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Abstract. For large d, we study quantum channels on Cd obtained by selecting randomly N inde-
pendent Kraus operators according to a probability measure µ on the unitary group U(d). When µ
is the Haar measure, we show that for N < d/ε2, such a channel is ε-randomizing with high proba-
bility, which means that it maps every state within distance ε/d (in operator norm) of the maximally
mixed state. This slightly improves on a result by Hayden, Leung, Shor and Winter by optimizing
their discretization argument. Moreover, for general µ, we obtain a ε-randomizing channel provided
N < d(log d)6/ε2. For d = 2k (k qubits), this includes Kraus operators obtained by tensoring k
random Pauli matrices. The proof uses recent results on empirical processes in Banach spaces.

1. Introduction

The completely randomizing quantum channel on Cd maps every state to the maximally mixed
state ρ∗. This channel is used to construct perfect encryption systems (see [1] for formal definitions).
However it is a complex object in the following sense: any Kraus decomposition must involve at least
d2 operators. It has been shown by Hayden, Leung, Shor and Winter [12] that this “ideal” channel
can be efficiently emulated by lower-complexity channels, leading to approximate encryption systems.
The key point is the existence of good approximations with much shorter Kraus decompositions. More
precisely, say that a quantum channel Φ on Cd is ε-randomizing if for any state ρ, ‖Φ(ρ)−ρ∗‖∞ 6 ε/d.
The existence of ε-randomizing channels with o(d2) Kraus operators has several other implications [12],
such as counterexamples to multiplicativity conjectures [17].

It has been proved in [12] that if (Ui) denote independent random matrices Haar-distributed on the
unitary group U(d), then the quantum channel

(1) Φ : ρ 7→ 1
N

N∑
j=1

UiρU
†
i

is ε-randomizing with high probability provided N > Cd log d/ε2 for some constant C. The proof
uses a discretization argument and the fact that the Haar measure satisfies subgaussian estimates. We
show a simple trick that allows to drop a log d factor: Φ is ε-randomizing when N > Cd/ε2, this is
our theorem 1.

The Haar measure is a nice object from the theoretical point of view, but is often too compli-
cated to implement for concrete situations. Let us say that a measure µ on U(d) is isotropic when∫
UρU†dµ(U) = ρ∗ for any state ρ. When d = 2k, an example of isotropic measure is given by assigning

equal masses at k-wise tensor products of Pauli operators.
The following question was asked in [12]: is the quantum channel Φ defined as (1) ε-randomizing

when (Ui) are distributed according to any isotropic probability measure on U(d) ? We answer posi-
tively this question when N > Cd log6 d/ε2. This is our main result and appears as theorem 2. Note
that for non-Haar measures, previous results appearing in the literature [12, 2, 8] involved the weaker
trace-norm approximation ‖Φ(ρ)− ρ∗‖1 6 ε.
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As opposed to the Haar measure, the measure µ need not have subgaussian tails, and we need
more sophisticated tools to prove theorem 2. We use recent results on suprema of empirical processes
in Banach spaces. After early work by Rudelson [15] and Guédon–Rudelson [11], a general sharp
inequality was obtained by Guédon, Mendelson, Pajor and Tomczak–Jaegermann [10]. This inequality
is valid in any Banach space with a sufficiently regular equivalent norm, such as `d1. The problem
of ε-randomizing channels involves the supremum of an empirical process in the trace-class space Sd1
(non-commutative analogue of `d1), which enters perfectly this setting.

The paper is organized as follows. Section 2 contains background and precise statements of the
theorems. Theorem 1 (for Haar measure) is proved in section 3. Theorem 2 (for a general measure) is
proved in section 4. An appendix contains the needed facts about geometry and probability in Banach
spaces.

Acknowledgement. I thank Andreas Winter for several e-mail exchanges on the topic, and I am
very grateful to Alain Pajor for showing me that the results of [10] can be applied here.

2. Background and presentation of results

Thoughout the paper, the letter C and c denote absolute constants whose value may change from
occurrence to occurrence. We usually do not pay too much attention to the value of these constants.

