
THE PARALLEL REPETITION THEOREM

1. Introduction

The goal of this note is to give a complete proof of the parallel repetition theorem which
is a fundamental result in theoretical computer science proved by Raz [4]. Our presenta-
tion follows essentially the approach from [3, 1] with some minor twists (in particular, we
completely avoid the use of entropy).

A game G = (X ,Y,A,B, π, V ) is the data of
(1) finite sets X ,Y,A,B
(2) π, a probability measure on X × Y
(3) a function V : X × Y ×A× B → {0, 1}.

A (deterministic) strategy is a couple (fA, fB) of functions fA : A → X and fB : B → Y.
The value ω(G ) of a game G is defined as

(1) ω(G ) := sup
(fA,fB) strategies

P(V (X,Y, fA(X), fB(Y )) = 1)

where (X,Y ) is a random variable with distribution π. We describe the game using the
concept of one referee and two players (named Alice and Bob): the referee select a pair
(X,Y ) ∈ X × Y of random questions with distribution π, Alice answers fA(X) to the
question X and Bob answers fB(Y ) to the question Y .

Alternatively, we could consider randomized strategies, which are random variables taking
values in the set of deterministic strategies. This gives the same value for the supremum.
In this case it should be understood that (fA, fB) is independent from (X,Y ) in (1).

Let n ⩾ 1. The n-parallel repetition of G is the game G n defined as

G n := (X n,Yn,An,Bn, π⊗n, Vn)

where for x̄ ∈ X n, ȳ ∈ Yn, ā ∈ An, b̄ ∈ Bn,

Vn(x̄, ȳ, ā, b̄) :=
n∏

i=1

V (xi, yi, ai, bi).

In other words, the players play n rounds of the game, where they are asked i.i.d. pairs of
questions, and win the game G n if they win each round of G . We have

(2) ω(G )n ⩽ ω(G n) ⩽ ω(G ).

Indeed, a possible strategy for G n is ato nswer the jth round as a function of the jth question
only; in that case the rounds are independent instances of G , leading to the left inequality
in (2). The right inequality follows by observing that in order to win G n, the players must
win the first round. It is instructive to describe an example with ω(G 2) = ω(G ) ∈ (0, 1).
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For this equality to happen, Alice and Bob must correlate their answers in such a way that
they either win both rounds or lose both rounds.

Example 1. Consider the game G given by X = {1, 2}, Y = {3, 4}, A = B = {1, 2, 3, 4}, π
the uniform measure and V defined as

V (x, y, a, b) :=

{
1 if a = b = x or a = b = y

0 otherwise

One can check that ω(G ) = 1/2. However, ω(G 2) = 1/2 as showed by the following strategy

fA(x1, x2) := (x1, x1 + 2), fB(y1, y2) = (y2 − 2, y2)

which wins whenever x1 + 2 = y2.

The parallel repetition theorem states that for any game G with ω(G ) = 1 − δ < 1,
the quantity ω(G n) tends to 0 exponentially fast, at a rate which depends on δ and on
Σ = |A × B|.
Theorem 1 (Raz [4], Holenstein [3]). If G is a game with ω(G ) = 1− δ, then

ω(G n) ⩽ exp

(
− cδ3n

log Σ

)
where c > 0 is a constant.

2. The main lemma

We fix a game G = (X ,Y,A,B, π, V ), an integer n and a deterministic strategy (FA, FB)
for G n. We consider an instance of the game G n where players use the strategy (FA, FB).
Let (Xi, Yi)1⩽i⩽n be the questions (i.e., i.i.d. random variables with distribution π) and
(Ai, Bi)1⩽i⩽n be the answers defined as (A1, . . . , An) = FA(X1, . . . , Xn), (B1, . . . , Bn) =
FB(Y1, . . . , Yn). For 1 ⩽ i ⩽ n, we consider the event

Wi := {V (Xi, Yi, Ai, Bi) = 1}
that the ith round of the game is a win.

Here is the main lemma. Here c > 0 is an absolute constant.

