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CATEGORIFICATION OF INFINITE-DIMENSIONAL sl,-MODULES
AND BRAID GROUP 2-ACTIONS I : TENSOR PRODUCTS

BENJAMIN DUPONT AND GREGOIRE NAISSE

ABSTRACT. This is the first part of a series of two papers aiming to construct a categori-
fication of the braiding on tensor products of Verma modules, and in particular of the
Lawrence—Krammer—Bigelow representations.

In this part, we categorify all tensor products of Verma modules and integrable modules
for quantum sl,. The categorification is given by derived categories of dg versions of
KLRW algebras which generalize both the tensor product algebras of Webster, and the
dg-algebras used by Lacabanne, the second author and Vaz. We compute a basis for
these dgKLRW algebras by using rewriting methods modulo braid-like isotopy, which we
develop in an Appendix.

1. INTRODUCTION

Categorification was motivated since its beginning by low-dimensional topology and
physics. For instance, one of the goals of the program of categorifying quantum groups
was to give a representation theoretic explanation for the existence of link homology the-
ories. Indeed Khovanov [2I] and Khovanov-Rozansky [25] constructed categorifications
of the Reshetikhin-Turaev [39] polynomial link invariants associated to (the fundamental
representations of) quantum sl,. However their constructions rely on the categorification
of certain combinatorial descriptions of the link invariants, and not on the representation
theoretic ones.

The above-mentioned program has been very fruitful since its start with the seminal
work of Bernstein-Frenkel-Khovanov [3] and Frenkel-Khovanov—Stroppel [14] who gave a
categorification of the tensor products of quantum sl, fundamental representations using
category O. Categorification of Lusztig integral versions of the quantum groups was devel-
oped by Khovanov-Lauda [22] 24], 23] and independently Rouquier [40], extending on the
grounding work of Chuang-Rouquier [§] and Lauda [2§]. At the heart of these construc-
tions are the KLR algebras. These are Z-graded algebras which control the higher structure
between compositions of categorical analog of the Chevalley generators. Categorification
of the integrable modules for all quantum Kac—Moody algebras was conjectured in [22]
and proved in [I8] and independently in [47], using certain finite dimensional quotients of
KLR algebras called cyclotomic quotients. More precisely, to each Kac-Moody algebra g
is associated a KLR algebra R, and to each integral dominant g-weight A is associated a
quotient RQ. The category of graded modules over Ré\ categorifies the integrable U,(g)-
module V(A) of highest weight A. Categorifications of all tensor products of integrable

modules were constructed by Webster in [47], using KLR-like diagrammatic algebras that
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we refer to as KLRW algebras, generalizing Rf}\. He also defined a categorical braid group
action on his construction, giving a higher version of the action of the R-matrix, as well as
higher versions of evaluation and coevalution maps. These allowed the construction of ho-
mology link invariants for any g which coincides with Khovanov—Rozansky for quantum sl,,
[31]. Alternatively, these link homologies can also be obtained from higher representation
theory of quantum groups through a categorical instance of skew Howe duality [29)].

While the theory of categorification of integrable modules is already well-studied and
understood, with deep connections to geometry (e.g. [7, [46]), to category O (e.g. [14], 43])
and to low-dimensional topology (e.g. [47, 29]), the categorification of infinite dimensional
(in the sense non-integrable) representations is still quite new and not so well understood.
The second author and Vaz constructed categorifications of universal Verma modules for
sl, in [35] 36], and extended it to any generic parabolic Verma module for any quantum
Kac—Moody algebra in [34]. They also showed in [37] that their construction is related to
Khovanov-Rozansky triply-graded link homology [26]. Moreover, in a collaboration [27]
with Lacabanne, they gave a categorification of the tensor product of a Verma module
with multiple integrable modules for quantum sl,. They also showed that their construc-
tion yields a categorification of the blob algebra of Martin—Saleur [32], which allow the
construction of invariants of tangles in the annulus.

One of the main ingredients in the categorification of Verma modules in the above-
mentioned papers is the notion of a dg-enhancement. The idea is to replace the cyclotomic
quotient of the KLR algebra by a resolution of the quotiented ideal. It turns out that all
cyclotomic quotients can then be encoded by a universal dg-algebra that we refer to as
dgKLR algebra, with the same underlying graded algebra but equipping it with different
differentials d, (there is one for each choice of integral highest weight A). The dg-algebra
with differential d, is then quasi-isomorphic to the cyclotomic quotient Ré‘. Setting the
differential to zero instead yields a categorification of a Verma module.

1.1. Content of the paper. This is the first part of a series of two papers aiming to
construct and study more general tensor products of Verma and integrable modules. In
this first part, we propose a categorification of any such tensor product for quantum sl,
using dgKLRW algebras, generalizing the construction in [47] and in [27]. In a second
part in preparation [13], we construct a categorical braid group action lifting the action
of the R-matrix. By considering the categorical analog of Jackson—Kerler [17], this yields
categorifications of the Burau and of the two parameters Lawrence-Krammer—Bigelow
representations by restricting to certain categorified weight spaces.

1.1.1. The dgKLRW algebras. KLR algebras are usually defined by generators and rela-
tions, and pictured in the form of braid-like diagrams with strands colored by simple roots
and decorated by dots. Since we will consider only the sl, case here, all strands will be
implicitly colored by the unique simple root of sl,, and drawn as a solid black line. For a
string of dominant integral weights = (i1, . .., ), one defines the KLRW algebra T by
considering KLR-like diagrams, but containing r additional red strands labeled from left
to right by w4, ..., 1, and that are not allowed to intersect each other. These red strands
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respect the following local relations with the black strands, depending on their label p;:

| b ié

(1) for p; € N,

2%

4i

where a non-negative label k next to a dot means we put k consecutive dots. In Webster’s
setting [47], one also has to quotient by the wviolating condition stating that we kill any
diagram with a black strand at the left of the leftmost red strand:

=0,

251

which plays role of the cyclotomic quotient condition. Categories of (graded) modules over
T*" categorify the tensor product V(1) ® -+ ® V().

The dgKLRW algebras that we consider here are similar, but also adding blue strands
for the non-integral weights p; (i.e. the Verma tensor factors). These blue strands respect
degenerated braid-type relations:

>§ =0, §<§ =0, <§< = >§:>§ for p; non-integral.
Hi i Hi Hi

Moreover, we need to replace the violating quotient condition by a dg-enhancement, mean-
ing we add a new generator connecting the first black strand with the first colored strand,
with a differential replacing the relations implied by Eq. () for the first colored strand:

M1
+ if uleN,

dy

=)
=

d, =0, if p11 is non-integral,

M1
see Definition [£1] for a precise definition. The derived category of dg-modules over a

dgKLRW algebra categorifies the corresponding tensor product of Verma and integrable
modules. Moreover, it comes with a dg-categorical action of quantum sl, (in the sense of
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[34, §7]) by the usual setup of acting by induction/restriction functor along the map that
adds a vertical black strand at the right of a diagram.

One of the difficulties in proving such statements is that one usually relies on the use
of an explicit basis of the dgKLRW algebra. While finding a candidate basis and proving
that it generates the algebra is not a difficult task, proving the linear independence can
be more challenging. A classical way of doing this is to construct a faithful action on
a polynomial space, and show that the candidate elements act by linearly independent
operators. However, the degenerate nature of the braid-moves in Eq. () that we need to
consider for the categorification of the Verma modules prevent the construction of such
an action (at least in an obvious way). To solve this issue, we apply tools from rewriting
theory up to braid-like isotopy, as developed in Appendix [Al We refer to Sections [[.I.3]
and [3.3] for more explanation about rewriting theory.

1.1.2. Derived standardly stratified structure. An important ingredient in the categorifica-
tion of tensor products in [14] 47] is the notion of standardly stratified categories, which
are generalizations of highest weight categories, already abstracting the structure of a
BGG category 0. Indeed, the KLRW algebras are standardly stratified, and the classes
of standard modules correspond to induced basis elements of the tensor product in the
Grothendieck group. Furthermore, the standardization functor can be interpreted as the
categorification of the inclusion of each factor into the tensor product. This structure is
also mandatory to get uniqueness results as in [30].

In the case of the dgKLRW, one does not obtain a standardly stratified category. How-
ever, the derived category shares many similarities with a standardly stratified structure:
there is a stratification given by certain derived standard modules, and the (relatively)
projective modules can be preordered and obtained from iterated extensions of the stan-
dard modules with lower weight. Furthermore, the classes of derived standard modules
correspond with the induced basis elements in the Grothendieck group, and there is an
explicit derived standardization functor categorifying the inclusion of the tensor factors.