2.1. Schatten classes. We write M(Cd) for the space of complex d × d matrices. If A ∈ M(Cd),
let s1(A), . . . , sd(A) denote the singular values of A (defined as the square roots of the eigenvalues of
AA†). For 1 6 p 6 ∞, the Schatten p-norm is defined as

‖A‖p =

(
d∑
i=1

si(A)p
)1/p

.

For p = ∞, the definition should be understood as ‖A‖∞ = max si(A) and coincides with the usual
operator norm. It is well-known (see [5], section IV.2) that (M(Cd), ‖ · ‖p) is a complex normed space,
denoted Sdp and called Schatten class. The space Sdp is the non-commutative analogue of the space `dp.
We write B(Sdp) for the unit ball of Sdp .

The Schatten 2-norm (sometimes called Hilbert–Schmidt or Frobenius norm) is a Hilbert space
norm associated to the inner product 〈A,B〉 = TrA†B. This Hermitian structure allows to identify
M(Cd) with its dual space. Duality on Schatten norms holds as in the commutative case: if p and q
are conjugate exponents (i.e. 1/p+ 1/q = 1), then the normed space dual to Sdp coincides with Sdq .

2.2. Completely positive maps. We write Msa(Cd) (resp. M+(Cd)) for the set of self-adjoint
(resp. positive semi-definite) d × d matrices. A linear map Φ : M(Cd) →M(Cd) is said to preserve
positivity if Φ(M+(Cd)) ⊂ M+(Cd). Moreover, Φ is said to be completely positive if for any k ∈ N,
the map

Φ⊗ IdM(Ck) : M(Cd ⊗Ck) →M(Cd ⊗Ck)

preserves positivity. We use freely the canonical identification M(Cd)⊗M(Ck) ≈M(Cd ⊗Ck).
If (ei)06i6d−1 denotes the canonical basis of Cd, let Eij = |ei〉〈ej |. To Φ : M(Cd) → M(Cd) we

associate AΦ ∈M(Cd ⊗Cd) defined as

AΦ =
d∑

i,j=1

Eij ⊗ Φ(Eij).
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The matrix AΦ is called the Choi matrix of Φ ; it is well-known [7] that Φ is completely positive if
and only if AΦ is positive. Therefore, the set of completely positive operators on M(Cd) is in one-
to-one correspondence with M+(Cd ⊗Cd). This correspondence is known as the Choi–Jamiołkowski
isomorphism.

The spectral decomposition of AΦ implies now the following: any completely positive map Φ on
M(Cd) can be decomposed as

(2) Φ : X 7→
N∑
i=1

ViXV
†
i .

Here V1, . . . , VN are elements of M(Cd). This decomposition is called a Kraus decomposition of Φ of
length N . The minimal length of a Kraus decomposition of Φ (called Kraus rank) is equal to the rank
of the Choi matrix AΦ. In particular it is always bounded by d2.

2.3. States and the completely depolarizing channel. A state on Cd is a element of M+(Cd)
with trace 1. We write D(Cd) for the set of states ; it is a compact convex set with (real) dimension
d2 − 1. If x ∈ Cd is a unit vector, we write Px = |x〉〈x| for the associated rank one projector. The
state Px is called a pure state, and it follows from spectral decomposition that any state is a convex
combination of pure states. A central role is played by the maximally mixed state ρ∗ = Id/d (ρ∗ is
sometimes called the random state).

A quantum channel Φ : M(Cd) → M(Cd) is a completely positive map which preserves trace:
for any X ∈ M(Cd),TrΦ(X) = TrX. Note that a quantum channel maps states to states. The
trace-preserving condition reads on the Kraus decomposition (2) as

N∑
i=1

V †i Vi = Id.

An example of quantum channel that plays a central role in quantum information theory is the
(completely) randomizing channel (also called completely depolarizing channel) R : M(Cd) →M(Cd).

R : X → TrX · Id
d
.

