometries of SeppH1 b H2q is generated by the
following transformations
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• Conjugation by local unitaries, of the form ρ ÞÑ pU1 b U2qρpU1 b U2q
:, where U1 and

U2 are unitary transformations, respectively on H1 and H2.

• The two partial transpositions, defined on product states by ρ1 b ρ2 ÞÑ ρT1 b ρ2 and
ρ1 b ρ2 ÞÑ ρ1 b ρ

T
2 , and extended by linearity.

• (when dimH1 “ dimH2) The flip operator, defined on product states by ρ1 b ρ2 ÞÑ

ρ2 b ρ1 and extended by linearity.

We denote by ρΓ “ pIdb T qρ the partial transposition of a state ρ P DpH1 bH2q. An
explanation for the notation is that Γ is “half” of the letter T used for the usual transposition.

It is clear that for a separable state ρ, the operator ρΓ is positive. However, this is
not true for any state: indeed, the transposition map is not completely positive! A state
ρ P DpHq is said to be PPT (positive partial transpose) when ρΓ is a positive operator.

Note also that the definition of partial transposition depends on a choice of basis. How-
ever, we know from Exercise 4 that the property of being PPT is basis-independent.

Exercise 8. Show that a pure state |ψyxψ| P DpH1 b H2q is separable if and only if it is
PPT.

The PPT criterion is a useful tool to prove that some states are entangled [33]. Here
is an example. The space Cd b Cd can be written as the direct sum S ‘ A, where S “
spantxbx : x P Cdu is the symmetric subspace and A “ spantxby´ybx : x, y P Cdu is
the antisymmetric subspace. Let PS and PA be the corresponding orthogonal projections.
Note that PS “ 1

2pId`F q and PA “
1
2pId´F q where F : xby ÞÑ ybx is the flip operation.

Normalize them to obtain the symmetric and antisymmetric states

ρS “

ˆ

d` 1

2

˙´1

PS , ρA “

ˆ

d

2

˙´1

PA.

States of the form ρα “ αρS ` p1´ αqρA for α P r0, 1s are called Werner states.

Exercise 9. Show that ρα is non-PPT (hence entangled) for α ą 1{2. Then (harder) show
that ρα is separable for α ď 1{2.

Generalizations of the PPT criterion give other criteria to prove that a state is entangled;
one has to replace the transposition by another non-completely positive map. As an appli-
cation of the Hahn–Banach theorem, one can prove the following: a state ρ P DpCdbCdq is
separable if and only if, for any positive map Φ : BpCdq Ñ BpCdq, the operator pIdbΦqpρq
is positive [23].

In the special situation d “ 2, it has been proved [40] that any positive map Φ : BpC2q Ñ

BpC2q is of the form A`B˝T , where T is the transposition and A,B are completely positive.
It follows that for states on C2 b C2, separability and PPT are equivalent properties.

There is a simple elegant argument to show that any positive map Φ : BpC2q Ñ BpC2q

which is in addition unital (i.e., ΦpIdq “ Id) and trace-preserving must be of the form
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A`B ˝ T for A,B completely positive. Indeed, Φ maps the Bloch ball into the Bloch ball
and fixes its center, so it can be thought of as a contraction on R3. Any contraction can
be written as a convex combination of orthogonal transformations; among these rotations
yield completely positive maps, while anti-rotations yield maps which becomes completely
positive when composed with transposition. The hypothesis that Φ is unital can be removed
by invoking Brouwer’s theorem (see [4]).

2 Quantifying entanglement

2.1 Quantifying entanglement of pure bipartite states

Let x be a unit vector in H1bH2. How much entanglement is there in the pure state |xyxx|?
Before answering this question, it is convenient to introduce the Schmidt decomposition of x
(which is simply a reformulation in the tensor language of the singular value decomposition
for matrices)

x “
n
ÿ

i“1

a

λiei b fi, (4)

where pλiq1ďiďn are positive numbers summing to 1, and peiq (resp., pfiq) an orthonor-
mal family in H1 (resp., H2). We have n ď minpdimH1,dimH2q and moreover |xyxx| is
separable if and only if n “ 1.

Another useful notion is the partial trace. Denote by TrH2 : BpH1 bH2q Ñ BpH1q the
partial trace with respect to H2, i.e., the unique linear operator satisfying TrH2pAbBq “
pTrBqA; in other words TrH2 “ Id b Tr. Similarly introduce TrH1 “ TrbId. When x is
given as (4), we have

TrH1 |xyxx| “
n
ÿ

i“1

λi|fiyxfi|,

TrH2 |xyxx| “
n
ÿ

i“1

λi|eiyxei|.

Schmidt coefficients are eigenvalues of the so-called reduced density matrix.
We quantify the amount of entanglement present in x as follows: the entropy of entan-

glement of a unit vector x on H1 bH2 is defined as

Epxq “ ´
n
ÿ

i“1

λi log λi “ SpTrH1 |xyxx|q,

where the pλiq are the Schmidt coefficients as in (4), and Spρq “ ´Trpρ log ρq is the von
Neumann entropy of a state ρ.
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Note that on Cd b Cd, the maximal value of the entropy of entanglement equals log d
and is achieved for so called “maximally entangled states”, i.e., of the form

x “
1
?
d

d
ÿ

i“1

ei b fi

for orthonormal bases peiq and pfiq. In the special case d “ 2, maximally entangled states
are called Bell states.

2.2 Quantum channels and the LOCC paradigm

There are operational justifications for the definition of entropy of entanglement. We first
introduce quantum channels: given two Hilbert spaces Hin and Hout, a quantum channel
Φ : BpHinq Ñ BpHoutq is a completely positive map which is also trace-preserving. In
particular it maps states to states: ΦpDpHinqq Ă DpHoutq.

Quantum channels can be characterized via the Kraus representation: a linear map
Φ : BpHinq Ñ BpHoutq is a quantum channel if and only if it acts as

ΦpXq “
ÿ

i

AiXA
:

i

for X P BpHinq, where Ai : Hin Ñ Hout are finitely many operators satisfying
ř

A:iAi “ Id.
Suppose now that Hin and Hout are bipartite Hilbert spaces, i.e., Hin “ Hin1 bHin2 and

Hout “ Hout1 bHout2 . Given quantum channels Φ1 : BpHin1 q Ñ BpHout1 q and Φ2 : BpHin2 q Ñ
BpHout2 q, we may consider the product quantum channel Φ1 b Φ2 : BpHinq Ñ BpHoutq.