1.1.3. Appendix A: rewriting methods up to braid-like isotopy. Rewriting theory is a com-
binatorial theory of equivalence classes, consisting in transforming an object into another
by a successive sequence of oriented moves. In an algebraic context, it consists in orienting
relations of presentations by generators and relations of algebraic structures. In particu-
lar, several tools following the principles of rewriting were developed in numerous works
in linear algebra, in order to compute normal forms for different types of algebras, with
applications to the decision of the ideal membership problem, and to the construction of
linear bases, such as Poincaré-Birkhoff-Witt bases. For example, Shirshov introduced in
[41] an algorithm to compute a linear basis of a Lie algebra presented by generators and
relations, and deduced a constructive proof of the Poincaré-Birkhoff-Witt theorem, and
Grobner basis theory was introduced to compute with ideals of commutative polynomial
rings [4, [5]. Buchberger described an algorithm to compute Grobner bases from the notion
of S-polynomials, describing obstructions to local confluence in terms of overlappings be-
tween reductions. These approaches were extended in [I5], where a rewriting theoretical
approach was introduced in order to study associative algebras without any assumption
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of compatibility of the rewriting rules with respect to a well-founded total order. This
approach is based on the structure of linear polygraphs. Polygraphs have been introduced
by Burroni [6] and Street [42] as generating systems for higher dimensional globular strict
categories, and have been extended in a linear setting in [I5) [I]. The computation of lin-
ear bases lay on two fundamental rewriting properties: the termination, stating that an
element can not be reduced infinitely many times, and the confluence, stating that if an
element can be reduced in two different ways, there has to exist rewriting paths starting
from the two resulting elements leading to the same final result. Termination of a linear
rewriting system implies that a polynomial can be reduced in finitely many steps into a lin-
ear combination of irreducible monomials, so that these latter span the presented algebra.
Moreover, confluence ensures the linear independence of irreducible monomials.

Many works studying diagrammatic presentations through rewriting techniques consist
in rewriting on string diagrams in monoidal k-linear categories, or k-linear 2-categories.
These latter are presented by 3-dimensional polygraphs, see for example [16], [1]. In this
setting, the braid-like distant isotopy relations correspond to the exchange relations of the
2-categories, and thus are structural relations that we do not need to orient. However, if
we use rewriting in the dimension of the algebras, which is needed in order to deal with
the violating condition that diagrams with a leftmost strand being black are zero, these
relations have to be taken into account as oriented rewriting rules. In order to mimic the
well-known setting of rewriting in linear 2-categories, we will use rewriting modulo braid-
like planar isotopies. Rewriting modulo extends the usual rewriting techniques by allowing
to consider a set E of non-oriented equations together with a set R of oriented rules. It is
used mainly to split confluence proofs into many incremental steps, by first proving that the
set I/ forms a convergent rewriting system, and then study the remaining relations on FE-
equivalence classes. Following [10] the usual basis result given by the irreducible monomials
of a convergent presentation is extended in that setting, by considering E-normal forms of
irreducible monomials with respect to S.

In Appendix [Al, we develop the formalism of rewriting modulo braid-like isotopies for
diagrammatic algebras. Given an algebra A, we introduce the linear 2-polygraph Iso(A)
containing distant isotopy relations as rewriting rules, and prove that it is convergent, i.e.
terminating and confluent. We then describe how to prove that the linear 2-polygraph
containing the remaining relations of A, oriented with respect to a termination order, is
confluent modulo braid-like isotopies.

Acknowledgments. The authors would like to thank Catharina Stroppel for interesting
discussions and suggesting to consider a deformed dgKLRW algebra, which led to the proof
of Theorem in Section Bl The authors would also like to thank Philippe Malbos and
Stéphane Gaussent for helpful discussions. G.N. is grateful to the Max Planck Institute
for Mathematics in Bonn for its hospitality and financial support.
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2. QUANTUM [, AND ITS REPRESENTATIONS

Recall that quantum sl, can be defined as the Q((¢))-algebra U,(sl,) generated by the
elements K, K~!, E and F with relations

KE = ¢?°FK, KK =1=K"K,
K—K!
KF = ¢ *FK, EF -FE= ———.
q-q

It becomes a bialgebra when endowed with comultiplication
AKT) = KHY @K, AF)=FQK+1®F, AE)=EQ1+K '®FE
and with counit e(K*!) := +1, ¢(E) := &(F) := 0.

Remark 2.1. Usually, one would define U,(sl,) over the rational fractions Q(g) (or the
complex numbers C) instead of the Laurent series Q((¢)). However, Q((¢)) has a natural
categorification by considering a certain category of graded vector spaces, while it is not
clear what a categorification of Q(q) or C should be. Therefore we always work with
Laurent series in this paper.

There is a Q((¢))-linear anti-involution 7 of U,(sl,) defined on the generators by

F(E):=q 'K 'F, T(F) := qFK, 7(K) := K.

2.1. Integrable module V(NV). For each N € N, there is a finite dimensional irreducible
U,(sl,)-module V(N) called integrable module. 1t has a basis {vy := vNo, UN1, ..., UN N}
called induced basis, respecting
K vy, = qN72iUN,ia
F-ung = vni,
E oy = [i]g[N — i+ 1]guni-,
where
], = L2
gt
Note that vy; = F'(vy). It is also common the consider the divided power basis (or
canonical basis) given by Uy, := F®(vy) where F@ is the divided power defined as
FO .o L pi
[i]!
where [i],! := [¢],[¢ — 1], - [1], and [0],! := 1.
There is a unique non-degenerate bilinear form (-, )y : V(N) ® V(N) — Q((¢)) such

that (vg,v9)n = 1 and which is 7-Hermitian: for any v,v" € V/(N) and u € U,(sl,) we have
(u-v,v")Ny =<{v,T(u) - v")y. This map is called the Shapovalov form.
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2.2. Verma module M (;1). Let 3 be a formal parameter and write A := ¢” as a formal
variable. Let b be the standard Borel subalgebra of sl, and U,(b) be its quantum version.
It is the U,(sl,)-subalgebra generated by K, K~ ! and E. For =+ z € 3+ Z, let K, be
a 1-dimensional Q((q, A))-vector space with a fixed a basis element v,. We endow K, with
a U,(b)-action by declaring that

K+ vy, = Mg oy, E-v,:=0,

and extending linearly through the obvious map Q((¢)) — Q((¢,A). The Verma module
M () is the induced module

M(p) == Uy(sl) ®u, (o) K-
It is infinite dimensional over Q((q, \)) with induced basis {v,; = F"(v,)}i=0. The action
of the quantum group is explicitly given by
K-v,, = )\q%%vu,i,
Fv,; =v.41,
E v, =[i]f+2z—i4+1]qu-1,

where

G — ket B Mgt — A gt
qg—q7t g—qt 7

for all k, ¢ € Z. One can also define the divided power basis as {v,; := F®(v,)}iz0.

kB + (], =

The Verma module M (1) can also be equipped with a Shapovalov form (-, -),, which is
again the unique non-degenerate Q((¢, A))-bilinear form such that (v,,v,), = 1 and which
is 7-Hermitian: for any v,v" € M(u) and u € U,(sl,), we have (u-v,v"), = (v,7(u) - V'),

2.3. Tensor product. Given two U,(sl,)-modules M and M’, one forms the tensor product
representation M & M’ by using the action induced by the comultiplication, explicitly
KT (m@m) = (K™ - m)® (K™ m'),
F-(m®@m'):=(F -m) (K- -m")+m® (F-m'),
E-(m@m):=(E-m)@m + (K -m)®(E-m),
for all me M and m' € M'.

For pe Nu (8 +Z), we write

) Vi(w), ifpeN,
L) = {M(u), if pe(8+17).

For a string of weights p = (1, ..., ), with p; € N U (8 + Z), we write
L(w) = L) @+ ® L{s).
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2.3.1. Weight spaces. The module L(u) decomposes into weight spaces

L(psse == {v € L(p)| K (v) = Aq'v).

