Fiche de TD 2 : Espace métrique et espace vectoriel normé

Exercice 1. Les applications suivantes, de $\mathbb{R} \times \mathbb{R}$ dans \mathbb{R}^+ , sont-elles des distances sur \mathbb{R} ?

1. $d_1(x,y) = (x-y)^2$

2. $d_2(x,y) = \sqrt{|x-y|}$ 3. $d_3(x,y) = |x-2y|$.

Exercice 2. Pour chacune des normes $\| \|_1, \| \|_2$ et $\| \|_{\infty}$ sur \mathbb{R}^2 , dessiner $\bar{B}(0,1)$.

Exercice 3.

- 1. Donner un exemple d'une intersection d'ouverts qui n'est pas un ouvert.
- 2. Donner un exemple d'une réunion de fermés qui n'est pas un fermé.
- 3. Soit (X, d) un espace métrique.
 - (a) Montrer que, pour tout $(x,y) \in X \times X$ tel que $x \neq y$, il existe r > 0 tel que $B(x,r) \cap$ $B(y,r) = \emptyset$. Qu'en déduire?
 - (b) Soit $(r_n)_{n\in\mathbb{N}}$ une suite bornée dans \mathbb{R}_+ . On pose $r=\inf\{r_n\mid n\in\mathbb{N}\},\ R=\sup\{r_n\mid n\in\mathbb{N}\}$ et on fixe $a \in X$. Expliciter à l'aide de r et R:

$$\bigcup_{n\in\mathbb{N}} B(a,r_n) \qquad \text{et} \qquad \bigcap_{n\in\mathbb{N}} \bar{B}(a,r_n).$$

4. Soient E un espace vectoriel normé et A et B deux parties non vides de E. On pose A + B = $\{a+b; a\in A, b\in B\}$. Montrer que si B est un ouvert de E alors A+B l'est aussi.

Exercice 4. Déterminer l'ensemble des normes sur \mathbb{R} vu comme espace vectoriel réel.

Exercice 5. Soit (X,d) un espace métrique. Rappeler la définition de la topologie donnée par d. Montrer que toute boule ouverte est un ouvert de X et que toute boule fermée est un fermé de X.

Exercice 6. Soit X un ensemble ayant au moins deux éléments. Pour $x, y \in X$, on pose d(x, y) = 1si $x \neq y$ et d(x, x) = 0.

- 1. Montrer que d est une distance sur X.
- 2. Montrer que tout singleton de X est à la fois ouvert et fermé dans X.
- 3. Soit $x_0 \in X$. Comparer les ensembles suivants :
 - (a) la boule ouverte $B(x_0, 1)$,
 - (b) la boule fermée $\bar{B}(x_0, 1)$,
 - (c) l'adhérence $\overline{B(x_0,1)}$ de la boule ouverte $B(x_0,1)$,
 - (d) L'intérieur de la boule fermée $\bar{B}(x_0, 1)$.
- 4. Existe-t-il une norme sur X donnant lieu à la même topologie que d? (Voir l'ex. 7.)

Exercice 7. Soient (E, || ||) un espace vectoriel normé (réel), r > 0 un nombre réel et $a \in E$.

- 1. Montrer que l'intérieur de la boule fermée $\bar{B}(a,r)$ est la boule ouverte B(a,r). Ce résultat est-il vrai dans tous les espaces métriques ?
- 2. Montrer que l'adhérence de la boule ouverte B(a,r) est la boule fermée $\bar{B}(a,r)$. Est-ce vrai dans tout espace métrique ?

Exercice 8. Trouver un exemple d'espace métrique X possédant une partie A tel que les ensembles suivants soient distincts deux à deux : A, $\stackrel{\circ}{A}$, $\stackrel{\circ}{\overline{A}}$, $\stackrel{\circ}{\overline{A}}$, $\stackrel{\circ}{\overline{A}}$, $\stackrel{\circ}{\overline{A}}$.

Exercice 9. Soit X un ensemble muni de deux métriques d_1 et d_2 quasi-isométriques (on dit parfois "métriquement équivalentes"). Montrer que les topologies données par ces métriques sont égales (on dit parfois que d_1 et d_2 sont "topologiquement équivalentes").

Exercice 9'. Soit E un espace vectoriel muni de deux normes N_1 et N_2 . donnant la même topologie. Montrer que N_1 et N_2 sont équivalentes.

Indication : Considérer l'ouvert $B_{N_1}(0,1)$ (pour quelle topologie ?).

Exercice 9". Soit (X, d) un espace métrique.

