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These lecture notes study some mathematical aspects of the phenomenon of entangle-
ment from quantum mechanics. While the questions we consider are motivated by quantum
information theory, where entanglement plays a fundamental role, our exposition targets
mostly mathematicians who are not assumed to be familiar with quantum information
theory.

We look at entanglement through the prism of “Asymptotic Geometric Analysis”, a
branch of functional analysis also known as “local theory of Banach spaces” whose objects
of study are the normed spaces of large but finite dimension. Indeed, we especially focus
on the case of quantum systems of large dimension, for which numerical approaches are
usually doomed by the curse of dimensionality.

These notes are organized as follows: in Section 1 we introduce the dichotomy between
entangled vs separated states. In Section 2 we explain various approaches to quantify how
much entanglement contains a quantum state, notably the “entanglement of formation”.
Section 3 explains how to use concentration of measure in the form of Dvoretzky’s theorem
to prove that the entanglement of formation is not additive, a major result first obtain by
Hastings [19]. The last two sections study random states, and in particular the question
whether they are entangled or separable. The answer relies on volume estimates connected
to the convex body of separable states.

We also introduce notation which will be used throughout the text. We consider a
complex Hilbert space H of finite dimension. We denote by B(H) the set of operators
on H and B%*(H) the subset of self-adjoint operators. We always identify operators with
matrices; we denote by My, 4 the space of k x d matrices with complex entries.

We use the convention from physics to take the scalar product on H to be anti-linear
in the first variable and linear in the second variable. We also use Dirac notation: given
x,y € H, we denote by |x)(y| the rank one operator which maps z € H to {y, z)z.

Most of the material presented here will appear also in greater detail in the forthcoming
book [4], to which we refer the reader for more information. Other sources are [34| for
local theory of Banach spaces, [2] for random matrices theory and [31, 44| for quantum
information theory.



1 The fundamental dichotomy: entanglement vs separability

1.1 Quantum states

A main object of interest in quantum information theory is the set of quantum states. A
quantum state on H is a positive self-adjoint operator with trace 1. The set of quantum
states is denoted

DH)={peB*(H) : p=0,Trp=1}.

The letter D stands for the alternative name “density matrix”. Note that for p € D(H),
the linear form defined on B(H) by X — Tr(Xp) if positive with norm 1 and is therefore a
state in the usual functional-analytic sense. In the following we simply say “state” to mean
“quantum state”.

The set D(H) is a compact convex set with (real) dimension d? — 1. Its extreme points
are the pure states on H, i.e., the rank 1 orthogonal projections of the form |z){z|. We
often consider abusively a unit vector x as a pure state; what is really meant is the pure
state |z){x|. Note that |z)z| = |y)(y| if and only if = %y for some § € R. In particular,
the set of pure states naturally identifies with the projective space on H.

Elements of D(H) are often called mixed states. Indeed, we know from the spectral
theorem that any quantum state is a convex combination (a “mixture”) of pure states:

D(H) = conv{|z)z| : x e H,|z| = 1}.

The “less pure” quantum state is the maximally mixed state py := Id/d.

Whenever we apply concepts from Euclidean geometry to quantum states, it is tacitly
understood that the reference Euclidean structure is given by the Hilbert—Schmidt scalar
product on B%*(H), defined as (A, B) = Tr(AB). The corresponding norm is denoted
| - |gs. For example, it is a simple exercise to compute the inradius (=the radius of a
largest inscribed Hilbert—Schmidt ball) and the outradius (=the radius of the smallest
circumscribed Hilbert—Schmidt) of D(H).

Exercise 1. Show that the outradius of D(H) equals /(d — 1)/d and that the inradius of
D(H) equals 1/4/d(d — 1).

For d = 2, the in- and out-radii coincide: D(C?) is a Hilbert-Schmidt ball, called the
Bloch ball. This should be compared to the classical identification S? ~ CP' at the level of
pure states. This is specific to the 2-dimensional case: in higher dimensions, D((Cd) should
rather be considered as the non-commutative analog of a simplex (incidentally, the radii
computed at Exercise 1 equal the radii of a (d — 1)-dimensional simplex embedded in R%).

FEzercise 2. Describe the faces of D(#H) of maximal dimension.

1.2 Symmetries of D(H)

It is often fruitful to classify the symmetries of a set. As we will see now, the study of the
symmetries of D(#H) will put forward the transposition map.



We denote by P(H) the projective space over H, equipped with the metric  obtained
as the quotient metric from the geodesic metric on the sphere. Given a unit vector ¥ € H,
let 1) the corresponding element in P(H), so that |e?4)) = 1 for 6§ real.

A result known as Wigner’s theorem [43] states that isometries of the metric space
(P(H),0) are of the form [¢) — |Ut) or 1)) — |Uv) where U is a unitary transformation
(the bar denotes complex conjugation with respect to a fixed basis in H).

This is especially transparent for d = 2: as we already said, P(C?) ~ S? so that Wigner’s
theorem is simply the decomposition of O(3) as SO(3) vs O(3)\SO(3).

Exercise 3. State and prove the real version of Wigner’s theorem. Proving the complex
version is more delicate, see [38].

Note that o
[XP| = [9)] = [¥Xpl,

where T' denotes the transposition with respect to the fixed basis.

Ezercise 4. Let A — AT and A — AT" denote transpositions with respect to two different
bases. Check that AT = VATV for some unitary map V.

An easy consequence of Wigner’s theorem is the description of the isometry group of
D(#H) (“isometry” is meant with respect to the Hilbert—Schmidt Euclidean structure): since
isometries on D(H) induce isometries at the level of extreme points, they must be of the
form

p— UpUT

or
p—Up'UT

for some unitary map U.

1.3 Entanglement vs separability

We now assume that # is a multipartite Hilbert space, i.e., of the form H = H1®- - - @H}, (we
often consider the simpler bipartite case H = C?® (Cd). There are canonical isomorphisms

B(H) ~ B(H1) ®- - ® B(Hx),

Bsa(H) =~ Bsa(Hl) ®R - QR Bsa(Hk)- (1)

Note that the analogue of (1) would be false for real Hilbert spaces!
A state p € D(H) is a product state if

P=p1 & & pk

for some states p; € D(#;). We now introduce the most important definition of these notes:
the notion of a separable state which was introduced by Werner [42]



A state is called separable if it can be written as a convex combination of product states‘

States which are not separable are called entangled. We denote by Sep(H1 ® - -+ ® H)
or simply Sep(H) the set of all separable states on H. It is easily checked that

Sep(H) = conv{pi® - -Qpr : pi€D(H;)}
= conv{|1 @ - @Up)XV1 ® - ®@r| : ;€ Hy, [nhi| = 1}

Given closed convex sets K < R” and K’ < R™, we may define
KQK' =conv{z @z : ze K,z' € K'} (2)

(the closure operation may be dropped when K and K’ are compact. If K and K’ are unit
balls for some norms, we recover the notion of projective tensor product of normed spaces.
We have

Sep(H1 ® Hz) = D(H1)@D(Ha).

Ezercise 5. Show that K and K’ have both non-empty interior if and only if KQK’ has
nonempty interior.