Write |p| := X7, s € Zf + Z. Note that L(p)ggse # 0 only for kS + ¢ = |p| — 2b with
b > 0. We also write w(z) := Aq" for x € L(p)rps-

2.3.2. Basis. Let 9] be the set of (weak) compositions of b into r parts, that is:

ibi :b}.
=1

Py = {p:(bl,...,br)eNT

Consider also
P, = {(by,...,b) € Pplb; < p; for all p; e N} < Py.
The module L(u) admits an obvious basis induced by the ones of L(j;):

{0, = FP (0,)) @ F(v,,) @ - @ F (v,,)|p € E’Pgﬁ}

It also admits another basis that will reveal to be useful for categorification purposes:
{Uﬁ = F" ( o Fb2(Fb1<Uu1) ®Uu2) T ®Uur)|P € 931:&}'

Indeed, in L(p = (1, p12)), we have

(3) T F(y)=Fr®y) —w(y)F(r)®y,

with € L(uy) and y € L(psg), by definition of A(F'). This allows to rewrite any element
0,, in the basis of {v,} by bringing recursively all F’s to the left.

Lemma 2.2. Any basis element v, can be written as a linear combination of elements in
{vplp e Py}

Proof. Consider an element of the form

(4) vt = F' (Upl ® FZ(UM)) ® Vs

P1,P2
where t,0 >0, py e N ppe N2 i +1+7ry =7, and p = ptp,41. If 1 = 0, then it is an
element of {0,}, and if £ = ro = 0, then of {v,}.
Applying Eq. @) on Eq. (), we obtain

Um p2 = F" (v, ® P HU) @ Tpy — ¢ 2ZFt( (V) ® Fﬁil(”u)) ® Up,
(5) _ pttLe-l 2 2£Ut,é 1
 Up1p2 F(p1),p2’

where F'(p;) is given by increasing the last term of p; by 1. Furthermore, if £ — 1 = 0,
then they are of the form v, ® v, for different p} € N1+t and p), € N, Since Uy, =
F* (Vpr 4n) ® vy With py € N2~ we can rewrite the expression as an element of the
form Eq. @) with r decreased by 1. In conclusion, applying Eq. (Bl recursively allows to
decrease both ¢ and 5 to zero, giving the desired expression. 0
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Example 2.3. Consider p = (8, 3), and 0(0.2) = v3 ® F*(vg). We compute

Uy @ F?(v)) = F(vA® F(v))) — Ag 2F(v)) ® F(vy),
F(’U)\ ® F(UA)) = F2(U>\ ®U>\) — )\F(F('U)\) — 'U)\),
F(’U)\) & F(U)\) = F(F(’U)\) & ’U)\) - >\F2(U)\) &® Ux.

For another example, consider u = (3, 3, 8) and v(,1,1) = vA® F(vy) ® F'(vy). We compute

Ux ® F(UA) ® F(’U)\) = F('U)\ @'U)\) ® F(’U)\) — )\F(’U)\) @'U)\ ® F('U)\),
F(ua®vy) @ F(vy) = F(F(vA®@vy) @ vy) — AF* (0, ® v)) @ vy,
F(’U)\) @'U)\ ® F(’U)\) = F(F(UA) ®U>\ ®U>\) — )\F(F('U)\) @'U)\) ®’U)\.

One can also consider the basis induced by the divided power basis
{Bp = FO(0,,) @ FO (0,,) @ - @ F) (v, )| p € Py,

and
{1, := F(brl)(' - FOIFO (0,) ®vy,) - ® v )lpe gs;"ﬁ}.

Lemma 2.4. For p = (by,...,b.) € ng’ﬁ, we have

by
(6) E(v,) = (Z[|E| —2b+ 2i]q> Fbril(vp«- ® vy, ) + FbT(Equ Q vy, ),

i=1
where p<y := (b1, ..., b._1).

Proof. We apply the main sly-commutator relation b, times. ([l

2.3.3. Shapovalov forms for tensor products. Following [47, §4.7], we consider a family of
bilinear forms (-, -),, on tensor products of the form L(u) satisfying the following properties:
(1) each form (-,-), is non-degenerate;
(2) for any u € U,(sl,) we have (u-v,v'), = (v, 7(u) - v'),;
(3) for any f € Q((g, A)), we have (fv,v"), = (v, fv'), = f(v,0');
(4) we have (v,1), = (U @y, @)y Where f = (11, s frsn),

for all v,v" € L(p).

Similarly to [47, Proposition 4.33] we have:

Proposition 2.5. There exists a unique system of such bilinear forms which are given by

T

(Uv U,)g = H(Uiv Ug)#ia

=1

foreveryv =0 ® - @uv., v =V ® - ®u, € L(p).
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3. PRELIMINARIES AND CONVENTIONS

Before defining the dgKLRW algebras, we fix some conventions, and we recall some
common facts about dg-structures (classical references for this are [19] and [44], see also
[34, Appendix A] for a short survey oriented towards categorification), and about rewriting
methods. Since we use the same conventions as in [27], a part of this section is almost
identical to [27], §3.1 and Appendix B].

3.1. Homological algebra. First, let k be a commutative unital ring for the remaining
of the paper.

3.1.1. Dg-algebras. A Z™-graded dg-(k-)algebra (A, d,) is a unital ZxZ"-graded (k-)algebra
A =D, g)ezxzn AZ, where we refer to the Z-grading as homological (or h-degree) and the
Z-grading as g-degree, with a differential d4 : A — A such that:
o da(Al) c Al for all g € Z", h € Z;
(the differential preserves the Z"-grading and decreases the homological grading)

o da(ry) = da(x)y + (=1)*=ada(y);
(the differential respects the graded Leibniz rule)

(the differential yields a complex)
The homology of (A, d4) is H(A,d4) := ker(ds)/im(d ), which is a Z x Z"-graded algebra
decomposing as
ker(dy : A} — A1)
im(dy : AbHL — Al)”

H(Ads) = P H)A ), H} (A, da) :=

(h,g)EZXTLm

A morphism of dg-algebras f : (A,d4) — (A’,d4/) is a morphism of algebras that preserves
the Z x Z"-grading and commutes with the differentials. Such a morphism induces a
morphism f*: H(A,da) — H(A',da). We say that f is a quasi-isomorphism whenever f*
is an isomorphism. Moreover, we say that (A, d4) is formal if there is a quasi-isomorphism
(A,dy) = (H(A,dy4),0). This happens whenever H (A, d,) is concentrated in homological
degree zero.

Remark 3.1. Note that in contrast to [19], our differential decreases the homological
degree instead of increasing it.

Similarly, a Z"-graded left dg-module over (A, d4), or simply (A, d4)-module, is a Z x Z"-
graded A-module M = @D, g)czxzn M;‘ with a differential dy; : M — M such that:

o dy(M}) c M)~ for all g e Z", h € Z;
o dy(z-m)=da(@) y+ (1) Dz - dy(y);
o d3, =0.
Homology, maps between dg-modules and quasi-isomorphisms are defined as above. There

are similar notions of Z"-graded right dg-modules and dg-bimodules, with only subtlety
that dy(m - x) = dp(m) - + (=1)3en™m . d ().
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Remark 3.2. For a dg-algebra (A,d,), we sometimes talk about a graded A-module
M. This means we consider M as a Z x Z"-graded module over A, forgetting about the
differential d 4.

In our convention, a Z™-graded category is a category with a collection of m autoequiva-
lences, strictly commuting with each others. The category (A, d4)-mod of (left) Z™-graded
dg-modules over a dg-algebra (A,d4) is a Z x Z"-graded abelian category, with kernels
and cokernels defined as usual. The action of Z is given by the homological shift functor
[1]: (A,d4)-mod — (A, d4)-mod sending M — M[1] := {m[1]|m € M} and such that:

e deg, (m[1]) := deg,(m) + 1;
(it increases the h-degree of all elements up by 1)
® dM[l] = —d;
(it switches the sign of the differential)
o v (m[1]) := (=1)%& O (r-m)[1],
(it twists the left action)
and sending f: M — N to f[1] : M[1] — N[1],m[1] — f(m)[1]. The action of g € Z" is
given by increasing the Z"-degree of all elements up by g, in the sense that

(gM)go+g = (M)g()’

or in other terms, an element x € M with degree g, becomes of degree g, + g in gM.
There are similar definitions for categories of right dg-modules and dg-bimodules, with the
subtlety that the homological shift functor does not twist the right-action:

(m[1]) - 7= (m-r)[1].
As usual, a short exact sequence of dg-(bi)modules induces a long exact sequence in ho-
mology.

Let f: (M,dy) — (N,dy) be a morphism of dg-(bi)modules. Then, one constructs the
mapping cone of f as

—d 0
(7) Cone(f) := (M[1]® N, dc¢), do = M :
fody
The mapping cone is a dg-(bi)module, and it fits in a short exact sequence:
0 — N % Cone(f) T, M(1] — 0,
where 1y and (] are the canonical inclusion and projection N =% M[1]@N RN [1].