Mimicking the definition for states, a quantum channel Φ : Hin Ñ Hout is said to be
separable is it can be written as

ΦpXq “
ÿ

i

pA1
i bA

2
i qXpA

1
i bA

2
i q
:q

for some A1
i : Hin1 Ñ Hout1 and A2

i : Hin2 Ñ Hout2 . Product channels are examples of
product channels. However, the relevant class for Quantum Information Theory is the
related class of LOCC (Local Operations and Classical Communications) channels (see
[25, 13] for extensive discussions). To avoid technicalities, we do not define it precisely but
simply say that

convtproduct channelsu Ă tLOCC channelsu Ă tseparable channelsu.

We explain now a basic result from quantum Shannon theory. Denote by ψ a Bell state
(a maximally entangled state on C2 bC2). Given a unit vector x P H “ H1 bH2, we may
define its distillable entanglement EDpxq to be the supremum of all R ą 0 such that, for
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any n ą 0, there exists a LOCC quantum channel Φn : BpHbnq Ñ BppC2bC2qbtRnuq with
the property that

lim
nÑ8

}Φnp|xyxx|
bnq ´ |ψyxψ|btRnu}1 “ 0.

This definition may require some effort to grasp: what is meant is that EDpxq the largest rate
at with the state |xyxx| can be transformed into the state |ψyxψ| via LOCC transformations,
with an error vanishing in the limit of many copies. It is known that the number EDpxq is
unchanged if “LOCC quantum channel” is replaced by “separable channel” in its definition
(see, e.g., [20]).

The reverse operation would be to transform |ψyxψ| into |xyxx|. This leads to the
definition of the entanglement cost of x, ECpxq, defined to be the infimum of all R such that,
for any n ą 0, there exists a LOCC quantum channel Φn : BppC2 b C2qbtRnuq Ñ BpHbnq
with the property that

lim
nÑ8

}Φnp|ψyxψ|
btRnuq ´ |xyxx|bn}1 “ 0.

It turns out that the distillable entanglement equals the entanglement cost: manipula-
tion of pure state entanglement is asymptotically reversible.

Theorem 4 (see [9]). For any bipartite pure state x, we have EDpxq “ ECpxq “ Epxq.

The appearance of the entropy of entanglement is related to the following classical
fact about “typical sequences”: if x has Schmidt coefficients λ1, . . . , λd, then the Schmidt
coefficients of xbn are products λi1 ¨ ¨ ¨λin , for all pi1, . . . , inq P t1, . . . , dun. It follows from
the law of large numbers that for large n, most of the mass is concentrated on Schmidt
coefficients with value of order λ, where log λ “ n

řd
i“1 λi log λi.

2.3 The case of multipartite pure states

For a vector x in a multipartite Hilbert space H1 b ¨ ¨ ¨ bHk, there is no analogue of the
Schmidt decomposition when k ą 2. However, we may define the analogue of the largest
Schmidt coefficient by taking the maximal scalar product with a unit product vector. This
coincides with the injective norm on the tensor product of Hilbert spaces, which is dual to
the projective norm introduced in (2)

λpxq “ maxt|xx, x1 b ¨ ¨ ¨ b xky : |x1| “ ¨ ¨ ¨ “ |xk| “ 1u (5)
“ maxt|xx, yy| : y P BH1

pb ¨ ¨ ¨ pbBHk
u (6)

“ }x}H1 qb¨¨¨qbHk
(7)

In order to recover a quantity that scales like the entropy of entanglement, one considers
E8pxq :“ ´2 log λpxq. Natural questions are: how small can be λpxq? what are the
most entangled vectors? The minimal value of λpxq over unit vectors x is the inradius of
BH1

pb ¨ ¨ ¨ pbBHk
.

9



In the bipartite case, when x P Cd1bCd2 , one has λpxq ě 1{
a

minpd1, d2q. By induction,
estimates follow also in the multipartite case. For simplicity, we consider the case of k qubits:
H1 “ H2 “ ¨ ¨ ¨ “ Hk “ C2. For any unit vector x P pC2qbk, we have λpxq ě 2´pk´1q{2, or
E8pxq ď k ´ 1. How sharp is this estimate is unknown.

Problem 5. Can we find a constant C, and for any k a unit vector x P pC2qbk such that
E8pxq ě k ´ C ?

Curiously, in the real case, there are unit vectors in pR2qbk satisfying λpxq “ 2´pk´1q{2.
Equivalently, there is a k-linear map Φ : pR2qk Ñ R such that Φpx1, ¨ ¨ ¨ , xkq ď |x1| ¨ ¨ ¨ |xk|
and the “Hilbert–Schmidt” norm of Φ equals 2pk´1q{2

}Φ}HS :“

¨

˝

ÿ

pi1,¨¨¨ ,ikqPt1,2uk

Φpei1 , ¨ ¨ ¨ , eikq
2

˛

‚

1{2

“ 2pk´1q{2,

where pe1, e2q is the canonical basis of R2. Indeed, if θ is the canonical identification between
R2 and C, we may define Φ as

Φpx1, . . . , xkq “ Re

˜

k
ź

i“1

θpxjq

¸

.

2.4 Random multipartite states are very entangled

We are going to prove that most vectors in the unit sphere of pC2qbk are very entangled,
although they are not entangled enough to provide a positive answer to Problem 5. We
will use some standard machinery which we now review. We use concentration of measure
in the following form, which is called Lévy’s lemma in quantum information literature. It
asserts that the fluctuations of 1-Lipschitz functions on a n-dimensional sphere are of order
Op1{

?
nq.

Lemma 6 (see [28, 27, 4]). Let f : Sn´1 Ñ R be a 1-Lipschitz function and choose x P Sn´1

randomly according to the uniform measure σ. Then, for any t ą 0,

Pp|fpxq ´E fpxq| ą tq ď 2 expp´pn´ 1qt2{2q.

There are two natural distances on the sphere Sn´1: the geodesic distance and the
restriction to Sn´1 of the Euclidean distance on Rn. Lemma 6 is true for both distances.

Let } ¨ } be a norm on Rn, and denote by | ¨ | the Euclidean norm. Denote also γn
the standard Gaussian measure on Rn. We may write x P Rn as x “ |x| x

|x| and use polar
integration to obtain

ż

Rn

}x}dγn “ κn

ż

Sn´1

}u}dσpuq, (8)
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where
κn “

ˆ
ż

Rn

|x| dγn

˙

.