We denote the symmetrization of a convex compact set K as Kgm = conv(—K n K)
(this operation increases dimension by 1 if 0 ¢ K). Then the symmetrization of the set of
states is the self-adjoint part of the trace class unit ball

D(H)oym = {A € B*(#1) © Al <1},
It also holds (denoting H = Hi ® Hso) that
SeP(H)sym = D(Hl)sym®D(H2)symv
from which one checks that
dim Sep(H) = dim(#)? — 1 = dim D(H),

and similarly for larger number of factors.

FEzercise 6. Define L(H) as the smallest integer N such that any separable state p € Sep(H)
can we written as a convex combination of length N of pure product states

N
P=D N ® - QU ® - @Y.
i=1

Show that, for some constant c
cd® < L(CY®CY) < d*

(the right inequality follows from Carathéodory’s theorem and the left inequality from a
dimension-counting argument, see [12]). The asymptotic growth of L(C?®C?) is unknown.



1.4 The Barnum—Gurvits theorem

Let H be a multipartite Hilbert space. Although Sep(H) is a smaller set than D(#) (being
defined via the convex hull of a smaller set), they both have the same dimension. A
remarkable result due to Barnum and Gurvits is that in the bipartite case both sets also
have the same inradius.

Theorem 1 (Barnum-Gurvits, [17]). Let H = C% @ C% and denote n = didy = dimH.
If a state p € D(H) satisfies ||p — ps|lus < m, then p is separable.

We give a sketch of proof due to Hans-Jiirgen Sommers [39]. Denote

K= {peD(H) H = pelns < n(:L—l)}

the Hilbert—Schmidt ball inscribed inside D(#). The inclusion K < Sep(#) is equivalent
to the inclusions of cones R K < R*Sep(H). By the Hahn-Banach separation theorem,
this is further equivalent to the following statement: whenever M € B%*(H) satisfies

Tr Mp > 0 for any p € Sep(H), (3)

then Tr Mp > 0 for any p € K. A matrix M satisfying the condition (3) is called block-
positive. Block positivity means that (11 ® ¥a|M|1hy ® 1)) = 0 for any ¢y € C4, 1hy € C%.
A simple computation using the Pythagorean theorem reduces the proof of Theorem 1 to
the following statement: for any block-positive matrix M, Tr(M?) < (Tr M)?. We use the
following lemma.

A

Lemma 2. If M = (BT

2) is block-positive, then |B|%g < |A|1]C]1.

Let M be a block-positive matrix on H. Denote M = (Mjy)1<k,i<d,, Where each block
My is an element of B(C%). Diagonal blocks (of the form Mjyy) are positive operators. By
Lemma 2, we have | Mg|4s < |[Myk[1|Mul1 = (Tr Myx)(Tr My;). Summing over k, [ gives
the inequality |M|?%q < (Tr M)2.

FExercise 7. Prove Lemma 2.

1.5 Partial transposition

We now investigate symmetries of Sep(#). For notational simplicity we consider only the
bipartite case.

Proposition 3 (see [1]). The group of isometries of Sep(H1 ® Ha) is generated by the
following transformations



e Conjugation by local unitaries, of the form p— (Uy ® Us)p(Uy ® Us)T, where Uy and
Us are unitary transformations, respectively on Hy and Hs.

e The two partial transpositions, defined on product states by p1 ® pa — p? ® pa and
P1Rpa— p1 Q@ pg, and extended by linearity.

e (when dimHy = dimHs) The flip operator, defined on product states by p1 ® pa —
p2 ® p1 and extended by linearity.

We denote by p'' = (Id ® T')p the partial transposition of a state p € D(H; ® Hz). An
explanation for the notation is that I' is “half” of the letter T" used for the usual transposition.

It is clear that for a separable state p, the operator p' is positive. However, this is
not true for any state: indeed, the transposition map is not completely positive! A state
p € D(H) is said to be PPT (positive partial transpose) when p' is a positive operator.

Note also that the definition of partial transposition depends on a choice of basis. How-
ever, we know from Exercise 4 that the property of being PPT is basis-independent.

Ezxercise 8. Show that a pure state |¢)(¢| € D(H1 ® Hz) is separable if and only if it is
PPT.

The PPT criterion is a useful tool to prove that some states are entangled [33]. Here
is an example. The space C? ® C? can be written as the direct sum S @ A, where S =
span{z®x : x € C%} is the symmetric subspace and A = span{z®y—y®z : =,y e C} is
the antisymmetric subspace. Let Pg and P4 be the corresponding orthogonal projections.
Note that Ps = 3(Id+ F) and P4 = 1(Id— F) where F : 2@y — y®u is the flip operation.
Normalize them to obtain the symmetric and antisymmetric states

d+1\ 71 d\ !
Ps=< 9 ) Pg, pA=<2> Py.

States of the form p, = aps + (1 — a)p4 for a € [0, 1] are called Werner states.

Ezercise 9. Show that p, is non-PPT (hence entangled) for o > 1/2. Then (harder) show
that p, is separable for a < 1/2.

Generalizations of the PPT criterion give other criteria to prove that a state is entangled;
one has to replace the transposition by another non-completely positive map. As an appli-
cation of the Hahn-Banach theorem, one can prove the following: a state p € D(C?®C?) is
separable if and only if, for any positive map ® : B(C?) — B(C?), the operator (Id® ®)(p)
is positive [23].

In the special situation d = 2, it has been proved [40] that any positive map ® : B(C?) —
B(C?) is of the form A+ BoT, where T is the transposition and A, B are completely positive.
It follows that for states on C2 ® C2, separability and PPT are equivalent properties.

There is a simple elegant argument to show that any positive map ® : B(C?) — B(C?)
which is in addition unital (i.e., ®(Id) = Id) and trace-preserving must be of the form



A+ BoT for A, B completely positive. Indeed, & maps the Bloch ball into the Bloch ball
and fixes its center, so it can be thought of as a contraction on R3. Any contraction can
be written as a convex combination of orthogonal transformations; among these rotations
yield completely positive maps, while anti-rotations yield maps which becomes completely
positive when composed with transposition. The hypothesis that ® is unital can be removed
by invoking Brouwer’s theorem (see [4]).

2 Quantifying entanglement

2.1 Quantifying entanglement of pure bipartite states

Let x be a unit vector in 1 ®Hz. How much entanglement is there in the pure state |x){z|?
Before answering this question, it is convenient to introduce the Schmidt decomposition of x
(which is simply a reformulation in the tensor language of the singular value decomposition
for matrices)

z = Ve ® fi, (4)
=1

where ()\;)1<i<n are positive numbers summing to 1, and (e;) (resp., (f;)) an orthonor-
mal family in #; (resp., H2). We have n < min(dim #;,dim #H3) and moreover |z){x| is
separable if and only if n = 1.