Lemma 2 (Main lemma). Assume that k ⩽ cδ2n
log Σ and P(W1 ∩ · · · ∩Wk) ⩾ Σ−k. Then

1

n− k

n∑
j=k+1

P(Wj |W1 ∩ · · · ∩Wk) ⩽ 1− δ

4
.

We show how Lemma 2 implies Theorem 1. Up to reordering the rounds of the games,
we may assume that

P(Wk+1|W1 ∩ · · · ∩Wk) ⩽ 1− δ

4

whenever k ⩽ k0 = cδ2n
log Σ and P(W1 ∩ · · · ∩Wk) ⩾ Σ−k. If we set pk = P(W1 ∩ · · · ∩Wk),

we have
pk ⩽ max

(
Σ−k+1, (1− δ/4)pk−1

)
⩽ (1− δ/4)k
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and therefore,

pn ⩽ pk0 ⩽ (1− δ/4)k0 ⩽ exp(−k0δ/4) = exp(−cδ3n/ log Σ)

and Theorem 1 follows by taking the supremum over strategies (FA, FB).

2.1. Coupling, total variations, shared randomness. Let µ1, µ2 be probability mea-
sures on a finite set S. The total variation distance between µ1 and µ2 is

∆(µ1 : µ2) :=
1

2

∑
x∈S

|µ1(x)− µ2(x)| = 1−
∑
x∈S

min(µ1(x), µ2(x)).

If X,Y are random variables with respective distributions µ, ν, we sometime write ∆(X :
Y ) instead of ∆(µ : ν). A basic coupling lemma states there is a probability space Ω and
random variables X,Y defined on Ω, with respective laws µ, ν such that P(X ̸= Y ) =
∆(µ : ν). Here is a more advanced version.

Lemma 3 (shared randomness). Let S be a finite set. There is a probability space Ω and,
for every probability measure µ on S, a random variable Xµ : Ω → S with distribution µ
such that, for every probability measures µ, ν on S,

P(Xµ ̸= Xν) ⩽ 2∆(µ : ν)

Proof. Denote by m the uniform measure on S × [0, 1] (i.e., the product of the discrete
uniform measure on S and of the continuous uniform measure on [0, 1]). We associate to a
probability measure µ on S its histogram Hµ ⊂ S × [0, 1] defined as

Hµ := {(x, t) ∈ S × [0, 1] : t ⩽ µ(x)}.

Observe that m(Hµ) = 1/|S| and that m(Hµ△Hν) = 2∆(µ : ν)/|S|, where △ denotes the
symmetric difference. If (Yn)n is a i.i.d. sequence of random variables with distribution m,
we may define for every probability measure µ a random variable

Xµ := inf{n : Yn ∈ Hµ}.

The distribution of Xµ is precisely µ. If ν is another probability measure, then

P(Xµ ̸= Xν) ⩽
m(Hµ△Hν)

m(Hµ ∪Hν)
.

Indeed, the event {Xµ = Xν} is verified whenever the infima in the definition of Xµ and
Xν coincide, which happens whenever the first element of the sequence (Yn) which belongs
to Hµ ∪Hν actually belongs to Hµ ∩Hν . The result follows since m(Hµ ∪Hν) ⩾ m(Hµ) =
1/|S|. □

We use Lemma 3 in the following form: from shared randomness, Alice can generate
X ∼ µ, Bob can generate Y ∼ ν such that P(X ̸= Y ) ⩽ 2∆(µ : ν). This does not require
Alice to know the measure ν, nor Bob to know the measure µ.
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2.2. A first look at the strategies. We describe a randomized strategy (fA, fB) for G
which depends on integers k < n and on a deterministic strategy (FA, FB) for the game
G n.