The randomizing channel maps every state to ρ∗. The Choi matrix of R is AR = 1
d IdCd⊗Cd . Since AR

has full rank, any Kraus decomposition of R must have length (at least) d2. An explicit decomposition
can be written using Fourier-type unitary operators: let ω = exp(2iπ/d) and A and B the matrices
defined as

(3) A(ej) = ej+1 mod d B(ej) = ωjej .

For 1 6 j, k 6 d, define Vj,k as the product BjAk. Note that Vj,k belongs to the unitary group U(d).
A routine calculation (see also section 2.5) shows that for any X ∈M(Cd),

1
d2

d∑
j,k=1

Vj,kXV
†
j,k = TrX · Id

d
.

This is a Kraus decomposition of the randomizing channel.
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2.4. ε-randomizing channels. We are interested in approximating the randomizing channel R by
channels with low Kraus rank. Following Hayden, Leung, Shor and Winter [12], a quantum channel Φ
is called ε-randomizing if for any state ρ ∈ D(Cd),

‖Φ(ρ)− ρ∗‖∞ 6
ε

d
.

It is equivalent to say that the spectrum of Φ(ρ) is contained in [(1− ε)/d, (1+ ε)/d] for any state ρ. It
has been proved in [12] that there exist ε-randomizing channels with Kraus rank equal to Cd log d/ε2

for some constant d. This is much smaller that d2 (the Kraus rank of R). The construction is simple:
generate independent random Kraus operators according to the Haar measure on U(d) and show that
the induced quantum channel is ε-randomizing with nonzero probability. A key step in the proof is
a discretization argument. We show that a simple trick improves the efficiency of the argument from
[12] to prove the following

Theorem 1 (Haar-generated ε-randomizing channels). Let (Ui)16i6N be independent random matrices
Haar-distributed on the unitary group U(d). Let Φ : Cd → Cd be the quantum channel defined by

Φ(ρ) =
1
N

N∑
i=1

UiρU
†
i .

Assume that 0 < ε < 1 and N > Cd/ε2. Then the channel Φ is ε-randomizing with nonzero probability.

As often with random constructions, we actually prove that the conclusion holds true with large
probability: the probability of failure is exponentially small in d.

It is clear that the way N depends on d is optimal: if Φ is a ε-randomizing channel with ε < 1, its
Kraus rank must be at least d. This is because for any pure state Px, Φ(Px) must have full rank. The
dependence in ε is sharp for channels as constructed here, since lemma 2 below is sharp. However, it
is not clear whether families of ε-randomizing channels with a better dependence in ε can be found
using a different construction, possibly partially deterministic.

One checks (using the value c = 1/6 from [12] in lemma 3 and optimizing over the net size) that
the constant in theorem 1 can the chosen to, e.g., C = 150. This is presumably far from optimal.

2.5. Isotropic measures on unitary matrices. Although the quantum channels constructed in
theorem 1 have minimal Kraus rank, it can be argued that Haar-distributed random matrices are hard
to generate in real-life situations. We introduce a wide class of measures on U(d) that may replace the
Haar measure.

Definition. Say that a probability measure µ on U(d) is isotropic if for any X ∈M(Cd),∫
U(d)

UXU†dµ(U) = TrX · Id
d
.

Similarly, a U(d)-valued random vector is called isotropic if its law is isotropic.

Lemma 1. Let U = (Uij) be a U(d)-valued random vector. The following assertions are equivalent
(1) U is isotropic.
(2) For any X ∈M(Cd), E|TrUX†|2 = 1

d‖X‖
2
2.

(3) For any indices i, j, k, l, EUijUkl = 1
dδi,kδj,l.

Proof. Implications (3) ⇒ (1) and (3) ⇒ (2) are easily checked by expansion. For (1) ⇒ (3), simply
take X = |ej〉〈ek|. Identity (2) implies after polarization that for any A,B ∈M(Cd),

E
[
Tr(UA†) Tr(UB†)

]
=

1
d

Tr(AB†),
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from which (3) follows. �

Condition (3) of the lemma means that the covariance matrix of U — which is an element of
M(M(Cd)) — is a multiple of the identity matrix.