Another useful notion is the partial trace. Denote by Try, : B(H1 ® H2) — B(H1) the
partial trace with respect to Ho, i.e., the unique linear operator satisfying Try, (A ® B) =
(Tr B)A; in other words Try, = Id ® Tr. Similarly introduce Try, = Tr®Id. When z is
given as (4), we have

Try, [o)a| = D Nl f(fil,
izl

Try, [o)a| = D Ailesyes].
=1

Schmidt coefficients are eigenvalues of the so-called reduced density matrix.
We quantify the amount of entanglement present in x as follows: the entropy of entan-
glement of a unit vector x on Hi ® Hs is defined as

B(x) = — Y Arlog A; = S(Trz, la)al),
=1

where the ()\;) are the Schmidt coefficients as in (4), and S(p) = —Tr(plog p) is the von
Neumann entropy of a state p.



Note that on C? ® C¢, the maximal value of the entropy of entanglement equals log d
and is achieved for so called “maximally entangled states”, i.e., of the form

d
1
r=—F7) Q[
Vi

for orthonormal bases (e;) and (f;). In the special case d = 2, maximally entangled states
are called Bell states.

2.2 Quantum channels and the LOCC paradigm

There are operational justifications for the definition of entropy of entanglement. We first
introduce quantum channels: given two Hilbert spaces H and H°“, a quantum channel
® : B(H™) — B(H°“) is a completely positive map which is also trace-preserving. In
particular it maps states to states: ®(D(H™)) < D(H™).

Quantum channels can be characterized via the Kraus representation: a linear map
® : B(H™) — B(H°") is a quantum channel if and only if it acts as

O(X) =D A XA

for X € B(H™), where A; : H'™ — H°% are finitely many operators satisfying >’ AZAi = Id.
Suppose now that H'™ and H°% are bipartite Hilbert spaces, i.e., H* = H" @ Hi* and
HOU = HYM @HSY. Given quantum channels ®; : B(H{") — B(HS"!) and @5 : B(H) —
B(H3$"), we may consider the product quantum channel ®; ® ®5 : B(H™) — B(H“).
Mimicking the definition for states, a quantum channel ® : H™ — H°" is said to be
separable is it can be written as

(X) =D (Al @AHX (Al @ AD)T)

(2

for some A} : H® — H and A? @ HI' — HS“'. Product channels are examples of
product channels. However, the relevant class for Quantum Information Theory is the
related class of LOCC (Local Operations and Classical Communications) channels (see
|25, 13| for extensive discussions). To avoid technicalities, we do not define it precisely but
simply say that

conv{product channels} ¢ {LOCC channels} c {separable channels}.

We explain now a basic result from quantum Shannon theory. Denote by 1 a Bell state
(a maximally entangled state on C? ® C?). Given a unit vector z € H = H; ® Hz, we may
define its distillable entanglement Ep(x) to be the supremum of all R > 0 such that, for



any n > 0, there exists a LOCC quantum channel ®,, : B(H®") — B((C?® C?)®E") with
the property that

i @ (Jay(e|®?) — [¥y(w By = 0.

This definition may require some effort to grasp: what is meant is that Ep(z) the largest rate
at with the state |2){z| can be transformed into the state |1/ (1| via LOCC transformations,
with an error vanishing in the limit of many copies. It is known that the number Ep(x) is
unchanged if “LOCC quantum channel” is replaced by “separable channel” in its definition
(see, e.g., [20]).

The reverse operation would be to transform [i){(¢| into |x){(z|. This leads to the
definition of the entanglement cost of x, Ec(x), defined to be the infimum of all R such that,
for any n > 0, there exists a LOCC quantum channel ®,, : B((C? ® C?)®LAn)) . B(H®")
with the property that

i (@, ()8 BF) — )2 |®" )y = 0.

It turns out that the distillable entanglement equals the entanglement cost: manipula-
tion of pure state entanglement is asymptotically reversible.

Theorem 4 (see [9]). For any bipartite pure state x, we have Ep(z) = Ec(x) = E(x).

The appearance of the entropy of entanglement is related to the following classical
fact about “typical sequences™ if x has Schmidt coefficients A1, ..., A\g, then the Schmidt
coefficients of 2®" are products A;, - -+ Ay, for all (i1, ...,i,) € {1,...,d}"™. It follows from
the law of large numbers that for large n, most of the mass is concentrated on Schmidt
coefficients with value of order A, where log A = anzl Ailog A;.

2.3 The case of multipartite pure states

For a vector z in a multipartite Hilbert space Hi ® - -+ ® Hp, there is no analogue of the
Schmidt decomposition when k& > 2. However, we may define the analogue of the largest
Schmidt coefficient by taking the maximal scalar product with a unit product vector. This
coincides with the injective norm on the tensor product of Hilbert spaces, which is dual to
the projective norm introduced in (2)

AMz) = max{[{z,21® - Quk) : |z1| =" = |xg| = 1} (5)
= max{[(z,y)| : y€ Bu,® - By, } (6)
= |zl 0@, (7)

In order to recover a quantity that scales like the entropy of entanglement, one considers
Ey(z) := —2log A(x). Natural questions are: how small can be A(x)? what are the
most entangled vectors? The minimal value of A(z) over unit vectors z is the inradius of
BH1®' . 'C;)B?{k-



In the bipartite case, when x € C1®C?, one has () = 1/4/min(dy,dz). By induction,
estimates follow also in the multipartite case. For simplicity, we consider the case of k qubits:
Hy = Hy = --- = Hy = C2. For any unit vector z € (C?)®* we have \(z) = 2-*-1/2 or
E(z) < k— 1. How sharp is this estimate is unknown.

Problem 5. Can we find a constant C, and for any k a unit vector x € (C?)®* such that

Curiously, in the real case, there are unit vectors in (R?)®* satisfying \(z) = o~ (k—1)/2,
Equivalently, there is a k-linear map ® : (R?)* — R such that ®(zy,--- ,x3) < |z1| - - - |z
and the “Hilbert-Schmidt” norm of ® equals 2(F—1)/2

1/2

|®|xs := > Bles,, e )2 | =20-D/2
(i1, yig)E{1,2}F

where (e1, e2) is the canonical basis of R?. Indeed, if 6 is the canonical identification between
R? and C, we may define ® as

k
®(x1,...,2) = Re (]‘[ 9(:@) .
=1

2.4 Random multipartite states are very entangled

We are going to prove that most vectors in the unit sphere of (C?)®* are very entangled,
although they are not entangled enough to provide a positive answer to Problem 5. We
will use some standard machinery which we now review. We use concentration of measure
in the following form, which is called Lévy’s lemma in quantum information literature. It
asserts that the fluctuations of 1-Lipschitz functions on a n-dimensional sphere are of order

O(1/v/n).

Lemma 6 (see [28, 27, 4]). Let f : S* ' — R be a 1-Lipschitz function and choose x € S"*
randomly according to the uniform measure o. Then, for any t > 0,

P(|f(z) — E f(z)| > t) < 2exp(~(n — 1)t*/2).

There are two natural distances on the sphere S"~!: the geodesic distance and the
restriction to S”~! of the Euclidean distance on R™. Lemma 6 is true for both distances.