3.1.2. Hom and tensor functors. Given a left dg-module (M, dy;) and a right dg-module
(N, dy), one constructs the tensor product

(N, dn) ®ay (M, dy) := (M ®4 N),duen),
dyen(m@n) == dy(m) @n + (—1)%e Mm@ dy(n).

If (N,dy) (resp. (M,dy)) has the structure of a dg-bimodule, then the tensor product
inherits a left (resp. right) dg-module structure.

(8)
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Given a pair of left dg-modules (M, dy;) and (N, dy), one constructs the dg-hom space
HOM a4,y (M, dar), (N, dw)) = (HOMA(M, N), dzomarm)
daonorny (f) == dy o f — (1) f o dy,,

where HOM 4 is the Z x Z"-graded hom space of maps between Z x Z"-graded A-modules.
Again, if (M,dy) (resp. (N,dy)) has the structure of a dg-bimodule, then it inherits a
left (resp. right) dg-module structure.
In particular, given a dg-bimodule (B, dp) over a pair of dg-algebras (.5, ds)-(R, dgr), we
obtain tensor and hom functors
(B, dB) ®(R,dR) (—) : (R, dR) -mod — (S, ds) —mod,
HOM(s44)((B,dp), —) : (S,ds)-mod — (R, dr)-mod,

which form a adjoint pair ((B,dg) ®r,dx) —) = HOM(g44)((B,dg), —).

(9)

3.1.3. Derived categories. The derived category D(A,d4) of (A,dy4) is the localization of
the category (A, da)-mod of Z"-graded (A, d4)-dg-modules along quasi-isomorphisms. It
is a triangulated category with translation functor induced by the homological shift functor
[1], and distinguished triangles are equivalent to

(M, dy) % (N, dy) “> Cone(f) = (M, dy)[1],
for every maps of dg-modules f : (M,dy) — (N,dy).

3.1.4. Cofibrant replacements. A cofibrant dg-module (P, dp) is a dg-module such that P
is projective as Z x Z"-graded A-module. Equivalently, it is a dg-module (P, dp) such that
for every surjective quasi-isomorphism (L,dy) —» (M, dy;), every morphism (P dp) —
(M, dyr) factors through (L,dr). For any dg-module (N,dy) and cofibrant dg-module
(P,dp), we have

Homg(4.4,) (P, dp), (N,dy)) = H) (HOM a4, ((P,dp), (N, dx))) .

Moreover, tensoring with a cofibrant dg-module preserves quasi-isomorphisms.

Given a left dg-module (M, dyy), there exists a cofibrant dg-module (pM, dpar) together
with a surjective quasi-isomorphism mp; @ (pM,dpy) — (M,dys). Moreover, the as-
signment (M, dy) — (pM,dpp) is natural, and we refer to (pM,dpar) as the cofibrant

replacement of (M, d,s). Thus, we can compute Homg 4 4 M, dy), (N,dy)) by takin
D ) ) p ( s A) ’ ’ ) y g
Hy (HOM (4,4, ((PM, dprr), (N, dy))) = Homgaa,) (M, dar), (N, dy)).

3.1.5. Dg-derived categories. One of the issues with triangulated categories is that the
category of functors between triangulated categories is in general not triangulated. To fix
this, we work with a dg-enhancement of the derived category. In particular, this allows us
to talk about distinguished triangles of dg-functors.

Recall that a dg-category is a category where the hom-spaces are dg-modules over (k, 0),
and compositions are compatible with this structure (see [19, §1.2] for a precise definition).
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The homotopy category H(®) of a dg-category 6 is the category with the same objects
as 6 but with hom-spaces given by the degree zero homology of the dg-hom spaces of 6.
The dg-derived category Day(A,da) of a Z™-graded dg-algebra (A, d,) is the Z"-graded
dg-category with objects being cofibrant dg-modules over (A,d4), and hom-spaces being
subspaces of the graded dg-spaces HOM4,4,) from (), given by maps that preserve the
Z"-grading;:
Homgjdg(A’dA)(M, N) = HOM(A’dA)(M, N)S,

for (M,dy;) and (N, dy) cofibrant dg-modules.

The dg-derived category Dg,(A, d4) is a dg-triangulated category, meaning its homo-
topy category is canonically triangulated (see [44] for a precise definition, or [34, Ap-
pendix A] for a summary oriented toward categorification). It turns out that the ho-
motopy category of D4,(A,dy4) is triangulated equivalent to the usual derived category

DA, dg) = HO (Day(A, ds)).

3.1.6. Dg-functors. A dg-functor between dg-categories is a functor commuting with the
differentials. Given a dg-functor F' : € — €’, it induces a functor on the homotopy
categories [F]| : H°(®€) — H°(®’'). We say that a dg-functor is a quasi-equivalence if it
gives quasi-isomorphisms on the hom-spaces, and induces an equivalence on the homotopy
categories. We want to consider dg-category up to quasi-equivalences. Let Hqe be the ho-
motopy category of dg-categories up to quasi-equivalence , and we write R# omyqe for the
dg-space of quasi-functors between dg-categories (see [44] or [45]). These quasi-functors are
not strictly speaking functors, but they induce honest functors on the homotopy categories.
Whenever 6’ is dg-triangulated, then RH omyq.(6,6’) is dg-triangulated.

Remark 3.3. The space of quasi-functors is equivalent to the space of strictly unital
Ag-functors.

It is in general a hard problem to understand the space of quasi-functors between dg-
categories. However, by the results of Toen [44], if k is a field and (A, d4) and (A’,da/)
are dg-algebras, then it is possible to compute the space of ‘coproduct preserving’ quasi-
functors RH omirs,(Dag(A, da), Dag(A’, dar)). Indeed, in the same way as the category of
coproducts preserving functors between categories of modules is equivalent to the category

of bimodules, there is a triangulated quasi-equivalence

(10) R oS (Dag (A, da), Dag(A', d ) = Dy (A, dr), (A, d)),

Hqe

where Dgy((A',dar), (A,dy4)) is the dg-derived category of dg-bimodules. Composition
of functors is equivalent to derived tensor product, and understanding the triangulated
structure of RI omyp, (Dag(A, da), Dag(A’,da)) becomes as easy as to understand the
structure of D((A,da), (A, da)). In particular, a short exact sequence of dg-bimodules
gives a distinguished triangle of dg-functors.

3.1.7. Derived hom and tensor dg-functors. Let (R,dg) and (S,dg) be dg-algebras. Let
(M, dyr) and (N, dy) be (R, dg)-module and (5, dg)-module respectively. Let (B, dp) be a
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dg-bimodule over (5, ds)-(R,dg). The derived tensor product is
(Ba dB) ®%R,dR) (M> dM) = (Ba dB) ® (pM’ dpM)>
and the derived hom space is
RHOMs,44)((B,dp), (N,dy)) := HOM s 45)((PB, dpp), (N, dn)).
This defines in turns triangulated dg-functors
(Ba dB) ®%R,d3) (_) : %dg(Ra dR) - gjdg(*i dS)?

and

RHOM(s,dS)((B, dB), —) . %dg(S, ds) —> %dg(R, dR),
which are adjoint (B, dp) ®{“R7dR) (=) = RHOMg,4¢)((B, dp), —).

3.2. Diagrammatic algebras. We always read diagram from bottom to top. We say that
a diagram is braid-like when it is given by strands connecting a collection of points on the
bottom to a collection of points on the top, without being able to turn back. Suppose these
diagrams can have singularities (like dots, 4-valent crossings, or other similar decorations).
A braid-like planar isotopy is an isotopy fixing the endpoints and that does not create
any critical point, in particular it means we can exchange distant singularities f and g:

3.3. Rewriting methods. Rewriting theory is a theory of equivalences that consist in
transforming algebraic objects using successive applications of oriented relations. It has
been developed in linear settings to solve the problem of membership to an ideal and to
compute linear bases, with the theory of Grébner bases [4, 5]. In this context, rewriting
rules are oriented with respect to an ambient monomial order on the algebra. In this section,
we recall the linear context of polygraphic rewriting for associative algebras introduced in
[15], where this restriction on rewriting rules is removed. The calculations lay on two
fundamental rewriting properties:

(1) Termination states that an element can not be rewritten infinitely many times, and
therefore reaches a linear combination of irreducible monomials (i.e. monomials
that cannot be rewritten) after finitely many steps. In particular these irreducible
monomials form a spanning set.

(2) Confluence states that if a given element can be reduced in two distinct ways,
there have to exist rewriting paths allowing to reduce both resulting elements into
a common one. In particular the irreducible monomials are linearly independent.