It is easily checked that
?
n´ 1 ă κn ă

?
n. If we consider instead a norm on Cn, and

denote by γCn the standard Gaussian measure on Cn (i.e., such that Rex¨, θy has distribution
Np0, 1{2q for any θ P SCn), the formula becomes

ż

Cn

}x}dγCn “
κ2n
?

2

ż

SCn
}u}dσpuq (9)

We also need a version of the union bound for maximum of Gaussian variables.

Lemma 7. Let X1, . . . , XN be random variables and assume that Xi has distribution
Np0, σ2

i q with σ
2
i ď 1. Then

EmaxpX1, . . . , XN q ď
a

2 logN.

Proof. For any β ą 0, we compute E exppβXiq “ exppσ2
i β

2{2q ď exppβ2{2q and may write

EmaxpX1, . . . , XN q ď
1

β
E log

N
ÿ

i“1

exppβXiq

ď
1

β
log

N
ÿ

i“1

E exppβXiq

ď
1

β

ˆ

logN `
β2

2

˙

.

We then choose the optimal value β “
?

2 logN . This proof is due to Talagrand.

We are going to prove the following proposition, as a standard application of concen-
tration of measure and ε-nets argument (the quantity λpxq was defined in (5)).

Proposition 8 (see [16, 11]). Let x be a unit vector in pC2qbk chosen at random with
respect to the uniform measure on the sphere. Then, with large probability

c

?
k log k

2k{2
ď λpxq ď C

?
k log k

2k{2
,

where c ą 0 and C denote numerical constants.

Equivalently, for typical vectors x, one has E8pxq “ k ´ log k ´ log log k `Op1q.
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Proof. Since the function λ is 1-Lipschitz on SpC2qbk , Proposition 8 follows easily from
Lemma 6 once we prove that

c

?
k log k

2k{2
ď Eλpxq ď C

?
k log k

2k{2
.

We only prove the upper bound (for the lower bound, see Exercise 10). We take a ε-net N
in SC2 » S3. Since S3 has dimension 3, we can choose such a net with cardN ď C{ε3 for
some constant C. A simple geometric argument shows that

convN Ą

ˆ

1´
ε2

2

˙

BC2

and therefore

convNbk Ą
ˆ

1´
ε2

2

˙k

BC2 pb ¨ ¨ ¨ pbBC2 .

If we choose ε “ 1{
?
k, then p1´ ε2{2qk ě c for some constant c ą 0. It follows that

λpxq ď c´1 maxt|xx, yy| : y P Nbku.

Using (9), we have
ż

S
pC2qbk

λpxqdσpxq “
1

κC
2k

ż

pC2qbk

λpxqdγC2k ď
C

2k{2

b

2 log cardpNbkq ď C
?
k log k

2k{2
.

The proof of the lower bound is based on the Sudakov minoration principle: ifX1, . . . , XN

are jointly Gaussian (real or complex) vectors satisfying E |Xi ´Xj |
2 ě ε2 for some ε ą 0,

then EmaxpX1, . . . , XN q ě cε
?

logN .

Exercise 10. Produce enough ε-separated points in pBC2qbk to show the lower bound
Eλpxq ě c

?
k log k
2k{2

using Sudakov minoration principle.

2.5 Quantifying entanglement of mixed states

A comprehensive survey of the many ways to quantifiy the entanglement of mixed states is
[35]. We only consider a few of them.

The definition of the distillable entanglement and of the entanglement cost can be
extended verbatim to the case of a mixed state ρ P DpH1bH2q. We repeat them informally
(recall that ψ denotes a Bell state)

• The entanglement cost ECpρq is the best (i.e., smallest) rate R such that we can, via
LOCC channels, transform |ψyxψ|bRn into ρbn with vanishing error as nÑ8.

• The distillable entanglement EDpρq is the best (i.e., largest) rate R such that we can,
via LOCC channels, transform ρbn into |ψyxψ|bRn with vanishing error as nÑ8.

12



It is known that creating entanglement has always a non-zero cost.

Theorem 9 ([45]). A state ρ P DpH1 bH2q is entangled if and only if ECpρq ą 0.

On the other hand, it is easy to check that if Φ is a separable channel (which includes
the case of LOCC channels), and ρ a PPT state, then Φpρq is a PPT state. Since Bell
states are non-PPT, it follows that EDpρq “ 0 for any PPT entangled state (such states
are called bound entangled).

The distillability problem is the following: does there exist a state ρ P DpCdbCdq such
that EDpρq “ 0 while ρ is not PPT ? This is already not known for d “ 3. We also point out
that EDpρq ą 0 if and only if there exists an integer n and operators A,B : pCdqbn Ñ C2

such that the pA b BqρpA b Bq: is non-PPT. It is also known that if there is a non-PPT
state ρ with EDpρq “ 0, then there is a non-PPT Werner state ρα with EDpραq “ 0. For
more information on the distillability problem see [24, 14, 4].

We now mention the connexion between the entanglement cost and the entanglement
of formation. Let ρ P DpHA bHBq. Any decomposition of ρ as a mixture of pure states

ρ “
ÿ

λi|ψyxψ| (10)

yields a protocol to generate ρ from Bell states at a rate R “
ř

λiEpψiq. The entanglement
of formation EF pρq is the infimum of these rates over decompositions (10)

EF pρq “ inf
!

ÿ

λiEpψiq : ρ “
ÿ

λi|ψiyxψi|
)

.

In other words, EF is the largest convex function on DpHAbHBq such that EF p|ψyxψ|q “
Epψq.
Exercise 11. Prove that EF pρq “ 0 if and only if ρ is separable.

The previous definition yields the inequality ECpρq ď EF pρq and actually even ECpρq ď
1
nEF pρq (indeed, the way the entanglement cost is defined gives automatically the additivity
property ECpρbnq “ nECpρq). This inequality was proved to be sharp in the limit nÑ8

Theorem 10 (Horodecki–Hayden–Terhal, [22]). For any bipartite state ρ,

ECpρq “ lim
nÑ8

1

n
EF pρ

bnq.