Let || - || be a norm on R"™, and denote by | - | the Euclidean norm. Denote also -,
the standard Gaussian measure on R”. We may write x € R" as = = |J:||% and use polar
integration to obtain

[ talidnn = [l dota) 0

10



where

)

It is easily checked that v/n —1 < Kk, < 4/n. If we consider instead a norm on C", and
denote by 7C the standard Gaussian measure on C" (i.e., such that Re(-, #) has distribution
N(0,1/2) for any 6 € Scn), the formula becomes

R2n
Je] dvyy = == |l do(u) (9)
J(C" V2 Jsen

We also need a version of the union bound for maximum of Gaussian variables.

Lemma 7. Let Xq,...,Xx be random wvariables and assume that X; has distribution
N(0,0?) with 02 < 1. Then

Emax(Xy,...,Xn) <+/2logN.
Proof. For any 8 > 0, we compute Eexp(8X;) = exp(c2%/2) < exp(6%/2) and may write
N
1
Emax(X1,...,Xy) < 3 Elog ) exp(5X;)
i=1

N
1
< —<log ) Eexp(8X;)

B =1

2
; (logN+ i)

<

We then choose the optimal value 8 = 4/2log N. This proof is due to Talagrand. O

We are going to prove the following proposition, as a standard application of concen-
tration of measure and e-nets argument (the quantity A(z) was defined in (5)).

Proposition 8 (see [16, 11]). Let = be a unit vector in (C*)®* chosen at random with
respect to the uniform measure on the sphere. Then, with large probability

vklog k vklogk

072k/2 < AMz) < 07219/2 )

where ¢ > 0 and C' denote numerical constants.

Equivalently, for typical vectors x, one has Ey(x) = k — log k — loglogk + O(1).

11



Proof. Since the function A is 1-Lipschitz on S(c2yer, Proposition 8 follows easily from
Lemma 6 once we prove that

vkl
cik og <EMNz)<C
9k/2

Vklogk

9k/2

We only prove the upper bound (for the lower bound, see Exercise 10). We take a e-net N
in Sg2 ~ S3. Since S% has dimension 3, we can choose such a net with card N < C/e? for
some constant C'. A simple geometric argument shows that

2
conv N O <1 - 2) Be2

and therefore bk
conv N®F 5 (1 — 52) B2®- - ®Bge.
If we choose € = 1/v/k, then (1 —&2/2)F > ¢ for some constant ¢ > 0. Tt follows that
AMz) < e rmax{|(z, yd| : ye NOFY.

Using (9), we have

1 C Cv/klogk
Mz)do(z) = — Mz)d S < —=4/2logcard( N®F) < —¥_—°2 ]
‘L(cz)®k (r)dot) K Jc2or ()t 2k/2\/ ( 2k/2
The proof of the lower bound is based on the Sudakov minoration principle: if Xq,..., Xy

are jointly Gaussian (real or complex) vectors satisfying E | X; — X;|? > €2 for some € > 0,
then Emax(Xy,...,Xn) = cev/log N.

Ezercise 10. Produce enough e-separated points in (Bg2)® to show the lower bound

E\(z) = ¢ S;?fk

using Sudakov minoration principle.

2.5 Quantifying entanglement of mixed states

A comprehensive survey of the many ways to quantifiy the entanglement of mixed states is
[35]. We only consider a few of them.

The definition of the distillable entanglement and of the entanglement cost can be
extended verbatim to the case of a mixed state p € D(H; ®H2). We repeat them informally
(recall that 1) denotes a Bell state)

e The entanglement cost Ec(p) is the best (i.e., smallest) rate R such that we can, via
LOCC channels, transform [1){1)|®%" into p®" with vanishing error as n — co.

o The distillable entanglement Ep(p) is the best (i.e., largest) rate R such that we can,
via LOCC channels, transform p®" into |1 )(1)|®f" with vanishing error as n — oo.

12



It is known that creating entanglement has always a non-zero cost.
Theorem 9 ([45]). A state p € D(H1 ® Hz) is entangled if and only if Ec(p) > 0.

On the other hand, it is easy to check that if ® is a separable channel (which includes
the case of LOCC channels), and p a PPT state, then ®(p) is a PPT state. Since Bell
states are non-PPT, it follows that Ep(p) = 0 for any PPT entangled state (such states
are called bound entangled).

The distillability problem is the following: does there exist a state p € D(C?® C?) such
that Ep(p) = 0 while p is not PPT ? This is already not known for d = 3. We also point out
that Ep(p) > 0 if and only if there exists an integer n and operators A, B : (CH)®" — C2
such that the (A® B)p(A® B)' is non-PPT. It is also known that if there is a non-PPT
state p with Ep(p) = 0, then there is a non-PPT Werner state p, with Ep(p,) = 0. For
more information on the distillability problem see [24, 14, 4].

We now mention the connexion between the entanglement cost and the entanglement
of formation. Let p € D(H4 ® Hp). Any decomposition of p as a mixture of pure states

p = Al (10)

yields a protocol to generate p from Bell states at a rate R = >, \; E(¢);). The entanglement
of formation Er(p) is the infimum of these rates over decompositions (10)

Ep(p) = inf {Z MNE@i) + p= Z&I%X%‘I} :
In other words, Er is the largest convex function on D(H 4 ® Hp) such that Er(|v)W|) =
E(y).

Ezercise 11. Prove that Er(p) = 0 if and only if p is separable.

The previous definition yields the inequality Ec(p) < Er(p) and actually even E¢(p) <
%E 7(p) (indeed, the way the entanglement cost is defined gives automatically the additivity
property Ec(p®") = nEc(p)). This inequality was proved to be sharp in the limit n — oo

Theorem 10 (Horodecki-Hayden—Terhal, [22]). For any bipartite state p,

1
Eo(p) = lim —Er(p®").

The entropy of entanglement is additive on product vectors: E(zx ® y) = E(z) + E(y).
It follows that the entanglement of formation is subadditive:

Ep(p®0> SEF(p)—l-EF(O') (11)

For a long time the entanglement of formation was conjectured to be additive, i.e., that there
is equality in (11). An immediate corollary of Theorem 10 would have been the equality
between entanglement of formation and entanglement cost. However, this conjecture turned
out to be false, as proved by Hastings [19].
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3 Non-additivity phenomenon and Dvoretzky’s theorem

3.1 Minimum output entropy

The conjecture that entanglement of formation is additive mentioned at the end of the
previous section was known to be equivalent (after work by Shor [37]) to the additivity of
the minimal output entropy: for any quantum channels ®1, ®o,

Sinin(®1 ® ©2) = Siuin (1) + Srmin (B2)
where, for a quantum channel ® : B(H™") — B(H%),
Smin(®) = min {S(®(p)) : pe D(H™)}. (12)

By concavity of the von Neumann entropy, the minimum in (12) can be restricted to pure
states.

It is convenient to use the Stinespring representation of quantum channels. Any quan-
tum channel ® : B(H™) — B(H°") can be represented as

®(p) = Trye UpUT (13)

where H€ is an auxiliary Hilbert space (the letter e stands for “environment”), and U :
H" — HOU RHE is an isometric embedding. Denote V < H°“ @ H¢ the range of U. When
® is given as in (13), its minimal output entropy is
Sin (P) = min E(x).
zeV

The existence of channels with large minimum output entropy is therefore connected to the
existence of (very) entangled subspaces, i.e., subspaces V < Ch ® C% such that any unit
vector € V' is (very) entangled. We search for such subspaces of dimension as large as
possible.