The combination of termination and confluence, called convergence, then ensures that the
set of irreducible monomials form a basis of the original algebra. Moreover, rewriting with
polygraphs allows to obtain strong local confluence criteria. In particular, one proves that
if a linear polygraph is terminating, its confluence is equivalent to the confluence of the
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minimal overlappings between any given two relations, called critical branchings: suppose
there are rewriting rules xy = f and yz = g, then there is an overlapping over y and we
need the check the confluence between zyz = fz and zyz = xg. In contrast, we do not
need to verify the confluence of zyzx nor zzyz because they are not minimal overlappings
in the sense that the rightmost = (resp. leftmost z) is never rewritten by a rule. Under
the assumption of termination, confluence of a branching of the form xyyz does not have
to be verified as well, in the sense that it is not an overlapping but what is called a Peiffer
branching, and is automatically confluent as explained below.

Rewriting modulo extends these constructions by allowing to rewrite with respect to a
set of non-oriented relations, seen as axioms that one can freely use in rewriting paths.
This allows in particular to split the proofs of confluence of rewriting systems into incre-
mental steps. We develop in Appendix [A] rewriting methods modulo braid-like isotopy,
allowing to construct bases for diagrammatic algebras defined up to braid-like isotopy. See
Example [A.5] for an example of this theory applied to the nilHecke algebra.

In [15], associative algebras over a field k are interpreted as monoidal objects in the
category Vecty of k-vector spaces and linear maps, and are presented by linear (1—)-
polygraphs. In the sequel, in view of an extension of the constructions of Appendix [Bl
towards linear 2-categories, we interpret associative algebras as categories enriched over
Vect, with only one 0-cell, and in that context they are presented by linear 2-polygraphs.
As a consequence, there is a shift in dimensions of objects compared to [I5], but the
terminology and constructions remain the same. These objects are triples (P, P, P,) made
of sets containing generating elements for the algebra, and the relations of the algebra. In
this context, P, is always a singleton, P; contains generating 1-cells that correspond to the
generators of the algebra, so that all the 1-cells correspond to monomials, i.e. products of
the generators, and the generating 2-cells correspond to the relations of the algebra. More
precisely, a linear 2-polygraph is a data of P = (P, P;, P) such that:

i) (Py, P1) is an oriented graph with vertices Py and edges Py, equipped with source and
target maps sg, to: P — F.

ii) P, is a cellular extension of the free 1-algebroid Py, that is a set equipped with two
source and target maps si,t; : P, — Pf such that the globular relations sys;(a) =
sot1(a) and tps;(a) = tot1(a) hold for any o € P, where the free 1-algebroid Pf
on (P, Py) is defined as the 1-category enriched over Vect, whose objects are the
elements of P, and for any p,q in Py, P{(p,q) is the free k-vector space with basis
the elements of the free 1-category generated by (P, P;) with source p and target g.

For a linear 2-polygraph P = (Fy, Pi, P,), the elements of P; are called the generating -
cells of P. When P, is a singleton, then Pf corresponds to the free associative k-algebra on
the set P;, and thus a linear 2-polygraph with only one 0-cell corresponds to a presentation
by generators and oriented relations of an associative algebra, where the rewriting rules
are given in P,. More precisely, denote by I(P) the 2-sided ideal of Pf generated by the
set of elements {s;(a) — ti1(a) | @ € Py}.

A linear 2-polygraph P presents an algebra A if A is isomorphic to P{/I(P). The
rewriting sequences will then correspond to 2-cells in the free 2-algebra Py on P, we refer
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to [15] for more details on these constructions. From now on, we will consider linear
2-polygraphs with only one 0-cell. A monomial in Py is a 1-cell of the free 1-category
P, every 1-cell f in P{ can be uniquely decomposed as a linear combination of monomials
f=Mfi+ -+ fp with A\; € k\{0} for all 0 < ¢ < p. The set of monomials {f1,..., f,} is
called the support of f, denoted by Supp(f). A linear 2-polygraph P is called left-monomial
if, for any a in Py, the 1-cell s;(a) is a monomial in PY.

A rewriting step is a 2-cell in P{ with shape

t1(a)

where a € Py, A € k, and g is a 1-cell in P{ such that the monomial us;(a)v does not
belong to Supp(g), see [15]. A rewriting sequence is either and identity reduction f = f,
or a l-composite

foi;flﬁ---fk—lgfk,

of rewriting steps of P. The linear 2-polygraph P is said to be terminating if there is
no infinite rewriting sequence in P. A normal form of P is a 1-cell in P{ that cannot
be reduced by any rewriting step. When P is terminating, any 1-cell admits at least one
normal form. A branching of P is a pair («, ) of rewriting sequences of P with a common
source si(a) = s1(5). It is local if both « and  are rewriting steps of P. A branching
(cr, B) of P is confluent if there exist rewriting sequences o’ and ' in P as in the following
diagram:

S04
f f
o

We say that P is confluent (resp. locally confluent) if any branching (resp. local branching)
of P is confluent. When P is confluent, every 1-cell in P{ admits at most one normal form.
When both termination and confluence properties are satisfied, we say that P is convergent,
and in that case any 1-cell f in P{ admits a unique normal form, denoted by f. Newman
lemma [38] states that if P is terminating and locally confluent, then it is confluent.

We are particularly interested in convergent presentations of algebras. Indeed, [I5]
Theorem 3.4.2] states that if an algebra A is presented by a convergent linear 2-polygraph
P, then the set of monomials in normal form for P form a basis of the algebra A. Moreover,
there exist some local criteria to reach confluence of a linear 2-polygraph.

Following [15], local branchings of a linear 2-polygraph P can be classified into 4 families:
aspherical branchings that are branchings between a rewriting step f and itself, Peiffer
branchings that are branchings consisting in applying two rules on a monomial at different
positions with no overlapping, additive branchings that are branchigs consisting in applying
two rules on two different monomials of a polynomial, and overlapping branchings that are
the remaining ones. Aspherical branchings are trivially confluent, and if P is terminating,



CATEGORIFICATION OF INFINITE-DIMENSIONAL slo-MODULES I 17

Peiffer and additive branchings are confluent, [I5, Theorem 4.2.1]. A critical branching of
P is an overlapping branching («, 3) that is minimal for the relation on branchings defined
by (o, B) € (faf’, fAf") for any monomials f, f' in P. Following [15, Theorem 4.2.1], if
P is terminating it is locally confluent if and only if all its critical branchings are confluent.
Thus, if P is a terminating linear 2-polyraph, proving its confluence amounts to checking
the confluence of all its critical branchings.

In [I2], a polygraphic context of rewriting modulo was introduced. Given two linear 2-
polygraphs (P, P, E) and (P, P, R), one defines the cellular extension pRp of P{ as the
set of 2-cells that can be written as a composition ex; f*; e/, where e and ¢’ are 2-cells in E*
and f is a rewriting step of R. Namely, there is a rewriting step from f to g in gRp if and
only if there exists f’ and ¢’ in P{ such that f is E-equivalent to f’, g is E-equivalent to g’
and there is a rewriting step for P with source f’ and target ¢’. Explicitely, this consists in
rewriting with respect to R on equivalence classes modulo E. The data (Fy, P, gRg) thus
defines a linear 2-polygraph, that we denote by g Rg. A linear 2-polygraph modulo is a data
made of a triple (R, E/, S) where R and E are linear 2-polygraphs with the same underlying
1-polygraph, denoted by P, and S is a cellular extension of P! such that R € S € pRpg.
A branching modulo of (R, E,S) is a triple (a, e, #) where f and g are rewriting paths of
S and e is a 2-cell of EY such that s;(a) = si(e) and s,(3) = t1(e). Such a branching is
said to be confluent modulo E if there exist rewriting paths o/, 4" in S% and a 2-cell ¢’ in
Ef as in the following diagram:

f Oé>f/ Oé>f//
NP, NP/
9—=29 ——> 9"

The linear 2-polygraph modulo (R, E,S) is said to be confluent modulo E if any of its
branching modulo is confluent modulo E. We refer the reader to [12] [10] for rewriting
properties of polygraphs and linear polygraphs modulo. The local confluence criteria in
terms of critical branchings for terminating linear rewriting systems has been extended in
[10] in the context of linear rewriting modulo. When g R, is terminating, in order to prove
that the linear 2-polygraph gRpg is confluent modulo, it suffices to prove that the critical
branchings modulo («, ) where « is a rewriting step of R and [ is a rewriting step of
pRE are confluent. Namely, these critical branchings modulo are given by application of
a rewriting step « of R and a rewriting step v of R on two 1-cells that are E-equivalent,
with («, e,7y) being minimal for the order (o, e, 8) < (hah', heh', hyh').