Of course the Haar measure is isotropic. Other examples are provided by discrete measures. Let
U = {U1, . . . , Ud2} be a family of unitary matrices, which are mutually orthogonal in the following
sense: if i 6= j, then TrU†i Uj = 0. For example, one can take U = {BjAk}16j,k6d, A,B defined as (3).
Then the uniform probability measure on U is isotropic. Indeed, any X ∈M(Cd) can be decomposed
as X =

∑
xiUi and condition (2) of lemma 1 is easily checked.

If we specialize to d = 2, we obtain a random Pauli operator: assign probability 1/4 to each of the
following matrices to get a isotropic measure

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

It is straightforward to check that isotropic vectors tensorize: if X1 ∈ U(d1) and X2 ∈ U(d2) are
isotropic, so is X1⊗X2 ∈ U(d1d2). If we work on M((C2)⊗k), which corresponds to a set of k qubits,
a natural isotropic measure is therefore obtained by choosing independently a Pauli matrix on each
qubit, i.e. assigning mass 1/4k to the matrix σi1 ⊗ · · · ⊗ σik for any i1, . . . , ik ∈ {0, 1, 2, 3}k.

2.6. ε-randomizing channels for an isotropic measure. We can now state our main theorem
asserting that up to logarithmic terms, the Haar measure can be replaced in theorem 1 by simpler
notions of randomness. We first state our result

Theorem 2 (General ε-randomizing channels). Let µ be an isotropic measure on the unitary group
U(d). Let (Ui)16i6N be independent µ-distributed random matrices, and Φ : Cd → Cd be the quantum
channel defined as

(4) Φ(ρ) =
1
N

N∑
i=1

UiρU
†
i .

Assume that 0 < ε < 1 and N > Cd(log d)6/ε2. Then the channel Φ is ε-randomizing with nonzero
probability.

Theorem 2 applies in particular for product of random Pauli matrices as described in the previous
section. It is of interest for certain cryptographic applications to know that ε-randomizing channels
can be realized using Pauli matrices.

As opposed to theorem 1, the conclusion of theorem 2 is not proved to hold with exponentially large
probability. Applying the theorem with εη instead of ε and using Markov inequality shows that Φ is
ε-randomizing with probability larger than 1− η provided N > Cd log6 d/(ε2η2).

Theorem 2 could be quickly deduced from a theorem appearing in [10]. However, the proof of [10]
is rather intricate and uses Talagrand’s majorizing measures in a central way. We give here a proof of
our theorem which uses the simpler Dudley integral instead, giving the same result. We however rely
an a entropy lemma from [10], which appears as lemma A5 in the appendix.

The log6 d appearing in theorem 2 is certainly non optimal (see remarks at the end of the paper).
However, some power of log d is needed, as shown by the next proposition.

Proposition. Let A,B defined as (3) and µ be the uniform measure on the set {BjAk}16j,k6d.
Consider (Xi) independent µ-distributed random unitary matrices. If the quantum channel Φ defined
as (4) is 1

2 -randomizing with probability larger than 1/2, then N > cd log d.
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Proof. We will rely on the following standard result in elementary probability theory known as the
coupon collector’s problem (see [9], Chapter 1, example 5.10): if we choose independently and uniformly
random elements among a set of d elements, the mean (and also the median) number of choices before
getting all elements at least once is equivalent to d log d for large d.

In our case, remember that ω = exp(2iπ/d) and for 0 6 j 6 d− 1, define xj ∈ Cd as

xj =
(

1√
d
,
ωj√
d
,
ω2j

√
d
, . . . ,

ω(d−1)j

√
d

)
.