3.2 Entangled subspace: qualitative problem

This calls for a qualitative version of the problem: how large can be dim V', where V <
C%h ® C?® is a subspace which does not contain any nonzero product vector ? This can be
solved by elementary algebraic geometry. Denote by

Seg = {z®y : reCh yeC®} cChgC®

the set of product vectors (which is also called the Segré variety). As projective varieties,
Seg has dimension dj + dy — 2 while V' has dimension dimV — 1 (dimV denoting the
dimension of V' as a linear space). By the projective intersection theorem (see [18]), the
intersection V' n Seg is non-empty whenever

(dimV— 1) + (dl + dy —2) >dido —1 < dimV > didy — (dl +d2) + 2.
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Conversely, it is not hard to show that a randomly chosen V with dim V' < dydy—(d;+d2)+2
intersects Seg with probability 1.

Ezercise 12 (see [32, 41]). Prove the last statement using your favorite notion of dimension
(a possibility is to use the Minkowski dimension, i.e., count how many balls of radius € are
required to cover a given set, as € — 0).

Here and in what follows, whenever we say “random subspace of dimension k”, it is
tacitly understood that the subspace is chosen with respect to the Haar measure on the
corresponding Grassmann manifold. Equivalently, it can be defined as the subspace spanned
by k independent random vectors uniformly distributed on the sphere.

We now turn to the quantitative version of problem: we are interested in finding sub-
spaces V < CH ®C% on which the function E is not only nonzero, but large. This problem
enters within the realm of Dvoretzky-like theorems, which state that a Lipschitz function on
a high-dimensional sphere is almost constant on large-dimensional subspaces. We mention
that an alternative route is possible from that point to obtain counterexamples where the
minimum output entropy is non-additive: following [7, 8], one can work directly on the
limit object using free probability and prove the following result. Fix ¢ € (0,1) and consider
a random subspace £  C*¥ ® C" of dimension |tkn|. As k is fixed and n tends to infinity,
the set of all possible Schmidt coefficients of unit vectors from E (which is a subset of R¥)
has a deterministic limit.

3.3 Dvoretzky’s theorem

We already mentioned Lévy’s lemma (Lemma 6): Lipschitz functions on the sphere are
concentrated around their mean. It is useful to introduce the more flexible notion of central
value: a central value for a random variable X is either its mean, or any number ¢ such
that P(X <t) > 1 and P(X <) < 1. Lévy’s lemma has a variant for central values: if
f: 8" ! R is 1-Lipschitz, then for any ¢t > 0,

o ({If = ul > t}) < Cexp(—cnt?)

for some absolute constants C), c.

Exercise 13. Deduce the “central value” version of Lévy’s lemma from the “median” version
(the latter is an immediate consequence of isoperimetry on of the sphere).

We can now state Dvoretzky’s theorem for Lipschitz functions.

Theorem 11. Let f : S" ' — R be a 1-Lipschitz function, and p a central value for f.
Let E < R™ a random subspace of dimension k. Then, provided k < c(e)n, with large
probability,

sup | f(x) -l <.

zeS"—1nE
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Proof. The following argument is essentially due to Milman [29] and ultimately based on
a “union bound” argument. Fix any subspace Fy < R™ with dimension k. The random
subspace E can be realized as £ = O(Ejp), where O is a random Haar-distributed element
of O(n). Consider also a £/2-net A" in S~ n Ey. Such a net can be chosen with card N <
(C/e)*. Since f is 1-Lipschitz, it is enough to prove that |f — u| < £/2 on O(N) with large
probability. For any x € N, the vector O(x) is uniformly distributed on the sphere, and
therefore we have

P(EzeN ¢ |f(O@) —ul>/2) < cardN)o({|f — | > £/2)) (14)

<
< (C/e)kC exp(ene?). (15)

The right-hand side of (15) is (much) smaller than 1 provided klog(1/¢) < cne?, or k
c(e)n where c(¢) = ce?/log(1/¢).

/AN

This argument can be improved to obtain the dependence c(¢) = ce? by using a chaining
argument a la Dudley. We also need the complex analogue of Theorem 11.

Theorem 12 (see (36, 5|). Let f : Scn — R be a 1-Lipschitz and circled (i.e., such that
flax) = f(x) for x € Scn and o € C with |a| = 1) function, and p a central value for
f. Let E < C" a random subspace of dimension k. Then, provided k < ce’n, with large
probability,

sup |f(z) - pl <.

zeScnNE

3.4 Counterexample to additivity

We now describe how to obtain from Dvoretzky’s theorem a pair of channels for which
the minimal output entropy is not additive. This result was initially obtained by Hastings
[19] and considered as a major breakthrough in quantum information theory. The use of
Dvoretzky’s theorem allows for a more conceptual approach; we follow the argument from
[5].

We consider for i € {1,2} an random isometry U; : H" — HIQHS and ®; : B(H") —
B(H$"") the corresponding channel defined as (13). What only matters is the range of U;,
which is a random subspace V; © H @ H¢. We are going to adjust later the dimensions
din, = dim?—lg”,dout = dimH? and d. = dimH¢ in order to obtain Spyin(®1 ® ®2) <
Sin (P1) + Smin(P2), or equivalently (the minima being restricted to unit vectors)

er‘I/lllélVQ E(z) < 11?61‘1}1 E(xy) + Ilglel‘I/lé E(x3). (16)

We use a trick to ensure that the left-hand side in (16) is small: take H{® = Hi* = H™,
HYW = HGU = Hout HE = HS = HE, Uy = U; (the entry-wise complex conjugation of Uy,
with respect to a fixed basis) and z to be the maximally entangled state (with respect to
the same basis) in V; @ V7.
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Lemma 13. Let V < Clout @ Ce ¢ subspace with dimension di,. Then V@V contains a
unit vector whose largest Schmidt coefficient is greater that diy/doytde. Schmidt coefficients
are computed with respect to the bipartition (Clout)®2 ys (Cd)®2,

Equivalently and perhaps more transparently, the lemma can be stated using the lan-
guage of matrices: if V< Mgy, , 4. is a subspace of dimension d;,, then V' ® V' contains a

matrix A with |A|ps = 1 and |A|w = v/din/doutde.

Proof. We prove the matrix version. Let (ej) be the canonical basis of Cdut, (ex) the
canonical basis of C%. Let (A, ... ,Ag,. ) an orthonormal basis for V', with respect to the
Hilbert—Schmidt scalar product. Consider

1 din
A= A QA
V Z'I’L Z ®

dout

mZ%@eJ’

\ﬁka@)fk

We have |A|gs = 1 and |¢| = || = 1. We compute

1
(BlA[Y) = Vo, i%fej ® e;|Ai @ Ail fr ® [y

1
———— ) KejlAilex)?
dindoutde i,
1
din
doutde

as needed. O

In order to obtain a counterexample, we consider the following range: dpus = k, de = k>
and d;, = ck?® for some fixed constant ¢, and take k — 00. We know from basic random
matrices considerations that typically, Schmidt coefficients of a single random unit vector

z € Ck® CF are or order z (1 + O(«/k:/k:z)), so that E(x) = log(k) — C/k (there is an
explicit formula for the mean of E, see, e.g., [15]). It turns out that this estimate holds
uniformly over subspaces of large dimension
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Claim 14. There exist constants ¢, C' > 0 such that a random subspace V < CF® ck of

dimension ck? satisfies
!