The entropy of entanglement is additive on product vectors: Epxb yq “ Epxq ` Epyq.
It follows that the entanglement of formation is subadditive:

EF pρb σq ď EF pρq ` EF pσq. (11)

For a long time the entanglement of formation was conjectured to be additive, i.e., that there
is equality in (11). An immediate corollary of Theorem 10 would have been the equality
between entanglement of formation and entanglement cost. However, this conjecture turned
out to be false, as proved by Hastings [19].
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3 Non-additivity phenomenon and Dvoretzky’s theorem

3.1 Minimum output entropy

The conjecture that entanglement of formation is additive mentioned at the end of the
previous section was known to be equivalent (after work by Shor [37]) to the additivity of
the minimal output entropy: for any quantum channels Φ1,Φ2,

SminpΦ1 b Φ2q
?
“ SminpΦ1q ` SminpΦ2q

where, for a quantum channel Φ : BpHinq Ñ BpHoutq,

SminpΦq “ min
 

SpΦpρqq : ρ P DpHinq
(

. (12)

By concavity of the von Neumann entropy, the minimum in (12) can be restricted to pure
states.

It is convenient to use the Stinespring representation of quantum channels. Any quan-
tum channel Φ : BpHinq Ñ BpHoutq can be represented as

Φpρq “ TrHe UρU : (13)

where He is an auxiliary Hilbert space (the letter e stands for “environment”), and U :
Hin Ñ HoutbHe is an isometric embedding. Denote V Ă HoutbHe the range of U . When
Φ is given as in (13), its minimal output entropy is

SminpΦq “ min
xPV

Epxq.

The existence of channels with large minimum output entropy is therefore connected to the
existence of (very) entangled subspaces, i.e., subspaces V Ă Cd1 b Cd2 such that any unit
vector x P V is (very) entangled. We search for such subspaces of dimension as large as
possible.

3.2 Entangled subspace: qualitative problem

This calls for a qualitative version of the problem: how large can be dimV , where V Ă

Cd1 b Cd2 is a subspace which does not contain any nonzero product vector ? This can be
solved by elementary algebraic geometry. Denote by

Seg :“ txb y : x P Cd1 , y P Cd2u Ă Cd1 b Cd2

the set of product vectors (which is also called the Segré variety). As projective varieties,
Seg has dimension d1 ` d2 ´ 2 while V has dimension dimV ´ 1 (dimV denoting the
dimension of V as a linear space). By the projective intersection theorem (see [18]), the
intersection V X Seg is non-empty whenever

pdimV ´ 1q ` pd1 ` d2 ´ 2q ě d1d2 ´ 1 ðñ dimV ě d1d2 ´ pd1 ` d2q ` 2.
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Conversely, it is not hard to show that a randomly chosen V with dimV ă d1d2´pd1`d2q`2
intersects Seg with probability 1.

Exercise 12 (see [32, 41]). Prove the last statement using your favorite notion of dimension
(a possibility is to use the Minkowski dimension, i.e., count how many balls of radius ε are
required to cover a given set, as εÑ 0).

Here and in what follows, whenever we say “random subspace of dimension k”, it is
tacitly understood that the subspace is chosen with respect to the Haar measure on the
corresponding Grassmann manifold. Equivalently, it can be defined as the subspace spanned
by k independent random vectors uniformly distributed on the sphere.

We now turn to the quantitative version of problem: we are interested in finding sub-
spaces V Ă Cd1bCd2 on which the function E is not only nonzero, but large. This problem
enters within the realm of Dvoretzky-like theorems, which state that a Lipschitz function on
a high-dimensional sphere is almost constant on large-dimensional subspaces. We mention
that an alternative route is possible from that point to obtain counterexamples where the
minimum output entropy is non-additive: following [7, 8], one can work directly on the
limit object using free probability and prove the following result. Fix t P p0, 1q and consider
a random subspace E Ă Ck b Cn of dimension ttknu. As k is fixed and n tends to infinity,
the set of all possible Schmidt coefficients of unit vectors from E (which is a subset of Rk)
has a deterministic limit.

3.3 Dvoretzky’s theorem

We already mentioned Lévy’s lemma (Lemma 6): Lipschitz functions on the sphere are
concentrated around their mean. It is useful to introduce the more flexible notion of central
value: a central value for a random variable X is either its mean, or any number t such
that PpX ď tq ě 1

4 and PpX ď tq ď 1
4 . Lévy’s lemma has a variant for central values: if

f : Sn´1 Ñ R is 1-Lipschitz, then for any t ą 0,

σ pt|f ´ µ| ą tuq ď C expp´cnt2q

for some absolute constants C, c.

Exercise 13. Deduce the “central value” version of Lévy’s lemma from the “median” version
(the latter is an immediate consequence of isoperimetry on of the sphere).

We can now state Dvoretzky’s theorem for Lipschitz functions.

Theorem 11. Let f : Sn´1 Ñ R be a 1-Lipschitz function, and µ a central value for f .
Let E Ă Rn a random subspace of dimension k. Then, provided k ď cpεqn, with large
probability,

sup
xPSn´1XE

|fpxq ´ µ| ď ε.
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Proof. The following argument is essentially due to Milman [29] and ultimately based on
a “union bound” argument. Fix any subspace E0 Ă Rn with dimension k. The random
subspace E can be realized as E “ OpE0q, where O is a random Haar-distributed element
of Opnq. Consider also a ε{2-net N in Sn´1XE0. Such a net can be chosen with cardN ď

pC{εqk. Since f is 1-Lipschitz, it is enough to prove that |f ´ µ| ď ε{2 on OpN q with large
probability. For any x P N , the vector Opxq is uniformly distributed on the sphere, and
therefore we have

PpDx P N : |fpOpxqq ´ µ| ą ε{2q ď cardpN qσpt|f ´ µ| ą ε{2uq (14)
ď pC{εqkC exppcnε2q. (15)

The right-hand side of (15) is (much) smaller than 1 provided k logp1{εq ď cnε2, or k ď
cpεqn where cpεq “ cε2{ logp1{εq.

This argument can be improved to obtain the dependence cpεq “ cε2 by using a chaining
argument à la Dudley. We also need the complex analogue of Theorem 11.

Theorem 12 (see [36, 5]). Let f : SCn Ñ R be a 1-Lipschitz and circled (i.e., such that
fpαxq “ fpxq for x P SCn and α P C with |α| “ 1) function, and µ a central value for
f . Let E Ă Cn a random subspace of dimension k. Then, provided k ď cε2n, with large
probability,

sup
xPSCnXE

|fpxq ´ µ| ď ε.

3.4 Counterexample to additivity

We now describe how to obtain from Dvoretzky’s theorem a pair of channels for which
the minimal output entropy is not additive. This result was initially obtained by Hastings
[19] and considered as a major breakthrough in quantum information theory. The use of
Dvoretzky’s theorem allows for a more conceptual approach; we follow the argument from
[5].