Here is a sketch of the strategy. Alice and Bob select an integer j ∈ {k+1, . . . , n}. When
Alice is asked a question x, she generates a random n-tuple of questions

ξ = (ξ1, . . . , ξn) ∈ X n

with ξj = x, and defines fA(x) as the jth coordinate of FA(ξ). Similarly, when Bob is asked
a question y, he generates a random n-tuple questions

η = (η1, . . . , ηn) ∈ Yn

with ηj = y, and defines fB(y) as the jth coordinate of FB(η).
In order for this strategy to be efficient, Alice and Bob need to correlate their randomness

generation. How they achieve this is explained in the next sections.

2.3. Clues. We introduce a more complicated equivalent version of the game G n. In this
version, in a first stage, the referee reveals a random selection of half of the questions (which
we call the clues) and reveals the full list of questions only in a second stage.

Introduce a symbol ⋆ which is distinct from elements in X and from elements in Y. The
symbol ⋆ will play the role of an unknown element. Define the set of clues to be

C := (X × {⋆}) ∪ ({⋆} × Y).

A clue is a pair of questions, one of them being unknown. Let (X,Y ) be a pair of questions
with distribution π, and C be the random clue defined as either (X, ⋆) of (⋆, Y ) with
probability 1/2. We denote bt π̂ the distribution of C. For c ∈ C, let π1

c the distribution
of X|[C = c] (when c = (x, ⋆), this distribution is the Dirac mass δx; when c = (⋆, y), this
distribution is proportional to π(·, y)). Similarly, let π2

c the distribution of Y |[C = c].
An equivalent way to generate the questions (Xi, Yi)1⩽i⩽n is as follows
(1) Generate i.i.d. clues (Ci)1⩽i⩽n with distribution π̂,
(2) For each 1 ⩽ i ⩽ n, generate Xi according to the distribution π1

Ci
and Yi according

to the distribution π2
Ci

. All choices are assumed to be independent (note that half
of the 2n variables (Xi, Yi) are in fact deterministic given (Ci).)

2.4. A non-admissible strategy. We define a transcript to be an element of T := X k ×
Yk ×Ak × Bk.

We consider an instance of the game G n where the questions are revealed in the 2-step
procedure via clues. Let (Ci) be the clues, (Xi, Yi) be the questions and (Ai, Bi) be the
answers. The transcript of the game is the random variable

(3) T := (Xi, Yi, Ai, Bi)1⩽i⩽k ∈ T .

For j ∈ {k + 1, . . . , n}, we denote by C¬j the random variable

C¬j := (Ck+1, . . . , Cj−1, Cj+1, . . . , Cn) ∈ Cn−k−1.
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We now explain how Alice and Bob generate the questions ξ and η in a correlated way.
We first describe a strategy which is not acceptable since it requires communication between
Alice and Bob at the stage (3). We then modify the strategy to remove communication.

(1) The strategy depends on an index j ∈ {k + 1, . . . , n}. Alice sets ξj = x and Bob
sets ηj = y.

(2) The strategy depends on a transcript t = (x, y, a, b) ∈ T . Alice sets (ξ1, . . . , ξk) = x
and Bob sets (η1, . . . , ηk) = y.

(3) Using shared randomness, Alice and Bob generate a random list of clues C with
distribution C¬j |[T = t,Xj = x, Yj = y]. Set CA = CB = C.

(4a) If CA = (ck+1, . . . , cj−1, cj+1, . . . , cn), then Alice generates using local randomness
(ξk+1, . . . , ξj−1, ξj+1, . . . , ξn) according to the distribution π1

ck+1
⊗· · ·⊗π1

cj−1
⊗π1

cj+1
⊗

· · · ⊗ π1
cn conditioned to the event (FA(ξ)i)1⩽i⩽k = a.

(4b) If CB = (ck+1, . . . , cj−1, cj+1, . . . , cn), then Bob generates using local randomness
(ηk+1, . . . , ηj−1, ηj+1, . . . , ηn) according to the distribution π2

ck+1
⊗· · ·⊗π2

cj−1
⊗π2

cj+1
⊗

· · · ⊗ π2
cn conditioned to the event (FB(η)i)1⩽i⩽k = b.