- 1. Soit $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction croissante telle que pour tous $u, v \in \mathbb{R}^+$, $\varphi(u) = 0 \iff u = 0$, et $\varphi(u+v) \leq \varphi(u) + \varphi(v)$. Pour $x,y \in X$, on pose $\delta(x,y) = \varphi(d(x,y))$. Montrer que δ est une distance sur X.
- 2. On suppose (X,d) non borné (i.e. $\forall A \in \mathbb{R}, \ \exists x,y \in X, \ d(x,y) > A$). On définit δ sur X^2 en posant $\delta(x,y) = \frac{d(x,y)}{1+d(x,y)}$.
 - (a) Montrer que δ est une métrique sur X.
 - (b) Montrer que d et δ donnent la même topologie sur X (i.e. sont topologiquement équivalentes).
 - (c) Montrer que d et δ ne sont pas quasi-isométriques.
 - (d) Montrer que si $X = \mathbb{R}$ et d est la distance usuelle alors δ n'est induite par aucune norme.

Exercice 10. Soit (E, d) un éspace métrique. Soit (u_n) une suite de E qui converge vers l. Montrer que $\{u_n/n \in \mathbb{N}\} \cup \{l\}$ est un fermé de E.

Exercice 11.

- 1. Quelle est la nature des ensembles $\mathbb N$ et $\mathbb Q$ dans $\mathbb R$ muni de sa topologie usuelle ? Décrire leur intérieur, leur adhérence.
- 2. On considère \mathbb{N} et \mathbb{Q} munis de la topologie induite par la topologie usuelle de \mathbb{R} . Pour ces deux espaces :
 - (a) La topologie est-elle séparée ?
 - (b) Un singleton est-il ouvert? Fermé?
- 3. Soit $E = \mathbb{N}$ muni de la topologie suivante : pour toute partie F distincte de E et de \emptyset , F est un fermé si et seulement si F est un ensemble fini de nombres non nuls. Montrer que E est un espace topologique et que l'adhérence de $\{0\}$ est E.

Exercice 12. Soit $E = \mathcal{C}([0,1],\mathbb{R})$ l'espace des fonctions continues sur [0,1] à valeurs réelles muni de la topologie donnée par la norme $\| \|_{\infty}$ ainsi définie : $\|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)|$.

- 1. Montrer que $A := \{ f \in E; f(x) > 0 \ \forall x \in [0,1] \}$ est ouvert.
- 2. Montrer que $B := \{ f \in E; \exists x \in [0,1], f(x) = 0 \}$ est fermé.
- 3. Déterminer la frontière de $C := \{ f \in C([0,1]) | f(0) > 0 \}.$
- 4. Montrer que $A \subset E$ n'est pas ouvert pour la topologie définie par la norme $||f||_1 = \int_0^1 |f(x)| dx$.
- 5. Les normes $\| \|_{\infty}$ et $\| \|_{1}$ sont-elles équivalentes ?

Exercice 13. Soit $E = l^{\infty}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des suites réelles bornées muni de la norme $\| \|_{\infty}$, celle-ci étant définie ainsi : $\|(x_n)\|_{\infty} = \sup\{|x_n|; n \in \mathbb{N}\}.$

- 1. Soit $A \subset E$ l'ensemble des suites qui convergent vers 0. Montrer que A est fermé dans E.
- 2. Soit $B \subset A$ l'ensemble des suites dont le terme est nul à partir d'un certain rang. Montrer que B est dense dans A mais n'est pas dense dans E.

Exercice 14. Dans \mathbb{R} , on pose d(x,y) = 0 si x = y et d(x,y) = |x| + |y| sinon.

- 1. Montrer que d est une distance.
- 2. Déterminer toutes les boules ouvertes et fermées : B(x,r) et $\bar{B}(x,r)$ avec $x \in \mathbb{R}, r > 0$.
- 3. Montrer que toute boule ouverte est un fermé. Comparer ensuite $\bar{B}(x,r)$ avec $\overline{B(x,r)}$.
- 4. Que peut-on dire d'une suite réelle dont la limite est 1, dans \mathbb{R} muni de la distance d?
- 5. La topologie donnée par d peut-elle être issue d'une norme?

Exercice 15. Soit E un espace vectoriel (réel ou complexe) de dimension finie. Le but de l'exercice est de montrer que toutes les normes de E sont équivalentes.

- 1. Ici on montre pour commencer que le résultat est vrai pour $E = \mathbb{R}^n$.
 - (a) Soit N une norme sur \mathbb{R}^n . Montrer qu'il existe un réel C tel que pour tout $x \in \mathbb{R}^n$, $N(x) \leq C ||x||_1$.
 - (b) Montrer que tous $x, y \in \mathbb{R}^n$,

$$|N(x) - N(y)| \le N(x - y) \le C||x||_1.$$

En déduire que N est continue pour la topologie définie par la norme $\| \cdot \|_1$.

- (c) Montrer que $A := \{x \in \mathbb{R}^n; \|x\|_1 = 1\}$ est compact pour la topologie définie par $\|\cdot\|_1$.
- (d) Utiliser (b) et (c) pour montrer l'existence de $C' \in \mathbb{R}$ tel que $\| \|_1 \leq C'N$.
- 2. Conclure.