We consider for i P t1, 2u an random isometry Ui : Hini Ñ Houti bHei and Φi : BpHini q Ñ
BpHouti q the corresponding channel defined as (13). What only matters is the range of Ui,
which is a random subspace Vi Ă Houti bHei . We are going to adjust later the dimensions
din “ dimHini , dout “ dimHouti and de “ dimHei in order to obtain SminpΦ1 b Φ2q ă

SminpΦ1q ` SminpΦ2q, or equivalently (the minima being restricted to unit vectors)

min
xPV1bV2

Epxq ă min
x1PV1

Epx1q ` min
x2PV2

Epx2q. (16)

We use a trick to ensure that the left-hand side in (16) is small: take Hin1 “ Hin2 “ Hin,
Hout1 “ Hout2 “ Hout, He1 “ He2 “ He, U2 “ U1 (the entry-wise complex conjugation of U1,
with respect to a fixed basis) and x to be the maximally entangled state (with respect to
the same basis) in V1 b V1.
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Lemma 13. Let V Ă Cdout b Cde a subspace with dimension din. Then V b V contains a
unit vector whose largest Schmidt coefficient is greater that din{doutde. Schmidt coefficients
are computed with respect to the bipartition pCdoutqb2 vs pCdeqb2.

Equivalently and perhaps more transparently, the lemma can be stated using the lan-
guage of matrices: if V Ă Mdout,de is a subspace of dimension din, then V b V contains a
matrix A with }A}HS “ 1 and }A}8 ě

a

din{doutde.

Proof. We prove the matrix version. Let pejq be the canonical basis of Cdout , pekq the
canonical basis of Cde . Let pA1, . . . , Adinq an orthonormal basis for V , with respect to the
Hilbert–Schmidt scalar product. Consider

A “
1

?
din

din
ÿ

i“1

Ai bAi,

φ “
1

?
dout

dout
ÿ

j“1

ej b ej ,

ψ “
1
?
de

de
ÿ

k“1

fk b fk.

We have }A}HS “ 1 and |φ| “ |ψ| “ 1. We compute

xφ|A|ψy “
1

?
dindoutde

ÿ

i,j,k

xej b ej |Ai bAi|fk b fky

“
1

?
dindoutde

ÿ

i,j,l

|xej |Ai|eky|
2

“
1

?
dindoutde

ÿ

i

}Ai}
2
HS

“

c

din
doutde

as needed.

In order to obtain a counterexample, we consider the following range: dout “ k, de “ k2

and din “ ck2 for some fixed constant c, and take k Ñ 8. We know from basic random
matrices considerations that typically, Schmidt coefficients of a single random unit vector
x P Ck b Ck2 are or order 1

k

´

1`Op
a

k{k2q

¯

, so that Epxq “ logpkq ´ C{k (there is an
explicit formula for the mean of E, see, e.g., [15]). It turns out that this estimate holds
uniformly over subspaces of large dimension

17



Claim 14. There exist constants c, C 1 ą 0 such that a random subspace V Ă Ck b Ck2 of
dimension ck2 satisfies

inf
xPV,|x|“1

Epxq ě log k ´
C 1

k

with large probability.

This is enough to obtain a counterexample: indeed, for V as in Claim 14, we have

SminpΦq “ SminpΦq ě log k ´
C 1

k

whereas Lemma 13 gives a state ψ such that pΦ b Φqp|ψyxψ|q has one eigenvalue larger
than 1{k. A simple computation using the concavity of the von Neumann entropy allows
to deduce that

SminpΦb Φq ď logpk2q ´
c log k

k
,

and therefore SminpΦb Φq ă SminpΦq ` SminpΦq for k large enough. This is really a high-
dimension phenomenon and the proof gives a poor estimate for the smallest dimensions in
which a counterexample exists. In a slightly different model from [8] (which is based on the
limit object) it is proved that counterexamples exist provided k ě 183.

3.5 Very entangled subspaces

It remains to deduce the Claim 14 from Dvoretzky’s theorem. A direct application to
the function E fails. The function E can be shown to have Lipschitz constant C log k on
SCkbCk2 , but this is not good enough.

Exercise 14. When k ď l, show that the Lipschitz constant of E on SCkbCl is smaller than
C log k and larger than c log k, for some absolute constants C, c.

A better idea is to use a approximation of E for states close to being maximally entangled

Epxq ě log k ´ k

›

›

›

›

TrCk2 |xyxx| ´
Id

k

›

›

›

›

2

HS
. (17)

Exercise 15. Prove (17).

As we already mentioned, the eigenvalues of TrCk2 |xyxx| (=the Schmidt coefficients of
x) are of order 1{k `Op1{k3{2q. If we define

gpxq “

›

›

›

›

TrCk2 |xyxx| ´
Id

k

›

›

›

›

HS
,

this shows that g is typically of order 1{k (as required), and we need to show that this
holds uniformly over a large subspace. At this point it is more convenient to switch to
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the matrix formalism. The function g becomes a function defined on the Hilbert–Schmidt
sphere as gpXq “ }XX: ´ Id

k }HS. We now use another idea: although the function g is
globally 2-Lipschitz, this can be improved via the inequality

|gpXq ´ gpY q ď }XX: ´ Y Y :}HS ď }X}8}X
: ´ Y :}HS ` }Y }8}X ´ Y }HS

which shows that } ¨ }8 has Lipschitz constant 6{
?
k when restricted to the subset Ω “

t} ¨ }8 ď 3{
?
ku of the Hilbert–Schmidt sphere.

We use the following trick: let g̃ be a 6{
?
k-Lipschitz extension of g|Ω to the whole

Hilbert–Schmidt sphere. We use Dvoretzky’s theorem (Theorem 12) twice to conclude
that, for a typical subspace E Ă Ck b Ck2 of dimension ck2,

• E Ă Ω,

• g̃ “ Op1{kq on E.

This completes the proof of Claim 14. Note that the median of g is a central value for g̃,
and vice versa.

4 Random states in high dimension

4.1 Random induced states

Let H be a (finite-dimensional, complex) Hilbert space. How to choose a state on H at
random in a natural way? What is clear is how to pick a pure state at random: simply take
|ψyxψ| with ψ uniformly distributed on the sphere. But what about mixed states?