(5) Alice defines fA(x) as the jth coordinate of FA(ξ), and Bob defines fB(x) as the
jth coordinate of FB(η)

In this procedure, the random variables (ξ, η have the same distribution as the random
variables (Xi)1⩽i⩽n, (Yi)1⩽i⩽n conditioned to W1 ∩ · · · ∩ Wk ∩ {(Xj , Yj) = (x, y)}. This
strategy loses the game G with probability

P(Wj |T = t,Xj = x, Yj = y)

2.5. Correcting the strategy. We modify the strategy described at the previous section,
to eliminate communication between Alice and Bob. We replace step (3) by the following

(3a) Alice generates a random list of clues CA with distribution C¬j |[T = t,Xj = x].
(3b) Bob generates a random list of clues CB with distribution C¬j |[T = t, Yj = y].
This step must be done in a correlated way using shared randomness. By Lemma 3,

there exists a probability space Ω and for every x ∈ X , y ∈ Y random variables Γx,Γ
y,Γy

x :
Ω → Cn−k−1 such that

• the random variable Γx has the distribution of C¬j |[T = t,Xj = x]
• the random variable Γy has the distribution of C¬j |[T = t, Yj = y]
• the random variable Γy

x has the distribution of C¬j |[T = t,Xj = x, Yj = y]
• P(Γx = Γy = Γy

x) ⩾ 1− δ(t, j, x, y)

where

δ(t, j, x, y) := 2∆(C¬j |[T = t,Xj = x] : C¬j |[T = t,Xj = x, Yj = y])

+ 2∆(C¬j |[T = t, Yj = y] : C¬j |[T = t,Xj = x, Yj = y])

In order to correlate their random selection, we require that Alice and Bob perform steps
(3a) and (3b) by setting CA = Γx and CB = Γy. Note that setting CA = CB = Γy

x would
exactly implement step (3). It follows that this strategy, when asked (x, y), loses with
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probability at most

ℓ(x, y) := P(Wj |T = t,Xj = x, Yj = y) + δ(t, j, x, y)

When asked a random question with distribution π, this strategy loses with probability at
most ∑

x,y

πx,yℓ(x, y) ⩽
∑
x,y

P(Xj = x, Yj = y|T = t)ℓ(x, y) + ∆1(t, j)

⩽ P(Wj |T = t) + ∆1(t, j) + ∆2(t, j)

where ∆1(t, j) := ∆(π : (Xj , Yj)|[T = t]) and

∆2(t, j) :=
∑
x,y

P(Xj = x, Yj = y|T = t)δ(t, j, x, y)

= 2∆((Xj , Yj)|[T = t], C¬j |[T = t,Xj ] : (Xj , Yj , C¬j)|[T = t])

+2∆((Xj , Yj)|[T = t], C¬j |[T = t,Xj ] : (Xj , Yj , C¬j)|[T = t]).

By definition of ω(G ), this strategy loses the game G with probability at least δ. There-
fore the inequality

(4) δ ⩽ P(Wj |T = t) + ∆1(t, j) + ∆2(t, j)

holds for every index j and every transcript t.
We now state a fundamental lemma which bounds the parameters ∆1(t, j) and ∆2(t, j)

which appeared as the error when we modified the strategy to forbid communication. Given
a transcript t = (x, y, a, b) ∈ T , let p(t) be the probability that the transcript t occurs when
G n is played with strategy (FA, FB), where the first k rounds of questions are deterministic
according to (x, y), and the next rounds are independent with distribution π.

Lemma 4. Let t be a transcript. Then
n∑

j=k+1

∆1(t, j) ⩽ 2
√
n log(1/p(t))

n∑
j=k+1

∆2(t, j) ⩽ 8
√
n log(1/p(t))

2.6. Proof of the main Lemma. We complete the proof of the main Lemma (Lemma 2)
assuming Lemma 4. Let t = (x, y, a, b) ∈ X k ×Yk ×Ak ×Bk a transcript. We say that t is
likely if p(t) ⩾ Σ−3k, and that t is winning if V (xi, yi, ai, bi) = 1 for every 1 ⩽ i ⩽ k.