Note that B = (xj)06j6d−1 is an orthonormal basis of Cd and that BjAkx0 = xj . Consequently, if
U is µ-distributed, the random state UPx0U

† equals Pxj with probability 1/d. In the basis B, the
matrix Φ(Px0) is diagonal. Note that if Φ is 1

2 -randomizing, then Φ(Px0) must have full rank. The
reduction to the coupon collector’s problem is now immediate. �

3. Proof of theorem 1: Haar-distributed unitary operators.

The scheme of the proof is similar to [12]. We need two lemmas from there. The first is a deviation
inequality sometimes known as Bernstein’s inequality. The second is proved by a volumetric argument.

Lemma 2 (Lemma II.3 in [12]). Let ϕ,ψ be pure states on Cd and (Ui)16i6N be independent Haar-
distributed random unitary matrices. Then for every 0 < δ < 1,

P

(∣∣∣∣∣ 1
N

N∑
i=1

Tr(UiϕU
†
i ψ)− 1

d

∣∣∣∣∣ > δ

d

)
6 2 exp(−cδ2N)

Lemma 3 (Lemma II.4 in [12]). For 0 < δ < 1 there exists a set N of pure states on Cd with
|N | 6 (5/δ)2d, such that for every pure state ϕ on Cd, there exists ϕ0 ∈ N such that ‖ϕ− ϕ0‖1 6 δ.
Such a set N is called a δ-net.

The improvement on the result of [12] will follow from the next lemma

Lemma 4 (Computing norms on nets). Let ∆ : B(Cd) → B(Cd) be a Hermitian-preserving linear
map. Let A be the quantity

A = sup
ϕ∈D(Cd)

‖∆(ϕ)‖∞ = sup
ϕ,ψ∈D(Cd)

|Trψ∆(ϕ)|

Let 0 < δ < 1/2 and N be a δ-net as provided by lemma 3. We can evaluate A as follows

A 6
1

1− 2δ
B,

where
B = sup

ϕ0,ψ0∈N
|Trψ0∆(ϕ0)|

Proof of lemma 4. First note that for any self-adjoint operators a, b ∈ B(Cd), we have

(5) |Tr b∆(a)| 6 A‖a‖1‖b‖1.

By a convexity argument, the supremum in A can be restricted to pure states. Given pure states
ϕ,ψ ∈ D(Cd), let ϕ0, ψ0 ∈ N so that ‖ϕ− ϕ0‖1 6 δ, , ‖ψ − ψ0‖1 6 δ. Then

|Trψ∆(ϕ)| 6 |Tr(ψ − ψ0)∆(ϕ)|+ |Trψ0∆(ϕ− ϕ0)|+ |Trψ0∆(ϕ0)|

Using twice (5) and taking supremum over ϕ,ψ gives A 6 δA+ δA+B, hence the result. �
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Proof of the theorem. Let R be the randomizing channel. Fix a 1
4 -net N with |N | 6 202d, as provided

by lemma 3. Let ∆ = R − Φ and A,B as in lemma 4. Here A and B are random quantities and it
follows from lemma 4 that

P
(
A >

ε

d

)
6 P

(
B >

ε

2d

)
.

Using the union bound and lemma 2, we get

P
(
B >

ε

2d

)
6 204d · 2 exp(−cε2N/4).

This is less that 1 if N > Cd/ε2, for some constant C. �

4. Proof of theorem 2: general unitary operators.

A Bernoulli random variable is a random variable ε so that P(ε = 1) = P(ε = −1) = 1/2. Recall
that C denotes an absolute constant whose value may change from occurrence to occurrence. We will
derive theorem 2 from the following lemma.

Lemma 5. Let U1, . . . , UN ∈ U(d) be deterministic unitary operators and let (εi) be a sequence of
independent Bernoulli random variables. Then

(6) Eε sup
ρ∈D(Cd)

∥∥∥∥∥
N∑
i=1

εiUiρU
†
i

∥∥∥∥∥
∞

6 C(log d)5/2
√

logN sup
ρ∈D(Cd)

∥∥∥∥∥
N∑
i=1

UiρU
†
i

∥∥∥∥∥
1/2

∞

.

