MG1 - Algèbre commutative

Durée : 2h

Contrôle no 1

Tout résultat doit être justifié même si l'énoncé ne le précise pas explicitement.

Exercice 1. Soient \mathbf{k} un corps et Ω une clôture algébrique de \mathbf{k} . Soit $P \in \mathbf{k}[X]$ un polynôme de degré $m \geq 1$ et soit $\alpha \in \Omega$ une racine de P.

- 1. Montrer que $[\mathbf{k}(\alpha) : \mathbf{k}]$ divise m.
 - Montrer que $[\mathbf{k}(\alpha) : \mathbf{k}] = m$ si et seulement si P est irréductible sur \mathbf{k} .
- 2. Soit \mathbb{L} une extension de \mathbf{k} de degré n.
 - On suppose que P est irréductible sur \mathbf{k} et que m et n sont premiers entre eux. Montrer alors que P est irréductible sur \mathbb{L} .
- 3. Soit α une racine de $P = X^{11} + 4X + 2$. Montrer que $Q = X^{17} + 25X^8 + 10X^2 5$ est irréductible sur $\mathbb{Q}(\alpha)$.
- 4. Montrer que le résultat de la question 2 est faux en général si m et n ne sont pas premiers entre eux.

Indication: on pourra utiliser le polynôme $X^4 - 2$.

Exercice 2. Soit \mathbb{L}/\mathbf{k} une extension de corps. Montrer que les deux assertions suivantes sont équivalentes.

- (i) $[\mathbb{L} : \mathbf{k}]$ est finie.
- (ii) Il existe une partie finie $\{a_1, \ldots, a_n\}$ de \mathbb{L} telle que $\mathbb{L} = \mathbf{k}(a_1, \ldots, a_n)$ et pour tout $i = 1, \ldots, n, a_i$ est algébrique sur \mathbf{k} .

Exercice 3. 1. Déterminer le degré de l'extension $\mathbb{Q}(\sqrt{3})/\mathbb{Q}$ ainsi qu'une base de $\mathbb{Q}(\sqrt{3})$ sur \mathbb{Q} .

- 2. Même question avec $\mathbb{Q}(\sqrt[3]{5})$ sur \mathbb{Q} .
- 3. De même, déterminer le degré et une base de $\mathbb{Q}(\sqrt{3}, \sqrt[3]{5})/\mathbb{Q}(\sqrt[3]{5})$ et de $\mathbb{Q}(\sqrt{3}, \sqrt[3]{5})/\mathbb{Q}$
- 4. L'inclusion $\mathbb{Q}(\sqrt{3} \times \sqrt[3]{5}) \subseteq \mathbb{Q}(\sqrt{3}, \sqrt[3]{5})$ est-elle une égalité?

Exercice 4. Étant donné $P \in \mathbb{C}[X_1, \dots, X_n]$, on note $V(P) = \{(z_1, \dots, z_n) \in \mathbb{C}^n \mid P(z_1, \dots, z_n) = 0\}$ le lieu des zéros de P.

Soient $P, Q \in \mathbb{C}[X_1, \dots, X_n]$. On suppose que $V(P) \subseteq V(Q)$.

Le but de l'exercice est de montrer qu'il existe un entier $N \in \mathbb{N}$ tel que Q^N soit multiple de P.

Remarque : ce résultat est un cas particulier d'un résultat qu'on appelle le théorème des zéros de Hilbert et qu'on verra plus tard dans ce cours.

- 1. Montrer que si la fonction polynomiale $f_P:\mathbb{C}^n\to\mathbb{C}$ associée à P est nulle alors P est null.
- 2. Dans cette question, on suppose que P est irréductible (donc non constant) et sans perte de généralité on suppose que le degré de P en X_n n'est pas nul.

Soit $R \in \mathbb{C}[X_1, \dots, X_{n-1}]$ le résultant de P et Q vus dans $\mathbb{C}[X_1, \dots, X_{n-1}][X_n]$.

- (a) Par l'absurde, on suppose que R est non nul. Montrer alors qu'il existe $(z_1, \ldots, z_{n-1}) \in \mathbb{C}^{n-1}$ tel que $R(z_1, \ldots, z_{n-1}) \neq 0$ et le polynôme $P(z_1, \ldots, z_{n-1}, X_n) \in \mathbb{C}[X_n]$ admette une racine. Conclure que c'est absurde.
- (b) En déduire que P divise Q.
- 3. Dans cette question P n'est pas supposé irréductible.
 - (a) Justifier que si P_i est un facteur irréductible de P alors $V(P_i) \subseteq V(P)$.
 - (b) Utiliser la question 2 pour montrer le résultat annoncé au début de l'exercice.