There is an elegant and physically relevant approach which is based on the fact that
any mixed state can be seen as the partial trace of a pure state over some extra Hilbert
space. Indeed, if ρ P DpCnq has the form

ρ “
n
ÿ

i“1

λi|eiyxei|

for some orthonormal basis peiq of Cn, then ρ “ TrHe |ψyxψ| for

ψ “
n
ÿ

i“1

a

λiei b ei

and He “ Cn. Therefore one can generate random mixed states as partial traces of random
pure states. This leads to a 2-parameters family of probability measures. Given two integers
n, s, denote by µn,s the distribution of TrCs |ψyxψ|, where ψ is a unit vector with uniform
distribution on the sphere SCnbCs ; µn,s is a probability measure on DpCnq. States with
distribution µn,s are called random induced states and were introduced in [46].
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An alternative description is as follows: if M is uniformly distributed in the Hilbert–
Schmidt sphere of n ˆ s matrices, then µn,s is the distribution of MM :. Still another
description is to consider a n ˆ s matrix G with independent entries having a standard
complex distribution. Then G{}G}HS is uniformly distributed on the Hilbert–Schmidt unit
sphere, and therefore the matrix

GG:

TrGG:
(18)

has distribution µn,s. This approach is appealing since the matrix GG: is well-known in
random matrix theory under the name of a Wishart matrix (although the real version of
Wishart matrices are more frequently encountered) and it allows to transfer directly result
from random matrices to random induced states.

In this model, the parameter s has a physical interpretation: it is the dimension of the
environment, or the number of non-accessible parameters. When s ě n, the measure µn,s
has a density with respect to the Lebesgue measure given by the formula

1

Zn,s
pdet ρqs´n1ρě0, (19)

where Zn,s is a normalization constant [46]. In the special s “ n, the measure µn,n is
the uniform measure on DpCnq! This can be seen as the non-commutative analogue of the
following classical fact: if x “ px1, . . . , xnq is chosen uniformly at random on the unit sphere
on Cn, then p|x1|

2, . . . , |xn|
2q is uniformly distributed on the simplex of length n probability

vectors.

4.2 Limit results for random induced states

Consider the representation of random induced states as normalized Wishart matrices as in
(18). First note that TrGG: is strongly concentrated around the value ns. An application
of the law of large numbers to each entry of GG: shows that, with n fixed and s Ñ 8,
the measures µn,s concentrate towards the maximally mixed state Id{n (this is also clear
from the formula (19) since the maximally mixed state is the unique state with maximal
determinant). We will make this statement more quantitative by studying the rate of
convergence, and also consider regimes when both n and s tend to infinity.

Given a self-adjoint n ˆ n matrix A with eigenvalues (λ1, . . . , λn), it is convenient to
introduce its empirical spectral distribution

µA “
1

n

n
ÿ

i“1

δλipAq.

Let ρn,s be a random induced state with distribution µn,s. Assume that n and s both
tend to infinity in such a way that α “ lim s{n exists. We also assume α ě 1 and con-
sider the rescaled states nρn,s whose eigenvalues are of order 1. Then, the sequence of
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corresponding empirical spectral distributions converges towards a nonrandom measure
µMP,α which is called the Marčenko–Pastur distribution with parameter α and has support
rp1´ 1{

?
αq2, p1` 1{

?
αq2s. We write

µnρn,s

˚
Ñ µMP,α. (20)

The meaning of ˚
Ñ is the following: convergence is in probability (almost sure convergence

also holds but is usually irrelevant to our setting) and encompasses both weak convergence
of probability measures and convergence of supports.

Similarly, if n and s both to infinity in such a way that lim s{n “ 8, the properly
rescaled empirical spectral distributions approach the semicircle law µSC

µ?nspρ´Id{nq
˚
Ñ µSC. (21)

For fixed n and s Ñ 8, it follows from the multivariate central limit that we have an
approximation

ρ “
Id

n
`

1
a

npn´ 1qs
Γn (22)

where Γn is a standard Gaussian vector is the space of self-adjoint trace zero operators
on Cn. This is also a familiar object from random matrix theory: without the trace zero
restriction one would get exactly GUE random matrices. Here Γn can described as a GUE
random matrix conditioned to have trace 0, or equivalently as Γn “ An´TrpAnqId{n where
A is a nˆ n GUE random matrix.

One checks that formulas (21) and (22) are consistent: by Wigner’s theorem we have

µΓn{
?
n
˚
Ñ µSC. (23)

However, one cannot formally deduce (21) from (22) and (23) because it would require to
exchange the order in which limits are taken.

We already explained that for a fixed dimension n, the measures µn,s concentrate to-
wards Id{n as s tends to infinity. It makes sense to ask ourselves, given a property of a
quantum state, for which values of s does this property typically hold?

For properties which depend only on the spectrum, the answer is provided by the limiting
results (20) and (21). However, most properties connected to the entanglement vs proba-
bility dichotomy cannot be inferred from spectrum. For such questions to make sense, we
assume that the space Cn is identified with CdbCd. Natural questions are: given a random
state ρ P DpCd b Cdq with distribution µd2,s, is it typically entangled? PPT? What is the
typical order or magnitude of the entanglement of formation? of the entanglement cost? of
the distillable entanglement?
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4.3 Threshold for the entanglement of formation

As a warm-up we discuss a threshold phenomenon for the entanglement of formation. Recall
its definition

EF pρq “ inf
!

ÿ

λiEpψiq : ρ “
ÿ

λi|ψiyxψi|
)

.

We show that when ρ is a random induced state with distribution µd2,s, the typical
value of EF pρq switches from almost maximal to almost minimal when s is roughly of order
d2.

Proposition 15 (see [21]). Let ρ be a random induced state on Cd b Cd with distribution
µd2,s. Then

1. If s ď cd2{ log2 d, then with high probability EF pρq ě logpdq ´ 1.

2. For any ε ą 0, if s ě Cpεqd2 log2 d, then with high probability EF pρq ď ε.

Here Cpεq is a constant depending only on ε.

Any improvement on Proposition 15, especially in the range when s is of order d2, would
be welcome.

Proof. For the first part, we lower bound the average by the minimum

EF pρq ě min
ψPRangepρq

Epψq.

The range of ρ is a random s-dimensional subspace of CdbCd. Applying Dvoretzky’s theo-
rem and using the fact that E is C log d-Lipschitz (see Exercise 14) gives that the minimum
of E over rangepρq is larger log d ´ 1 with high probability provided s ď Cd2{ log2 d, as
claimed.

For the second part, we are going to use the convexity of EF : let λmin be the smallest
eigenvalue of ρ and write

ρ “ pρ´ λminIdq
loooooomoooooon

p1´d2λminqσ

`d2λmin
Id

d2
.