C
inf FE(r)=>logk— —
xel}ﬁlﬂ:l ($) ©8 k

with large probability.

This is enough to obtain a counterexample: indeed, for V' as in Claim 14, we have

_ (04

Smin(q)) = Smin(q)) = Ing - ?
whereas Lemma 13 gives a state 1 such that (® ® ®)(|1))(3)|) has one eigenvalue larger
than 1/k. A simple computation using the concavity of the von Neumann entropy allows

to deduce that
clogk

L
and therefore Spin(® @ @) < Suin(®) + Sin(®) for k large enough. This is really a high-
dimension phenomenon and the proof gives a poor estimate for the smallest dimensions in
which a counterexample exists. In a slightly different model from 8| (which is based on the
limit object) it is proved that counterexamples exist provided k > 183.

Simin(® ® ®) < log(k?) —

3.5 Very entangled subspaces

It remains to deduce the Claim 14 from Dvoretzky’s theorem. A direct application to
the function FE fails. The function F can be shown to have Lipschitz constant C'logk on

S(Ck®(ck2’ but this is not good enough.

Exercise 14. When k < [, show that the Lipschitz constant of £/ on Sckgc: is smaller than
C'log k and larger than clog k, for some absolute constants C, c.

A better idea is to use a approximation of F for states close to being maximally entangled

Id |
Tree o) x| — —

3 (17)

E(z) =logk —k

HS

FEzercise 15. Prove (17).

As we already mentioned, the eigenvalues of Try.2 [2)(x| (=the Schmidt coefficients of
) are of order 1/k + O(1/k%?). If we define

Id
Trepe |z x| — -

Y

HS

g(x) = '

this shows that ¢ is typically of order 1/k (as required), and we need to show that this
holds uniformly over a large subspace. At this point it is more convenient to switch to
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the matrix formalism. The function g becomes a function defined on the Hilbert—Schmidt
sphere as g(X) = [XXT — %HHS. We now use another idea: although the function g is
globally 2-Lipschitz, this can be improved via the inequality

19(X) = g(Y) < | XXT =YY s < [ X oo | XT = YT s + [V o0 | X — Vs

which shows that | - |, has Lipschitz constant 6/v/k when restricted to the subset Q =
{| - lso < 3/vk} of the Hilbert-Schmidt sphere.

We use the following trick: let g be a 6/\/E—Lipschitz extension of gin to the whole
Hilbert—Schmidt sphere. We use Dvoretzky’s theorem (Theorem 12) twice to conclude
that, for a typical subspace F c CF® CK* of dimension ck?,

o [
e g=0(1/k) on E.

This completes the proof of Claim 14. Note that the median of g is a central value for g,
and vice versa.

4 Random states in high dimension

4.1 Random induced states

Let H be a (finite-dimensional, complex) Hilbert space. How to choose a state on H at
random in a natural way? What is clear is how to pick a pure state at random: simply take
|1 )(| with ) uniformly distributed on the sphere. But what about mixed states?

There is an elegant and physically relevant approach which is based on the fact that
any mixed state can be seen as the partial trace of a pure state over some extra Hilbert
space. Indeed, if p € D(C™) has the form

p = AileiXeil
i=1
for some orthonormal basis (e;) of C", then p = Trye [1){¢)| for
Y= Z Ve ®e;
i=1

and H® = C™. Therefore one can generate random mixed states as partial traces of random
pure states. This leads to a 2-parameters family of probability measures. Given two integers
n, s, denote by p, s the distribution of Tres |¢)(3|, where 9 is a unit vector with uniform
distribution on the sphere Scrgcs; fin,s is a probability measure on D(C™). States with
distribution p,, s are called random induced states and were introduced in [46].
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An alternative description is as follows: if M is uniformly distributed in the Hilbert—
Schmidt sphere of n x s matrices, then pu,, is the distribution of MM . Still another
description is to consider a n x s matrix G with independent entries having a standard
complex distribution. Then G/||G|us is uniformly distributed on the Hilbert—Schmidt unit
sphere, and therefore the matrix

GGT
Tr GGt

has distribution p, . This approach is appealing since the matrix GG' is well-known in
random matrix theory under the name of a Wishart matrix (although the real version of
Wishart matrices are more frequently encountered) and it allows to transfer directly result
from random matrices to random induced states.

In this model, the parameter s has a physical interpretation: it is the dimension of the
environment, or the number of non-accessible parameters. When s > n, the measure i, ,
has a density with respect to the Lebesgue measure given by the formula

(18)

(det p)*~™1 =0, (19)

n,s

where Z, s is a normalization constant [46]. In the special s = n, the measure py, ), is
the uniform measure on D(C™)! This can be seen as the non-commutative analogue of the

following classical fact: if z = (x1,..., 2y, ) is chosen uniformly at random on the unit sphere
on C", then (|x1]2, ..., |7,|?) is uniformly distributed on the simplex of length n probability
vectors.

4.2 Limit results for random induced states

Consider the representation of random induced states as normalized Wishart matrices as in
(18). First note that Tr GGT is strongly concentrated around the value ns. An application
of the law of large numbers to each entry of GGT shows that, with n fixed and s — 0,
the measures pi,, s concentrate towards the maximally mixed state Id/n (this is also clear
from the formula (19) since the maximally mixed state is the unique state with maximal
determinant). We will make this statement more quantitative by studying the rate of
convergence, and also consider regimes when both n and s tend to infinity.

Given a self-adjoint n x n matrix A with eigenvalues (A1,...,A,), it is convenient to
introduce its empirical spectral distribution

1 n
pa = Z Ox;(A)-

i=1

Let py.s be a random induced state with distribution g, . Assume that n and s both
tend to infinity in such a way that o = lims/n exists. We also assume o > 1 and con-
sider the rescaled states mp, s whose eigenvalues are of order 1. Then, the sequence of
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corresponding empirical spectral distributions converges towards a nonrandom measure
piMP,o Which is called the Marcenko-Pastur distribution with parameter a and has support

[(1—1/y/@)% (1 +1/4y/a)?]. We write
Hnp,, o 5 HMP, o (20)

The meaning of = is the following: convergence is in probability (almost sure convergence
also holds but is usually irrelevant to our setting) and encompasses both weak convergence
of probability measures and convergence of supports.

Similarly, if n and s both to infinity in such a way that lims/n = oo, the properly
rescaled empirical spectral distributions approach the semicircle law ugc

H/ns(p—1d/n) = psc- (21)

For fixed n and s — o0, it follows from the multivariate central limit that we have an
approximation

RO

P= an (22)

where I'), is a standard Gaussian vector is the space of self-adjoint trace zero operators
on C". This is also a familiar object from random matrix theory: without the trace zero
restriction one would get exactly GUE random matrices. Here I'); can described as a GUE
random matrix conditioned to have trace 0, or equivalently as I';, = A,, — Tr(A,)Id/n where
Ais an x n GUE random matrix.