Proof of theorem 2 (assuming lemma 5). Let µ be an isotropic measure on U(d) and (Ui) be indepen-
dent µ-distributed random unitary matrices. Let M be the random quantity

M = sup
ρ∈D(Cd)

∥∥∥∥∥ 1
N

N∑
i=1

UiρU
†
i −

Id
d

∥∥∥∥∥
∞

We are going to show that EM is small. The first step is a standard symmetrization argument. Let
(U ′i) be independent copies of (Ui) and (εi) be a sequence of independent Bernoulli random variables.
We explicit as a subscript the random variables with repsect to which expectation is taken

EM 6 EU,U ′ sup
ρ∈D(Cd)

∥∥∥∥∥ 1
N

N∑
i=1

UiρU
†
i − U ′iρU

′†
i

∥∥∥∥∥
∞

= EU,U ′,ε sup
ρ∈D(Cd)

∥∥∥∥∥ 1
N

N∑
i=1

εi(UiρU
†
i − U ′iρU

′†
i )

∥∥∥∥∥
∞

6 2EU,ε sup
ρ∈D(Cd)

∥∥∥∥∥ 1
N

N∑
i=1

εiUiρU
†
i

∥∥∥∥∥
∞

The inequality of the first line is Jensen’s inequality for EU ′ , while the equality on the second line
holds since the distribution of ρ 7→ UiρU

†
i − U ′iρU

′†
i is symmetric (as a M(M(Cd),M(Cd))-valued
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random vector). We then decouple the expectations using lemma 5 for fixed (Ui).

EM 6
C√
N

(log d)5/2
√

logNE sup
ρ∈D(Cd)

∥∥∥∥∥ 1
N

N∑
i=1

UiρU
†
i

∥∥∥∥∥
1/2

∞

6
C√
N

(log d)5/2
√

logNE

√
M +

1
d

6
C√
N

(log d)5/2
√

logN

√
EM +

1
d

Using the elementary implication

X 6 α
√
X + β =⇒ X 6 α2 + α

√
β

we find that EM 6 ε/d provided N > Cd log6 d/ε2. �

It remains to prove lemma 5. We will use several standard concepts from geometry and probability
in Banach spaces. All the relevant definitions and statements are postponed to the next section.

Proof of lemma 5. Let Z be the quantity appearing in the left-hand side of (6). By a convexity
argument, the supremum is attained for an extremal ρ, i.e. a pure state Px = |x〉〈x| for some unit
vector x. Since the operator norm itself can be written as a supremum over unit vectors, we get

Z = sup
|x|=|y|=1

∣∣∣∣∣
N∑
i=1

εi|〈y|Ui|x〉|2
∣∣∣∣∣ = sup

|x|=|y|=1

∣∣∣∣∣
N∑
i=1

εi|TrUi|x〉〈y||2
∣∣∣∣∣ 6 sup

A∈B(Sd
1 )

∣∣∣∣∣
N∑
i=1

εi|TrUiA|2
∣∣∣∣∣ .

The last inequality follows from the fact thatB(Sd1 ) = conv{|x〉〈y|, |x| = |y| = 1}. Let Φ : B(Sd1 ) → RN

defined as
Φ(A) = (|TrU1A|2, . . . , |TrUNA|2).

We now apply Dudley’s inequality (theorem A2 in the next section) with K = Φ(B(Sd1 )) to estimate
EZ using covering numbers. This yields

EZ 6 C

∫ ∞

0

√
logN(Φ(B(Sd1 )), | · |, ε)dε

where | · | denotes the Euclidean norm on RN . Define a distance δ on B(Sd1 ) as

δ(A,B) = |Φ(A)− Φ(B)| =

(
N∑
i=1

∣∣|TrUiA|2 − |TrUiB|2
∣∣2)1/2

.

We are led to the estimate

EZ 6 C

∫ ∞

0

√
logN(B(Sd1 ), δ, ε)dε.