Consider a game where questions (Xi, Yi)1⩽i⩽n are i.i.d. with distribution π and where
the players use the strategy (FA, FB). Let T be the random transcript given by (3). For
every x, y ∈ X k × Yk, by the union bound when summing over the Σk possible a, b,

P(T unlikely|(X1, . . . , Xk) = x, (Y1, . . . , Yk) = y) ⩽ ΣkΣ−3k = Σ−2k
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and therefore the same bounds holds without conditioning on x, y. It follows that

P(T unlikely|W1 ∩ · · · ∩Wk) ⩽
P(T unlikely)

P(W1 ∩ · · · ∩Wk)
⩽

Σ−2k

Σ−k
= Σ−k ⩽ 1/2

Whenever t is a likely transcript, we have log(1/p(t)) ⩽ 3k log Σ and therefore

1

n− k

n∑
j=k+1

∆1(t, j) + ∆2(t, j) ⩽
10
√
3nk log Σ

n− k
⩽

δ

2

if we assume that k ⩽ cδ2n/ log Σ for a well-chosen c > 0. Finally, using (4),

1

n− k

n∑
j=k+1

P(Wj |W1 ∩ · · · ∩Wk)

=
∑
t∈T

P(T = t|W1 ∩ · · · ∩Wk)
1

n− k

n∑
j=k+1

P(Wj |T = t)

⩾
∑

t likely

P(T = t|W1 ∩ · · · ∩Wk)
1

n− k

n∑
j=k+1

(δ −∆1(t, j)−∆2(t, j))

⩾
∑

t likely

P(T = t|W1 ∩ · · · ∩Wk)
δ

2

=
δ

2
P(T likely|W1 ∩ · · · ∩Wk)

⩾
δ

4

and Lemma 2 follows.

3. Proof of Lemma 4

The following lemma appears as [3, Lemma 5]. We give a different and arguably simpler
proof in Section 4, by using Hoeffding’s inequality instead of considerations about entropy
(our works in the case, say, P(E) < 1/10, which is the range in which we apply it).

Lemma 5. Let Z1, . . . , Zn be independent random variables and E an event. Then
n∑

j=1

∆(Zj |E : Zj)
2 ⩽ log(1/P(E))

Lemma 6. Let S be a random variable, Z1, . . . , Zn be random variables conditionally in-
dependent given S, and E an event. Then

n∑
j=1

∆(µj : νj) ⩽
√
n
√
log(1/P(E)),
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where µj is the distribution of (SZj)|E and νj is the distribution of a pair (s, zj), where s
is distributed as S|E and zj is distributed as Zj |[S = s].

Let us show how Lemmas 5 and 6 imply Lemma 4. Fix a transcript t = (x, y, a, b) ∈ T .
Consider independent random variables Zj = (Xj , Yj), where Zj is deterministic and equal
to (xj , yj) for j ⩽ k and of distribution π for j > k, and let T the corresponding random
transcript. Consider the event E = {T = t}. Observe that p(t) coincides with P(E). For
k < j ⩽ n, we have

∆1(t, j) = ∆(Zj : Zj |E)

and therefore

n∑
j=k+1

∆1(t, j) ⩽
√
n

 n∑
j=k+1

∆(Zj |E : π)2

1/2

⩽
√
n log(1/p(t))

and the result follows.
For the second part of Lemma 4, consider S = (Cj)k<j⩽n, the clues in the 2-step pro-

cedure to generate the questions (Xj , Yj). It is indeed the case that (Zj) are conditionally
independent given S. We apply Lemma 6 to obtain

n∑
j=k+1

∆(µj : νj) ⩽
√
n
√
log(1/p(T ))

where µj is the distribution of (S, (Xj , Yj)) and νj is the distribution of (S, (Xj , Yj)|S). By
reasoning on whether Cj = (Xj , ⋆) or Cj = (⋆, Yj), we obtain

∆(µj : νj) =
1

2
∆(C¬j , Xj , Yj : C¬j , Xj , Yj |Xj) +

1

2
∆(C¬j , Xj , Yj : C¬j , Xj |Yj , Yj).