One checks that formulas (21) and (22) are consistent: by Wigner’s theorem we have

Hr,,//n = psc. (23)

However, one cannot formally deduce (21) from (22) and (23) because it would require to
exchange the order in which limits are taken.

We already explained that for a fixed dimension n, the measures yu, , concentrate to-
wards Id/n as s tends to infinity. It makes sense to ask ourselves, given a property of a
quantum state, for which values of s does this property typically hold?

For properties which depend only on the spectrum, the answer is provided by the limiting
results (20) and (21). However, most properties connected to the entanglement vs proba-
bility dichotomy cannot be inferred from spectrum. For such questions to make sense, we
assume that the space C" is identified with C¢®C¢. Natural questions are: given a random
state p € D(C? ® C%) with distribution M2 s, 18 it typically entangled? PPT? What is the
typical order or magnitude of the entanglement of formation? of the entanglement cost? of
the distillable entanglement?
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4.3 Threshold for the entanglement of formation

As a warm-up we discuss a threshold phenomenon for the entanglement of formation. Recall
its definition

Er(p) = inf {Y NE(W) + p= D Niltsixwil}

We show that when p is a random induced state with distribution pg2 4, the typical
value of Fr(p) switches from almost maximal to almost minimal when s is roughly of order

d2.

Proposition 15 (see [21]). Let p be a random induced state on C® C? with distribution
paz,s- Then

1. If s < cd?/log? d, then with high probability Er(p) = log(d) — 1.
2. For any e > 0, if s = C(e)d?log? d, then with high probability Er(p) < ¢.
Here C(g) is a constant depending only on €.

Any improvement on Proposition 15, especially in the range when s is of order d?, would
be welcome.

Proof. For the first part, we lower bound the average by the minimum

. .
Er(p) = it EY).

The range of p is a random s-dimensional subspace of C*®C¢. Applying Dvoretzky’s theo-
rem and using the fact that F is C'log d-Lipschitz (see Exercise 14) gives that the minimum
of F over range(p) is larger logd — 1 with high probability provided s < Cd?/log?d, as
claimed.

For the second part, we are going to use the convexity of Er: let Apin be the smallest
eigenvalue of p and write

Id

p=(p— Aminld) +d*Anin = .
N d2

(17d2)\min)o'
This gives (note that o is a state)

Er(p) < (1 — d*Xin) Er(0) < (1 — d*Amin) log d.

We are reduced to estimating Apiy. This depends only on the spectrum, so we know from
(quantitative versions of) the limit-result (20) that

1 1
=50 (72).

This gives the announced result. O
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4.4 Threshold for PPT

In some cases the study of thresholds in the spirit of Proposition 15 leads to interesting
matrix models. This is the case for the PPT property. By (18), this is equivalent to the
following question: when G is a d? x s random matrix with independent standard complex
Gaussian entries, when is the matrix

(el

positive? Such problems are amenable to the techniques of random matrix theory, espe-
cially to the moment method which leads to combinatorial questions about non-crossing
partitions.

Let pgz s be a state on C?® C? with distribution Mgz s- In the regime when both d and
s tend to infinity with lim s/d? = a € (0, 0), we have [3]

gz pr = Hsc(,1/a)

where figc(m,02) denotes the semicircular distribution with mean m and variance o%. By
comparing with (20), we see that partial transposition has a non-trivial effect of the spec-
trum since it transforms the Mar¢enko—Pastur distribution MP(«) into the semicircular
distribution SC(1,1/a)). (Note that both have the same first and second moments, since
partial transposition preserves both the trace and the Hilbert—Schmidt norm.)

The support of the distribution SC(1, 1/a) equals [1 — 2/y/a, 1+ 2/y/a]; it is contained
in the positive half-line whenever o = 4. The following dichotomy follows: for any € > 0,

1. For s < (4—¢)d?, a random state with distribution Hq2 s s non-PPT with probability
tending to 1 as s,d — co.

2. For s > (4 + ¢)d?, a random state with distribution g2 , is PPT with probability
tending to 1 as s,d — o0.

We may say that the value s = 4d? is a threshold for the PPT property of random
induced states.

4.5 Central limit approximation for induced states

For general properties, the problem can be attacked via a geometric approach. Consider
a closed convex set K < D(C™) and assume that the maximally mixed state Id/n belongs
to the interior of K. We think of Id/n as the origin, making the affine space of trace 1
self-adjoint operators into a vector space.

The gauge associated to K is

Id 1 1d
P||K=inf{t>0 : +(p—>eK}
n t n

23



and has the property that K = {p : |p|x < 1}. Suppose that K corresponds to the of
quantum states having a given property (P). The question whether random induced states
typically have property (P) is the following: under the probability distribution iy, s, is the
typical value of | - | larger or smaller than 17

In most settings, there is enough concentration of measure present to reduce the problem
to the estimation of the expectation: if E| - |x < 1, then p € K with high probability,
while if E|| - |5 > 1, then p ¢ K with high probability (see [6] for a general statement in
this direction).

The following proposition is a quantitative version of the central limit approximation
from (22) and compares average of gauges for induced states and for GUE matrices.

Proposition 16. Let p be a random induced state with distribution p, s, andI" anxn GUE
random matriz conditioned to have trace 0. For any convex body K < D(C?) containing
Id/n in the interior,

Id r Id r
ClE|— 4+ — — 4+ —
™S "n+n\/§ n+n\/§
where the constants Cy, s have the property that lim C,, s = 1 whenever both n and s/n tend
to infinity.

<Elplx < CoE \

)
K K

We sketch a proof of Proposition 16. The proof is based on the following coupling
argument: let U be a random unitary matrix which is independent both from p and from
I". Since both models are unitary invariant, we have

e The random matrix U diag(spec(p))UT has the same distribution as p,
e The random matrix U diag(spec(G))U' has the same distribution as G.

By diag(spec(A)) we mean the diagonal matrix whose elements are the eigenvalues of A
(the way they are ordered is irrelevant). Denote by R™? = R™ the hyperplane consisting of
vectors whose sum of coordinates is 0 and introduce the function ® : R™? — R defined as

B(x) = E |U diag(«)UT| .

The function @ is convex and permutation-invariant. Such functions appear naturally in
connection with majorization. Majorization is a partial order defined as follows: given
z,y € R™0 we write z < y if one of the following equivalent conditions is satisfied

1. For any k € {1,...,n — 1}, Sk(x) < Sk(y), where Si(z) denotes the sum of the k
largest coordinates of a vector z € R™Y.

2. There is a bistochastic matrix B such that x = By.
3. For any function ® : R™" which is convex and permutation-invariant, we have ®(z) <

P(y).
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We know that the vectors spec(p —Id/n) and spec(I'/n4/s) are comparable and become
more and more comparable as n and s/n tend to infinity, by (21) and (23). If order to
translate this into majorization, we use the following lemma, and Proposition 16 follows
with little effort (see [6, 4]).