Moreover, following [10], when the linear 2-polygraph E is convergent, the basis theo-
rem of [I5] extends to that context of rewriting modulo. Explicitely, given an algebra A
presented by a linear 2-polygraph P that we split into two parts E (non-oriented) and R
(oriented), if E is convergent, pRp is terminating and gpRp is confluent modulo E, then

the set of E-normal forms of monomials in normal form with respect to g Rg yields a basis
of A.
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4. DG-ENHANCED KLRW ALGEBRAS

Inspired by the KLRW algebra in [47, §4] (called “tensor product algebra” in the ref-
erence), which we think of as associated to a string of dominant integral g-weights, and
generalizing the dg-enhanced KLRW algebra in [27], which we think of as associated to
a generic weight  and a string of dominant integral g-weights, we introduce a dgKLRW
(dg-)algebra associated to a string of weights that can each either be generic or integral.

Definition 4.1. For p = (p1,...,p,) € (Nu (8 + Z))", the dgKLRW-algebra T, is the
diagrammatic k-algebra defined as follows:

o Tf is generated by braid-like diagrams on b black strands and r colored strands.
The colored strand are labeled from left to right by puq, ..., u,., and we refer to the
colored strands labeled by elements in N as red strands, while the ones labeled by
elements in § + Z are called blue strands. We also require that the left-most strand
is always colored (and thus labeled 1, ).

e The colored strands cannot intersect each other, but the black strands can intersect
all other strands (both black and colored) transversely. Moreover, black strands can
carry dots, and can be ‘nailed’ on the left-most colored strand:

<X K

i H1
black crossing colored crossings dot nail

(11)

e The product zy of two diagrams x and y is given by stacking = on top of y if the
color of the strands match, and is zero otherwise.
e We consider these diagrams up to braid-like planar isotopy, and subject to the
following local relations:
— the nilHecke relations:

a R L TR



(14)

(15)

(17)

(18)

(19)
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— the sliding relations for all p; e N u (8 + Z):

ROR R

— the red relations for all y; € N and ¢ > 1:

;52 _ " |
Mg Mg

Hi Hi

125

where a non-negative label k next to a dot means we put k consecutive dots,
— the blue relations for all u; € 5+ Z and i > 1:

R <§1 tRR

— the nalil relations:

e We endow Tf with a Z x Z? grading, where the first grading is homological and
denoted h, and the second and third one are extra grading denoted ¢ and \ respec-
tively. For this, we declare that the generators are in degree given by the monomial
written below them in Eq. (I, where the monomial h%¢"+® := h?¢®\® means the
element is in homological degree a, ¢-degree b and A-degree c.
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e We turn T} into a Z*-graded dg-algebra (T},d,) by defining a differential d,, as
being zero on the dots and crossings, and

0, if € B+ 72,
dy K =

M1

+/'L1 ifuleN,
251

and extending using the graded Leibniz rule (it is straightforward to verify that d,
is well-defined).

Note that for yu; = 3 and all y; € N for 4 > 1, then the dg-algebra (T}, d,) coincides
with the dg-enhanced KLRW dg-algebra of |27, §3.2]. When p; € N, then it coincides with

the dg-enhanced KLRW dg-algebra of |27, §3.4] equipped with the non-trivial differential.
Thus we get the following:

Proposition 4.2 ([27, Theorem 3.13]). For a string of integral dominant weights p € N,
there is a quasi-isomorphism

(Th, ) = (T3, 0),

where (Tbﬁ, 0) is the KLRW algebra (tensor product algebra) of [AT, §4] viewed as a Z*-graded
dg-algebra concentrated in homological and A-degrees zero.

For the sake of keeping notations short, we introduce the following;:

In particular, it allows us to write in general

H1
dy K - H +
1

1
and rewrite the relations (I0)-(I8) as

= 223 = &l

223 223 125 125

-l

223

where the sum is zero whenever p; € 8 + 7Z since there are no pair of non-negative integer
u and v such that u + v =0+ 2z — 1.
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4.1. Basis. For any p = (by,...,b,) € P}, define the idempotent

Hor b,
of T%. We will construct a Z x Z?-graded k-basis ,B, for 1HT§1P, similarly as in [34]
Section 3.2.3].

4.1.1. Left-adjusted expressions. Let S,, be the symmetric group viewed as a Coxeter group
generated by the simple transpositions oy,...,0,_1. Recall the notion of left-adjusted
expressions of [36, Section 2.2.1]: a reduced expression oy, - - -0y, of an element w € S, is
said to be left-adjusted if ¢y + - - - + 7 is minimal. One can obtain a left-adjusted expression
of any element of S, by taking recursively its representative in the left coset decomposition

n
Sn = |_| Sn—lan—l v Ot

t=1

If we think of permutations as string diagrams, a left-adjusted reduced expression is
obtained by pulling every string as far as possible to the left.

4.1.2. A basis of T%. For an element p € &, and 1 < k < b, we define the tightened nail
Orp €l pTgl ,» as the following element:

k+1

A

Hk,p =

H1 M2 g Hi+1 M

where the nail is on the k-th black strand from the left. This element is of degree deg(6y, ,) =
G2kt i) —4(k=1).

Lemma 4.3. Tightened nails anticommute with each other:
O, 000 = =000k, ﬁi’p =0,
forall 1 <k, <b.
Proof. It follows from Lemma [B.2l and Lemma [B.1] O

Fix k, p € P and consider the subset of permutations w € .S, of S, 4, viewed as strand
diagrams with b black strands and r colored strands, such that:

e there are no black strand on the left,
e the strands are ordered at the bottom by 1, and at the top by 1,,
e for any reduced expression of w, there is no crossing between colored strands.
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Example 4.4. If K = p = (0,1, 1), the set .S, has two elements, namely

ARREER Y e

Note that the second element is not left-adjusted.

For each w € ,S,, I = (I1,...,1;) € {0, 1}* and a = (a4, .. .,a;) € N® we define an element
buta € 1, Ty 1, as follows:
(1) choose a left-adjusted reduced expression of w in terms of diagrams as above,
(2) for each 1 < i < b, if [; = 1, nail the i-th black strand (counting at the top, from
the left) on the left-most colored strand by pulling it from its leftmost position,
(3) for each 1 <i < b, add a; dots on the i-th black strand at the top.
Let B, be the set of all b, ;, for we .S,, [ € {0, 1} and a € Nb, where we also assume
that the tightened floating dots are ordered such that whenever we have 0y, ,0, ,, then ¢ > k.

Example 4.5. We continue the example of kK = p = (0,1,1). If we choose for w the
permutation with a black/black crossing, [ = (1,0) and a = (0,1) we have

RS

Note that we added the nail at the top and not the bottom because that is where the black
strand is at its left-most position.

bu,

I~

Theorem 4.6. As a Z x Z2-graded k-module, 1,§T§1p is free with basis given by B,

Proof. The statement is given by Corollary [5.12] in the next section. O

4.1.3. Left decomposition. In the following, we draw Tbﬁlp with p = (bg,...,b,) as a box
diagram

TE

——

g1 1 s B2 ps g b

Let p; := (b1, ..., bi—1,b; — 1,b;11,...,b,). When we draw a box in a diagram as follows:
T, ,
251 bl w2 i i1 er

with p > 0 and 0 < t < b;, it means we consider the subset of Tfl » isomorphic to a grading
shift of T5 ;1 p; given by replacing the box labeled T, , with any diagram of T} , in the
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diagram above, and consider it as a diagram of Tfl ,- We also write

[ A

for all p > 0, and

ek,p(p) =

Hi+1  Hr

Note that 6y ,(0) = 6y ,.

Proposition 4.7. As a Z x Z*-graded k-module, Tﬁl decomposes as a direct sum

T T - T T

f1 b 12 b 13 1/,, P M2 -1
o
, Ty
o °Q D ‘ | | ‘ | W
i=1 0<t<b I
= 25 pe i ¥ Hi+1  Hr
o
, T, 1
WL\ |
oD D »r
=1 0<t<bi \ \
: SRR}
POy e o Mit1 [
where ' = (pi1, ..., ply—1), and the isomorphism is given by inclusion.