This bound implies

∆(C¬j , Xj , Yj |Xj : C¬j , Xj |Yj , Yj) ⩽ 4∆(µj : νj).

Finally, observe that

∆2(T, j) := ∆(C¬j |Xj , Xj , Yj : C¬j |Yj , Xj , Yj) = ∆(C¬j , Xj , Yj |Xj : C¬j , Xj |Yj , Yj)
Therefore, we have

n∑
j=k+1

∆2(T, j) ⩽ 4
n∑

j=k+1

∆(µj : νj) ⩽ 4
√
n
√
log(1/p(T ))

as needed.

4. Proof of Lemmas 5 and 6

Lemma 7 (a la Hoeffding). Let (Xi) be independent random variables, with Xi taking
values in an interval of length θi. Assume

∑
θ2i = 1, and set S :=

∑
Xi. Then for any

event E with P(E) < 1/10,∣∣∣E[S|E]−E[S]
∣∣∣ ⩽√log2(1/P(E))
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Proof. We recall Hoeffding’s inequality [2]: under the same assumption, for any t ⩾ 0

P (S ⩾ E[S] + t) ⩽ exp
(
−2t2

)
.

We may assume that E[S] = 0. Assume also that P(E) ⩽ 1/2. Write, for β to be
determined.

E[S|E] ⩽ β +

ˆ ∞

β
P(S ⩾ t|E) dt ⩽ β +

ˆ ∞

β

P(S ⩾ t)

P(E)
dt ⩽ β +

1

P(E)

ˆ ∞

β
exp(−2t2) dt.

Using the bound
´∞
β exp(−2t2) dt ⩽

´∞
β

t
β exp(−2t2) dt = exp(−2β2)/4β, we obtain

E[S|E] ⩽ β +
exp(−2β2)

4βP(E)

and the choice β =
√

ln(1/P(E))/2 gives

E[S|E] ⩽

√
ln(1/P(E))√

2
+

√
2

4
√
ln(1/P(E))

⩽
√

ln(1/P(E))

[
1√
2
+

√
2

4 ln 10

]

using that P(E) ⩽ 1/10. Since 1√
2
+

√
2

4 ln 10 ⩽ 1√
ln 2

, Lemma 7 follows by applying the same
inequality to −S. □

We now prove Lemma 5. We need to show that

(5)

 n∑
j=1

∆(Zj |E : Zj)
2

1/2

⩽
√

log2(1/P(E)).

First, note that (5) is equivalent to the fact that for every θ ∈ Sn−1

n∑
j=1

θj∆(Zj |E : Zj) ⩽
√
log2(1/P(E)).

Next, for any random variables U, V , we have ∆(U : V ) = supE[f(U)− f(V )] where the
supremum is over functions f : R → {−1/2, 1/2}. It suffices therefore to show that for
every functions fj : R → {−1/2, 1/2}

n∑
j=1

θj (E[fj(Zj)|E]−E[fj(Zj)]) ⩽
√

log2(1/P(E)),

which follows from Lemma 7.
We now turn to the proof of Lemma 6. We write, using successively the inequality

between the ℓ1 and ℓ2 norms on Rn, Lemma 5 and the concavity of x 7→
√
log x for x ⩾ 1
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n∑
j=1

∆(µj : νj) =
∑
s∈S

P(S = s|E)

n∑
j=1

∆(Zj |E,S = s : Zj |S = s)

⩽
√
n
∑
s∈S

P(S = s|E)

 n∑
j=1

∆(Zj |E,S = s : Zj |S = s)2

1/2

⩽
√
n
∑
s∈S

P(S = s|E)
√
log(1/P(E|S = s))

⩽
√
n

√√√√log

(∑
s∈S

P(S = s|E)

P(E|S = s)

)

=
√
n

√√√√log

(∑
s∈S

P(S = s)

P(E)

)
=

√
n
√

log(1/P(E))
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