This gives (note that σ is a state)

EF pρq ď p1´ d
2λminqEF pσq ď p1´ d

2λminq log d.

We are reduced to estimating λmin. This depends only on the spectrum, so we know from
(quantitative versions of) the limit-result (20) that

λmin “
1

d2
´O

ˆ

1

d
?
s

˙

.

This gives the announced result.
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4.4 Threshold for PPT

In some cases the study of thresholds in the spirit of Proposition 15 leads to interesting
matrix models. This is the case for the PPT property. By (18), this is equivalent to the
following question: when G is a d2ˆ s random matrix with independent standard complex
Gaussian entries, when is the matrix

pGG:qΓ

positive? Such problems are amenable to the techniques of random matrix theory, espe-
cially to the moment method which leads to combinatorial questions about non-crossing
partitions.

Let ρd2,s be a state on Cd bCd with distribution µd2,s. In the regime when both d and
s tend to infinity with lim s{d2 “ α P p0,8q, we have [3]

µd2ρΓ
˚
Ñ µSCp1,1{αq

where µSCpm,σ2q denotes the semicircular distribution with mean m and variance σ2. By
comparing with (20), we see that partial transposition has a non-trivial effect of the spec-
trum since it transforms the Marčenko–Pastur distribution MPpαq into the semicircular
distribution SCp1, 1{αq. (Note that both have the same first and second moments, since
partial transposition preserves both the trace and the Hilbert–Schmidt norm.)

The support of the distribution SCp1, 1{αq equals r1´ 2{
?
α, 1` 2{

?
αs; it is contained

in the positive half-line whenever α ě 4. The following dichotomy follows: for any ε ą 0,

1. For s ă p4´εqd2, a random state with distribution µd2,s is non-PPT with probability
tending to 1 as s, dÑ8.

2. For s ą p4 ` εqd2, a random state with distribution µd2,s is PPT with probability
tending to 1 as s, dÑ8.

We may say that the value s “ 4d2 is a threshold for the PPT property of random
induced states.

4.5 Central limit approximation for induced states

For general properties, the problem can be attacked via a geometric approach. Consider
a closed convex set K Ă DpCnq and assume that the maximally mixed state Id{n belongs
to the interior of K. We think of Id{n as the origin, making the affine space of trace 1
self-adjoint operators into a vector space.

The gauge associated to K is

}ρ}K “ inf

"

t ą 0 :
Id

n
`

1

t

ˆ

ρ´
Id

n

˙

P K

*
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and has the property that K “ tρ : }ρ}K ď 1u. Suppose that K corresponds to the of
quantum states having a given property (P). The question whether random induced states
typically have property (P) is the following: under the probability distribution µn,s, is the
typical value of } ¨ }K larger or smaller than 1?

In most settings, there is enough concentration of measure present to reduce the problem
to the estimation of the expectation: if E } ¨ }K ă 1, then ρ P K with high probability,
while if E } ¨ }K ą 1, then ρ R K with high probability (see [6] for a general statement in
this direction).

The following proposition is a quantitative version of the central limit approximation
from (22) and compares average of gauges for induced states and for GUE matrices.

Proposition 16. Let ρ be a random induced state with distribution µn,s, and Γ a nˆn GUE
random matrix conditioned to have trace 0. For any convex body K Ă DpCdq containing
Id{n in the interior,

C´1
n,s E

›

›

›

›

Id

n
`

Γ

n
?
s

›

›

›

›

K

ď E }ρ}K ď Cn,sE

›

›

›

›

Id

n
`

Γ

n
?
s

›

›

›

›

K

,

where the constants Cn,s have the property that limCn,s “ 1 whenever both n and s{n tend
to infinity.

We sketch a proof of Proposition 16. The proof is based on the following coupling
argument: let U be a random unitary matrix which is independent both from ρ and from
Γ. Since both models are unitary invariant, we have

• The random matrix U diagpspecpρqqU : has the same distribution as ρ,

• The random matrix U diagpspecpGqqU : has the same distribution as G.

By diagpspecpAqq we mean the diagonal matrix whose elements are the eigenvalues of A
(the way they are ordered is irrelevant). Denote by Rn,0 Ă Rn the hyperplane consisting of
vectors whose sum of coordinates is 0 and introduce the function Φ : Rn,0 Ñ R defined as

Φpxq “ E }U diagpxqU :}K .

The function Φ is convex and permutation-invariant. Such functions appear naturally in
connection with majorization. Majorization is a partial order defined as follows: given
x, y P Rn,0, we write x ă y if one of the following equivalent conditions is satisfied

1. For any k P t1, . . . , n ´ 1u, Skpxq ď Skpyq, where Skpzq denotes the sum of the k
largest coordinates of a vector z P Rn,0.

2. There is a bistochastic matrix B such that x “ By.

3. For any function Φ : Rn,0 which is convex and permutation-invariant, we have Φpxq ď
Φpyq.
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We know that the vectors specpρ´ Id{nq and specpΓ{n
?
sq are comparable and become

more and more comparable as n and s{n tend to infinity, by (21) and (23). If order to
translate this into majorization, we use the following lemma, and Proposition 16 follows
with little effort (see [6, 4]).

Lemma 17. Let x, y P Rn,0. Assume that }x´ y}8 ď ε and that }y}1 ě αn. Then

x ă

ˆ

1`
2ε

α

˙

y.

Exercise 16. Prove Lemma 17.

5 Separability of random states and convex geometry

5.1 Threshold for separability vs entanglement

In this last section, which in based on [6], we are going to study the following question:
for which values of the parameters d, s is it true that a random state ρ on Cd b Cd with
distribution µd2,s is typically separable?

Assume that both d and s2{d tend to infinity and apply Proposition 16 to the convex
body K “ Sep “ SeppCd b Cdq. We obtain that

E }ρ}Sep » E

›

›

›

›

Id

d2
`

Γ

d2
?
s

›

›

›

›

Sep

»
wpSep˝q
?
s

where wpSep˝q denotes the mean width of the polar of Sep—these notions will be explained
in Section 5.2. It follows from the discussion preceding Proposition 16 that a threshold for
separability occurs at the value

s0pdq “ wpSep˝q2 (24)

in the following sense

1. For s ă p1´ εqs0pdq, a random state with distribution µd2,s is entangled with proba-
bility tending to 1 as s, dÑ8.

2. For s ą p1` εqs0pdq, a random state with distribution µd2,s is separable with proba-
bility tending to 1 as s, dÑ8.

To get a complete picture we need to compute the value of s0pdq: we will see in Section
5.3 that

cd3 ď s0pdq ď Cd3plog dq2. (25)
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5.2 Notions from convex geometry

Let K Ă Rn be a convex body containing 0 in the interior. Its gauge is defined for x P Rn
as

}x}K “ inftt ą 0 : x P tKu.