Lemma 17. Let x,y € R™Y. Assume that |x — y| < € and that |y|1 = an. Then

(%)
r<|(1+—|y.
o}

Ezxercise 16. Prove Lemma 17.

5 Separability of random states and convex geometry

5.1 Threshold for separability vs entanglement

In this last section, which in based on [6], we are going to study the following question:
for which values of the parameters d, s is it true that a random state p on C?® C? with
distribution pg2 4 is typically separable?

Assume that both d and s%/d tend to infinity and apply Proposition 16 to the convex
body K = Sep = Sep(C? ® C%). We obtain that

Id r

I | wSep?)
2 d2\/s

Sep a \/g

where w(Sep®) denotes the mean width of the polar of Sep—these notions will be explained
in Section 5.2. It follows from the discussion preceding Proposition 16 that a threshold for
separability occurs at the value

Eplsep ~ E

s0(d) = w(Sep®)? (24)
in the following sense

1. For s < (1 —¢)so(d), a random state with distribution pg2 ; is entangled with proba-
bility tending to 1 as s,d — 0.

2. For s > (1 +¢)so(d), a random state with distribution j42 , is separable with proba-
bility tending to 1 as s,d — 0.

To get a complete picture we need to compute the value of so(d): we will see in Section
5.3 that
cd® < so(d) < Cd*(log d)?. (25)
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5.2 Notions from convex geometry

Let K < R"™ be a convex body containing 0 in the interior. Its gauge is defined for x € R"
as
|z|x =inf{t >0 : zetK}.

Beware that possibly |z|x # | — x|k if K is not centrally symmetric! Similarly, the width
of K in direction u (it would have been more geometrically correct to call this quantity the
half-width) is defined as

w(K,u) = suplx, u).
zeK

Width and gauge are dual quantities: indeed, if we introduce the polar convex body as
K°={zeR" : Vye K,{z,y) <1}

one checks that | - |ge = w(K,-) and | - |x = w(K°,-).
Ezercise 17. Show that D(C")° = —nD(C") provided we take the maximally mixed state

as the origin.

The average over S"~ ! of w(K, ) is called the mean width of K

w(K) = anl w(K,u)do(u).

It is also convenient to introduce the Gaussian version of the mean width (see (8))

wa(K) = | w0 d(0) = xw(K) =BGl
where G is a standard Gaussian vector in R”.

There is a strong connection between mean width and volume. Denote by vol(K)
the volume (=Lebesgue measure) of K. The volume is n-homogeneous in the sense that
vol(AK) = A"vol(K) for A > 0. It is therefore often more convenient to work with a
1-homogeneous variant called the volume radius of K and defined as

vrad(K) = (va(g))w

where BY is the unit Euclidean ball. It has the properties that vrad(BY) = 1 and
vrad(AK) = Avrad(K) for A > 0. Note that the last two properties are also shared
by the mean width. A result by Urysohn asserts that the volume radius is always smaller
than the mean width.

Proposition 18 (Urysohn inequality). For any convezr body K < R"™, we have vrad(K) <
w(K).
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The Urysohn inequality belongs to the family of isoperimetric-like inequalities: at fixed
volume, the mean width (and surface) of a convex body is minimal for Euclidean balls.

Much deeper results connect to the volume of a convex body to the volume of its polar
body (the hardest part in the following proposition is the lower bound, for which several
very different proofs are known [10, 26, 30]).

Proposition 19 (Santal6 and reverse Santald inequalities). For any conver body K < R™
with center of mass at the origin,

¢ < vrad(K)vrad(K°) < 1 (26)
for some absolute constant c.

Of course the crucial point is that the constant ¢ is dimension-free: the fact that the lower
bound from (26) holds in a fixed dimension follows from a simple compactness argument.

There is no immediate analogue of Proposition 19 for the mean width: even in a fixed
dimension the product w(K)w(K°) may be unbounded. In dimension 2, consider for exam-
ple ellipses with eccentricity close to 1 (however, it is simple to show that the lower bound
w(K)w(K°) = 1 always holds).

Let us now consider some examples of convex bodies: the cube and its polar

Bl =[-1,1]",
Bl = (BL) ={zeR" : ||+ + |z,| < 1},

for which one computes via formula (8) that w(B[) is of order 4/n while w(B}) is of
order 4/log(n)/n. Another example is the regular n-dimensional simplex A,, which can be
rescaled so that A = —A,,, and for which the mean width is of order 4/logn. In these
examples the product w(K)w(K°) is at most of order logn. This turns out to be true
in general (at least for symmetric convex bodies) provided one allows to apply a suitable
linear transformation before computing mean widths.

Theorem 20 (The M M*-estimate). For every symmetric convex body K < R", there is a
linear transformation T € GL(n) such that, denoting K = T(K), we have

w(K)w(K°) < Clogn (27)
for some absolute constant C.

It is unknown whether the upper bound from (27) could be replaced by C'y/logn. An-
other important open question is whether Theorem 20 holds for all convex bodies (without
symmetry assumption), where T' is allowed to be any invertible affine transformation.

The proof of Theorem 20 is based on estimates on the K-convexity constant associated
to a normed space. The way T is defined is through an optimization problem; in particular
K inherits all the symmetries of K. This means that when the subgroup G < O(n) of
isometries preserving K acts irreducibly, Theorem 20 holds with K = K.
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5.3 Estimation of the threshold

Consider Sep = Sep(C? ® C9), the set of separable states on C? @ C?. We now use the
material from Section 5.2 to estimate the threshold function so(d). We have to prove—see
(25) and (24)—that

cd®? < w(Sep®) < Cd*?log(d).

Since the convex Sep has a simple description as a convex hull, it is easier to compute its
width (which is a maximum over extreme points) than its gauge. We would like to apply
Theorem 20 to conclude that

w(Sep)w(Sep®) < Clog(d). (28)

Two issues have to be solved. First, the convex body Sep is not centrally symmetric
(an hypothesis crucial in Theorem 20). Second, the isometry group of Sep does not act
irreducibly and therefore we cannot conclude that T' = Id is a valid choice in Theorem 20.

The first problem can be remedied via standard symmetrization techniques. For the
second, we can use the fact that the isometry group of Sep acts irreducibly on the subspace
E =span{fA® B : Tr A = Tr B = 0}, since this subspace has a small codimension one
can transfer inequalities like (27) from E to the space of trace 1 self-adjoint operators on
C?® C%. We refer the reader to [6, 4] for more detail.

Once we know that (28) holds, it remains to estimate w(Sep) via a routine net argument

1
P we (Sep) ~ 22

w(Sep) = E¢ZUP Ko @Y|T|¢ @ )

Sc

where T is a d? x d> GUE matrix. The set of all product vectors Seg = {¢ ® 1} can
be approximated by a %—net with less than exp(Cd) vertices (for example take all tensors
of elements from a net in the sphere), yielding together with Lemma 7 the upper bound
w(Sep) < Cd~3/2. Similarly, since Seg contains exp(cd) % separated points, an applica-
tion of the Sudakov minoration principle shows that this upper bound is sharp, i.e., that

w(Sep) = ¢d®?. This completes the proof of the estimates (25) on the threshold so(d).
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