Using the inequality
∣∣|a|2 − |b|2∣∣ 6 |a− b| · |a+ b|, the metric δ can be upped bounded as follows

δ(A,B)2 6

(
N∑
i=1

|TrUi(A+B)|2
)

sup
16i6N

|TrUi(A−B)|2.

Let us introduce a new norm ||| · ||| on M(Cd)

|||A||| = sup
16i6N

|TrUiA|.
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Let θ be the number equal to

θ := sup
A∈B(Sd

1 )

N∑
i=1

|TrUiA|2 = sup
ρ∈D(Cd)

∥∥∥∥∥
N∑
i=1

UiρU
†
i

∥∥∥∥∥
∞

.

We get that for A,B ∈ B(Sd1 ), δ(A,B) 6 2θ|||A−B|||, and therefore

EZ 6 Cθ

∫ ∞

0

√
logN(B(Sd1 ), ||| · |||, ε)dε.

It remains to bound this new entropy integral. We split it into three parts, for ε0 to be determined. If
ε is large (ε > 1), since ‖Ui‖∞ = 1, we get that ||| · ||| 6 ‖ · ‖1. This means that N(B(Sd1 ), ||| · |||, ε) = 1
and the integrand is zero. If ε is small (0 < ε < ε0), we use the volumetric argument of lemma A1

N(B(Sd1 ), ||| · |||, ε) 6 N(B(Sd1 ), ‖ · ‖1, ε) 6 (3/ε)2d
2
.

In the intermediate range (ε0 6 ε 6 1), let q = log d and p = 1 + 1/(log d − 1) be the conjugate
exponent. We are going to approximate the Schatten 1-norm by the Schatten p-norm. It is elementary
to check that for A ∈M(Cd), ‖A‖q 6 e‖A‖∞. By dualizing

‖A‖1 6 e‖A‖p =⇒ N(B(Sd1 ), ||| · |||, ε) 6 N(B(Sdp), ||| · |||, ε/e).

We are now in position to apply lemma A5 to the space E = Sdp . By theorems A3 and A4, the
2-convexity constant of Sdp and the type 2 constant of Sdq (see next section for definitions) are bounded
as follows

T2(Sdq ) 6 λ(Sdp) 6
√
q − 1 6

√
log d.

Since ‖Ui‖q 6 e, the inequality given by lemma A5 is√
logN(B(Sd1 ), ||| · |||, ε) 6

C

ε
(log d)3/2

√
logN.

We now gather all the estimations∫ ∞

0

√
logN(B(Sd1 ), ||| · |||, ε)dε 6

∫ ε0

0

√
2d2 log(3/ε)dε+ C(log d)3/2

√
logN

∫ 1

ε0

1
ε
dε.

Choosing ε0 = 1/d, an immediate computation shows that∫ ∞

0

√
logN(B(Sd1 ), ||| · |||, ε)dε 6 C(log d)5/2

√
logN.

This concludes the proof of the lemma. �

Appendix : Geometry of Banach spaces

In this last section, we gather several definitions and results from geometry and probability in
Banach spaces. We denote by (E, ‖ · ‖) a real or complex Banach space (actually, in our applications
E will be finite-dimensional). We denote by (E∗, ‖ · ‖∗) the dual Banach space.
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4.1. Covering numbers.

Definition. If (K, δ) is a compact metric space, the covering number or entropy number N(K, δ, ε)
is defined to be the smallest cardinality M of a set {x1, . . . , xM} ⊂ K so that

K ⊂
M⋃
i=1

B(xi, ε)

where B(x, ε) = {y ∈ K s.t. δ(x, y) 6 ε}.

An especially important case is when K is a subset of Rn and δ is induced by a norm. The next
lemma is proved by a volumetric argument (see [13], Lemma 9.5).

Lemma A1. If ‖·‖ is a norm on Rn with unit ball K, then for every ε > 0, N(K, ‖·‖, ε) 6 (1+2/ε)n.

The following theorem gives upper bounds on Bernoulli averages involving covering numbers. For
a proof, see Lemma 4.5 and Theorem 11.17 in [13].