Beware that possibly }x}K ‰ }´ x}K if K is not centrally symmetric! Similarly, the width
of K in direction u (it would have been more geometrically correct to call this quantity the
half-width) is defined as

wpK,uq “ sup
xPK
xx, uy.

Width and gauge are dual quantities: indeed, if we introduce the polar convex body as

K˝ “ tx P Rn : @y P K, xx, yy ď 1u

one checks that } ¨ }K˝ “ wpK, ¨q and } ¨ }K “ wpK˝, ¨q.

Exercise 17. Show that DpCnq˝ “ ´nDpCnq provided we take the maximally mixed state
as the origin.

The average over Sn´1 of wpK, ¨q is called the mean width of K

wpKq “

ż

Sn´1

wpK,uqdσpuq.

It is also convenient to introduce the Gaussian version of the mean width (see (8))

wGpKq “

ż

Rn

wpK,uqdγnpuq “ κnwpKq “ E }G}K

where G is a standard Gaussian vector in Rn.
There is a strong connection between mean width and volume. Denote by volpKq

the volume (=Lebesgue measure) of K. The volume is n-homogeneous in the sense that
volpλKq “ λn volpKq for λ ą 0. It is therefore often more convenient to work with a
1-homogeneous variant called the volume radius of K and defined as

vradpKq “

ˆ

volpKq

volpBn
2 q

˙1{n

where Bn
2 is the unit Euclidean ball. It has the properties that vradpBn

2 q “ 1 and
vradpλKq “ λ vradpKq for λ ą 0. Note that the last two properties are also shared
by the mean width. A result by Urysohn asserts that the volume radius is always smaller
than the mean width.

Proposition 18 (Urysohn inequality). For any convex body K Ă Rn, we have vradpKq ď
wpKq.
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The Urysohn inequality belongs to the family of isoperimetric-like inequalities: at fixed
volume, the mean width (and surface) of a convex body is minimal for Euclidean balls.

Much deeper results connect to the volume of a convex body to the volume of its polar
body (the hardest part in the following proposition is the lower bound, for which several
very different proofs are known [10, 26, 30]).

Proposition 19 (Santaló and reverse Santaló inequalities). For any convex body K Ă Rn
with center of mass at the origin,

c ď vradpKq vradpK˝q ď 1 (26)

for some absolute constant c.

Of course the crucial point is that the constant c is dimension-free: the fact that the lower
bound from (26) holds in a fixed dimension follows from a simple compactness argument.

There is no immediate analogue of Proposition 19 for the mean width: even in a fixed
dimension the product wpKqwpK˝q may be unbounded. In dimension 2, consider for exam-
ple ellipses with eccentricity close to 1 (however, it is simple to show that the lower bound
wpKqwpK˝q ě 1 always holds).

Let us now consider some examples of convex bodies: the cube and its polar

Bn
8 “ r´1, 1sn,

Bn
1 “ pB

n
8q
˝
“ tx P Rn : |x1| ` ¨ ¨ ¨ ` |xn| ď 1u,

for which one computes via formula (8) that wpBn
8q is of order

?
n while wpBn

1 q is of
order

a

logpnq{n. Another example is the regular n-dimensional simplex ∆n which can be
rescaled so that ∆˝

n “ ´∆n, and for which the mean width is of order
?

log n. In these
examples the product wpKqwpK˝q is at most of order log n. This turns out to be true
in general (at least for symmetric convex bodies) provided one allows to apply a suitable
linear transformation before computing mean widths.

Theorem 20 (The MM˚-estimate). For every symmetric convex body K Ă Rn, there is a
linear transformation T P GLpnq such that, denoting K̃ “ T pKq, we have

wpK̃qwpK̃˝q ď C log n (27)

for some absolute constant C.

It is unknown whether the upper bound from (27) could be replaced by C
?

log n. An-
other important open question is whether Theorem 20 holds for all convex bodies (without
symmetry assumption), where T is allowed to be any invertible affine transformation.

The proof of Theorem 20 is based on estimates on the K-convexity constant associated
to a normed space. The way T is defined is through an optimization problem; in particular
K̃ inherits all the symmetries of K. This means that when the subgroup G ă Opnq of
isometries preserving K acts irreducibly, Theorem 20 holds with K̃ “ K.
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5.3 Estimation of the threshold

Consider Sep “ SeppCd b Cdq, the set of separable states on Cd b Cd. We now use the
material from Section 5.2 to estimate the threshold function s0pdq. We have to prove—see
(25) and (24)—that

cd3{2 ď wpSep˝q ď Cd3{2 logpdq.

Since the convex Sep has a simple description as a convex hull, it is easier to compute its
width (which is a maximum over extreme points) than its gauge. We would like to apply
Theorem 20 to conclude that

wpSepqwpSep˝q ď C logpdq. (28)

Two issues have to be solved. First, the convex body Sep is not centrally symmetric
(an hypothesis crucial in Theorem 20). Second, the isometry group of Sep does not act
irreducibly and therefore we cannot conclude that T “ Id is a valid choice in Theorem 20.

The first problem can be remedied via standard symmetrization techniques. For the
second, we can use the fact that the isometry group of Sep acts irreducibly on the subspace
E “ spantA b B : TrA “ TrB “ 0u; since this subspace has a small codimension one
can transfer inequalities like (27) from E to the space of trace 1 self-adjoint operators on
Cd b Cd. We refer the reader to [6, 4] for more detail.

Once we know that (28) holds, it remains to estimate wpSepq via a routine net argument

wpSepq “
1

κd4´1
wGpSepq „

1

d2
E sup
φ,ψPSCd

|xφb ψ|Γ|φb ψy|

where Γ is a d2 ˆ d2 GUE matrix. The set of all product vectors Seg “ tφ b ψu can
be approximated by a 1

4 -net with less than exppCdq vertices (for example take all tensors
of elements from a net in the sphere), yielding together with Lemma 7 the upper bound
wpSepq ď Cd´3{2. Similarly, since Seg contains exppcdq 1

4 separated points, an applica-
tion of the Sudakov minoration principle shows that this upper bound is sharp, i.e., that
wpSepq ě cd3{2. This completes the proof of the estimates (25) on the threshold s0pdq.
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