Proof. By Theorem [A.6] we get a similar decomposition as in Eq. (20), but where we put
the p dots on the upper-right part of the black strand. Since we can slides dots up to
adding terms with a lower number of crossings using Eq. (I3) and Eq. (I3), it means we
get the decomposition of the statement by a diagonal change of basis. O

——

2 Mo br

Let 15, € Tfﬂ be the idempotent given by

fo ‘ | | ‘
pegﬂ . A
H1 b H
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We define

Gi(i,t,p) v= ?O PR U2 (T, d),
Gali t,p) = gm0 E =) (TR —d,),

where M is defined as M but with twisted left-action: - i = (—1)degn(@) (ﬁ) Note
that G4 (i, t,p) is isomorphic as Z x Z?-graded Tf—module to the subset of Tfﬂl ,» given by
the diagrams pictured at the second line of Eq. (20)), and G(i,¢,p)[1] to the ones at the
third line.

Remark 4.8. We need to introduce some twist in the definition of Gy(i,t,p) to get the
correct signs because in our convention the homological shift twists the left-action, while
the inclusion Gy (i, t,p) < T, 1, is given by adding diagrams below (i.e. multiplication on
the right).

Moreover, d,,(6;,(p)) is either O (if u; € 5+ Z) or can be rewritten as a combination
of diagrams with dots and crossings only involving the first ¢ colored strands and k black
strands. Therefore, we obtain an isomorphism of left (Tf_l, d,,)-modules:

(21) (11,1TbJrl p,d,) = Cone 6—) @ G (i, t,p) L” @ 6—) Gi(i,t,p) |,

i=1 0<t<b; i=1 0<t<b;
p=0 p=0

for some morphism L, of left (T%, d,)-modules determined by d,, and using Proposition E.7l
More precisely, for z € Ga(i,t,p) we set L, (z) := (—1)%€ @z d, (04, 4.5, ,+0,(p)). The
sign is due to the fact we have twisted the left action in the definition of Gs(i,t, p).

Example 4.9. Consider r = 2, u = (1, p12),b = 2, p = (2,0). Proposition 4.7 gives:

T5 T T T T TT
T = TITI @D K D T @@pk\\ D »
M1 2 M1 M2 ,Ul M2 ,Ul M2 M1 M2 251 2
where ' = (p1). Then we have
TT TT
Gi(1,0,p) = X Gi(1,Lp) = TTaX
M1 p2 K1 H2
TT TT
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In order to compute L,, we compute

dy pw = with p’ := p + 1,
o[RS % SR E

1 2 u+v 1 o u+v a+b1 1 42
=v

In particular, note that G2(1,0,p) has its image only in G1(1,0,p"), while Go(1, 1, p) has
its image in both G1(1,0,p") and G1(1,1,p") for p” <p’ — 1.

5. BASIS THEOREM

The goal of this section is to prove Theorem Usually with KLR-like algebra, one
proves such a statement by constructing a faithful action on a polynomial space. However,
the degenerate nature of the relations in Eq. (I8]) make the construction of such an action
a non-obvious problem. To get around this issue, we define a new parametrized algebra
T%((S) where the degenerate relations are replaced by non-degenerate ones, and which gives
back Tf when specializing the parameter ¢ to zero. We show that Tbﬁ(é) comes with a
faithful polynomial action, and use it to prove Theorem through rewriting methods.

Definition 5.1. Let T, (6) be the Z x Z2-graded diagrammatic k[§]-algebra defined exactly
as Tf in Definition 1] except that the relations in Eq. (I8) are replaced by

Note that if we specialize § = 0, then we obtain Tbﬁ(O) ~ Ty
Our goal is to equip Tf with a rewriting system up to braid-like isotopy in the sense of
Appendix [Al, and then specialize it to the case § = 0 in order to prove Theorem [Z.6l

5.1. Rewriting rules. Let I';(d) be the set of diagrams of the same form as in the defi-
nition of T, (8), up to braid-like planar isotopy (see Section B2).

We define a weight function w : I’ 5(5) — 73 that takes a diagram to the element of Z?
given by starting at (0,0,0) and applying the following procedure:

e for each black or colored crossing, count the number 7 of strands at its left and add
(4,0,0);
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e for each dot, follow the strand above and sum k the amount of crossings and nails
involving the strand, then add (0, &, 0);

e for each nail, count the number ¢ of crossings in the region at the bottom left
delimited by following the nailed strand from the nail to the bottom, then add
(0,0,0).

Clearly, this weight function is well-defined as it is stable under braid-like planar isotopy.
Therefore this gives a preorder < on I'} () by saying D < D’ whenever w(D) < w(D’) for
the lexicographic order on Z3.

Example 5.2. Consider the following diagram:

M1 p2
We obtain that its weight is (7,3, 1).

Following Appendix [A] we will rewrite in the algebras T4 (6) modulo braid-like isotopies.
Let Tbﬁ(é) be the linear 2-polygraph having one O-cell, with generating 1-cells given by

‘ ...x... ‘ N ’ N ‘ N + N ‘
H1 H2 Moy H1 H2 Moy
X N N ’ N N x
M1 g M1 Mg
1 2 Hor

and containing the following rewriting rules as generating 2-cells:

C e
et

=
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i
2s) §> R < y
i i i p
2 ;)j -6 ié ~
i I i

where we recall the sum is 0 by convention whenever p; € 8 + Z,

TERER
{11
i1 G 11

and finally the collections of local rewriting rules

lf/JZ EN,

lf,U/Z€5+Z,

2%

(32)

(33)
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(34)

for all £ > 0 and where a dashed strand mean it can either be black or colored. Note that
going from left to right strictly decreases the weight. Also note that all these relations
holds in Ty (), and together they present T4 (6).

In the sequel, we rewrite with the rewriting rules above modulo braid-like planar iso-
topies. As a consequence, we consider rewriting with respect to the linear 2-polygraph
modulo i,y 6))'1[‘5(5)150(115( 5)) consisting in applying the rewriting rules of T} (5) on dia-
grams of Fg(é) that are defined up to braid-like planar isotopies. In order to shorten the

. . a7} . 1%
notations, we will denote by T, () the linear 2-polygraph modulo Tso(TE( 6))T3<5)150(T§( 5)-

Remark 5.3. Note that we added the rewriting rules Eq. (32), Eq. (33) and Eq. (34]),
which do not come from orienting defining relations of the algebra, in order to reach
confluence modulo of the linear 2-polygraph modulo 'ﬁ"f(é) Indeed, there are indexed
critical branchings of the form

that is not confluent if we don’t add the relation Eq. (32]). Other shapes of indexed critical
branchings also impose to add the relations Eq. (33) and Eq. (84). Moreover, without
these relations we sould still have a terminating rewriting system, but some normal forms
would not be basis elements.

The rewriting rules above terminate on diagrams up to braid-like isotopy, i.e. we have
the following proposition:

Proposition 5.4. The linear 2-polygraph modulo 'ﬁf(é) 15 terminating.
Proof. Note that for any D e I',(§), then w(D) = (0,0, 0). Moreover, we have the following;
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e the 2-cells above strictly decrease the weight, that is w(se(«)) > w(h) for any h in

Supp(t2(a))
e the weight function is stable under multiplication, that is for any monomials D,D’,

D1,D, of T, w(D) > w(D') implies that w(DyDD,) > w(DyD’'D,) since we add
to the triples w(D) and w(D’) the same elements in each entry.
Therefore, the preorder < defines a termination order for the linear 2-polygraph R. As
it is stable under the application of braid-like isotopy 2-cells, it extends to a termination
order for the linear 2-polygraph modulo gpRg. U

5.2. Polynomial action. Our goal is to construct a faithful action of T4(d) on a poly-
nomial ring. The construction is similar to [27, §3.3.1]. Let R := k[d], and let Pol, :=
@pe@; Pol, €, be the free module over the ring Pol, := R[z1,...,25] ® A* (w1, ..., ws) gen-
erated by ¢, for each p € &;.

There is an R-linear action of the symmetric group S, on Pol,, similar to the one already
used in [36], §2.2]. For each simple transposition o; we put

Ui(zj) = Toy(j)s
oi(wy) 1= wj + 0 (T — Tiy1)wiga,

where 9, ; :=11if 7 = j and 9, ; :== 0 if ¢ # j.
For #,p € Pf, we let any element of 1,T}(0)1, act as zero on Polye, for o # p and
sends elements in Pol, e, to elements in Pol,e,. We now describe the action of the local

generators of T4 (8) on a polynomial fe, € Polye,. First, similarly as in [47, Lemma 4.12],

we put
. + .fgp::xifgn7 >< -f&pr: 2%‘;@857

>\< - fe, = fex, >/< -fspzzvafz—:m
N N

where we only have drawn the i-th or the i-th and (¢ + 1)-th black strands, counting from
left to right. We also put

>\< - fe, = fen, >/< - fe, = 0 fe,,

B+ N B+ N

K oo fep = wrfe.