Theorem A2 (Dudley’s inequality). Let (εi) be independent Bernoulli random variables and K be
a compact subset of Rn. Denote by (x1, . . . , xn) the coordinates of a vector x ∈ Rn. Then for some
absolute constant C,

Emax
x∈K

n∑
i=1

εixi 6 C

∫ ∞

0

√
logN(K, | · |, ε)dε

where | · | denotes the Euclidean norm on Rn.

4.2. 2-convexity.

Definition. A Banach space (E, ‖ · ‖) is said to be 2-convex with constant λ if for any y, z ∈ E, we
have

‖y‖2 + λ−2‖z‖2 6
1
2
(‖y + z‖2 + ‖y − z‖2).

The smallest such λ is called the 2-convexity constant of E and denoted by λ(E).

We say shortly that “E is 2-convex” while the usual terminology should be “E has a modulus of
convexity of power type 2”. This should not be confused with the notion of 2-convexity for Banach
lattices [14].

It follows from the parallelogram identity that a Hilbert space is 2-convex with constant 1. Other
examples are `p and Sdp for 1 < p 6 2. The next theorem has been proved by Ball, Carlen and Lieb
[4], refining on early work by Tomczak–Jaegermann [16].

Theorem A3. For p 6 2, the following inequality holds for A,B ∈M(Cd)

‖A‖2p + (p− 1)‖B‖2p 6
1
2
(
‖A+B‖2p + ‖A−B‖2p

)
.

Therefore, Sdp is 2-convex with constant 1/
√
p− 1.

This property nicely dualizes. Indeed, it is easily checked (see [4], lemma 5) that E is 2-convex with
constant λ if any only if, for every y, z ∈ E∗,

‖y‖2∗ + λ2‖z‖2∗ >
1
2
(‖y + z‖2∗ + ‖y − z‖2∗).

In this case, E∗ is said to be 2-smooth with constant λ.
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4.3. Type 2.

Definition. A Banach space (E, ‖ · ‖) is said to have type 2 if there exists a constant T2 so that for
any finite sequence y1, . . . , yN of vectors of E, we have

(7)

E

∥∥∥∥∥
N∑
i=1

εiyi

∥∥∥∥∥
2
1/2

6 T2

(
N∑
i=1

‖yi‖2
)1/2

.

The smallest possible T2 is called the type 2 constant of E and denoted T2(E). Here, the expectation
E is taken with respect to a sequence (εi) of independent Bernoulli random variables.

It follows from the (generalized) parallelogram identity that a Hilbert space has type 2 with constant
1, and there is actually equality in (7). If a Banach space E is 2-convex, then E∗ is 2-smooth. It is
easily checked (by induction on the number of vectors involved) that a 2-smooth Banach space has type
2 with the same constant. We therefore have the inequality T2(E∗) 6 λ(E). In particular, theorem
A3 implies the following result, first proved by Tomczak-Jaegermann [16] with a worse constant.

Theorem A4. If q > 2, then Sdq has type 2 with the estimate

T2(Sdq ) 6
√
q − 1.

4.4. An entropy lemma. The following lemma plays a key role in our proof. It appears as Lemma
1 in [10].

Lemma A5. Let E be a Banach space with unit ball B(E). Assume that E is 2-convex with constant
λ(E). Let x1, . . . , xN be elements of E∗, and define a norm ||| · ||| on E as

|||y||| = max
16i6N

|xi(y)|.

Then for any ε > 0 we have for some absolute constant C

(8) ε
√

logN(B(E), ||| · |||, ε) 6 Cλ(E)2T2(E∗)
√

logN max
16i6N

‖xi‖E∗ .

The proof of lemma A5 is based on a duality argument for covering numbers coming from [6]. A
positive answer to the duality conjecture for covering numbers (see [3] for a statement of the conjecture
and recent results) would imply that the inequality (8) is valid without the factor λ(E)2. This would
improve our estimate in theorem 2 to N > Cd(log d)4/ε2.
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