M1

Finally, as in [36, §2.2] we put

Proposition 5.5. The rules above define an action of T} (8) on Pol,.
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Proof. One easily checks that the defining relations of T%((S) are satisfied, similarly as in
[34, Proposition 3.7]. We leave the details to the reader. O

Note that the elements in B, can all be seen as elements in 1HT§(5)1 p-
Theorem 5.6. As a Z x Z*-graded k-module, 1RT§(5)1,} is free with basis given by B, .

Proof. First, we observe that the elements in B, are the normal forms for the rewriting
rules of Section .1l Thus, Proposition [5.4] shows that .. B, generates 1, TH(6)1 »- We obtain
linear independence by observing that elements in ., B, act by linearly independent elements
on Pol; as in [27, Theorem 3.11]. O

Corollary 5.7. The action of Tbﬁ(é) on Polf described above is faithful.
Remark 5.8. Note that the action of T} (0) on Pol; after specializing § = 0 is no longer

faithful since >/<

B+ N

acts as zero.

5.3. Basis for § = 0. The rewriting rules on T',(5) defined above are confluent modulo
braid-like isotopies:

Proposition 5.9. The linear 2-polygraph modulo Te(8) is confluent modulo Iso(T%(5)).

Proof. By Theorem[5.6] we know that the normal forms are linearly independent. Therefore
the rewriting rules are confluent. ([

Remark 5.10. One can also verify by hand that all the regular critical branchings modulo
of Ty (8) are confluent modulo braid-like isotopies. However, indexed critical branchings
given by overlappings of the rewriting rules ([B2), (B3] and (34) produce infinitely many
cases to check, which can be unwieldy in practice. We show that they are confluent in the
case of tensor products of Verma modules (i.e. p; € 5+ Z for alli) but the general case is
more complicated. Since we find this to be an interesting problem in terms of confluence,
we describe this in details in Appendix [Bl

Corollary 5.11. After specializing 6 = 0, the linear 2-polygraph modulo ﬁ“f(o) s confluent
modulo braid-like isotopies.

Proof. If an equation holds for generic ¢, then it holds for § = 0. O
Corollary 5.12. As a Z x Z2-graded k-module, 1HT§1P is free with basis given by B, .

6. CATEGORIFICATION OF L(f)

In this section, we explain how derived categories of (T%, d,,)-modules categorify L(u).

Since the categorical action is similar to [36] and [34], we will rely heavily on the references
for the details.
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Recall we write Dg,(T},d,) for the (dg-enhanced) derived dg-category of Z2-graded
(Tg, d,)-dg-modules, see Section B.I.5l We will also write ® for ® and ®, for ®(Tbg’ d)
Similarly RHOM, denotes RHOM(T% )

6.1. Categorical action. There is a (non-unital) map (T}, d,) — (T},,,d,) given by
adding a vertical black strand on the right:
ny---1u---pgf---101---1 ni---1u---nf---1uil---1

(35) | D | — | D
mr---rm---umr--rmwr---1 mr--—-ruw---ur---rmwr---1

It sends 1 € Tg to 1p1 € Tbﬁﬂ. Moreover, it gives rise to derived induction and restriction
dg-functors

Indgﬂ : %dg(Tgv dy) — %dg(Tbﬁﬂa d),
Ind)*' (=) = (T4, b1, d,) @ —,
ReSIgH : %dg(Tnglv du) - %dg(Tbﬁa du)a
Resp™ (—) = RHOM.; (T4, 1p1, dy), —),

which are adjoint. By Proposition [.7, we know that (TfﬂlpJ, d,) is a cofibrant right dg-

module over (T}, d,), so that we can replace derived tensor product (resp. derived hom)
by usual tensor products:

Indy ™ (=) = (T}, 11 dy) @ —, Resy™ (=) 2 (151 T}, 1. dy) @1 —.
Then we define
Fy := Indy™", E, := ¢ Resp ™,

and Id, is the identity dg-functor on D, (T}, d,,).
Consider the map

Vg (T 1 @b 1p1.Th) — 1b,1T§+11b,1,
given by
T Qp-1Y — TTHY,

where 7, is a crossing between the b-th and (b + 1)-th black strands. Diagrammatically,
one can picture it as

|

L

where the bent black strands depict the induction/restriction functors. Consider also the
map
¢ 11Ty, Loy — @ g™ (Tp) @ ¢ H2H- (T[],

p=0
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given by projection onto the following summands

m 0
Tb Tb
=0
pr bropo g br pr brops g br

of Proposition .7 (i.e. when i = and t = b,.).
Lemma 6.1. There is a short exact sequence
0— q72(T§1671,1 b1 1b71,1Tbﬁ> v, 1 1T§+11b 1
> @ ¢ (Ty) @ ¢ (T [1] - 0,

p=0
of Z x Z2-graded T, -T, -bimodules.
Proof. The map 1 is clearly a morphism of graded bimodules, while the map ¢ is clearly
a morphism of graded left modules. By similar computations as in [34, Lemma 5.4], one

can show that ¢ defines a map of bimodules, and we omit the details. Exactness follows
from an immediate dimensional argument using Proposition [4.7] 0

We observe that v lift immediately to a map of dg-bimodules
b : ¢ (T 111, dy) @51 (1p-11T5, d,,) LN (1b,1T§+11b,1>du>-

2p+2|p|— 4b 2p
he: D - @D

p=0 p=0

Define

as the morphism of left (T, d,,)-modules

hu(x) = ¢ o L, 097 (z),
where we recall L, is defined in Eq. (2I)).
Lemma 6.2. The map h, defined above is a morphism of graded dg-bimodules.

Proof. There is a similar decomposition as in Proposition 4.7 of 1b71Tbﬁ+11b,1, but flipped
vertically, yleldlng a decomposmon as right T ® module. We denote the decomposition
summand as G1(i,t,p) and Ga(i,t,p). Then, we get an isomorphism of right (Tbﬁ, d,)-
modules

(1b,1T§+11b,17du) ~ Cone @ @ Gg Z t p @ @ G1 ’L t p s

i=1 0<t<b; i=1 0<t<b;
p=0 p=0

for a certain map of right modules R, defined similarly as L,. Since ¢ is a map of

bimodules, it appears that the projections on G(r,b,,p) and on Gy(r,b,,p) coincides
for all £ € {1,2} and p > 0. Finally, we observe that L,(G2(7,br,0))|@mecirbme =
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R,(Gy(r, by, P)|@p=oGi (rpr0) under the above mentioned identification, because all defining

relations of Tg are symmetric with respect to a vertical flip, and so is d,,(6,;,). Therefore we
have h, = ¢poR,0¢~" as well, and we conclude that h,, is a morphism of right modules. [

Consequently, we get an induced morphism

A _ hy
¢ (1b,1T§+11b,1> d,) 2, Cone (@ i I o @Q%(Tg)) ;

p=0 p=0

of dg-bimodules.
Example 6.3. Take p = (N, 3). We compute

oy oon [ TR o[ 3 13K -0
N o]

k+£—
p+N—-1

For = (N, 1), we compute

hu c q2p+2\ﬁ\f4b(Tbﬁ>
N 1
S
L T2 T
k+€— s+t=
pHN-1 5 1 -1 N 1

c q2(p+N717£) (Tbﬁ)

=Sy
£=0 N

Proposition 6.4. If [u| ¢ N, then h, = 0 and we obtain an isomorphism

Cone (@ = i h“ @(fp ) > @quw‘ﬁ‘%b(Tbﬁ)[l] @ q2p(Tbﬁ).
p=0 p=0

1

p=0

of dg-bimodules. If |u| € N, then we have a quasi-isomorphism

|p|—2b—1 2 .
Cone @q2p+2lu\ —4( @qZp =, @% 0| - 1 ¢’'Ty, if | —2b
p=0 p=0 @p OM 2pT [1]’ Zf |H| — 92

AN\
o o

of dg-bimodules.

Proof. If |pu| € N, then it is [27, Proposition 4.3]. Suppose |x| ¢ N. Since h,(1,) is symmetric
w.r.t. vertical flip of diagrams, and commutes with dots, we can conclude it is given by
a linear combination of diagram without black crossing, and thus also without colored
crossing. Therefore h,(1,) is a polynomial of dots on 1,. By Proposition E.7] adding
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crossings at the top or bottom of the subset of polynomials of dots in Tfﬂ is an injective
operation. Let py := (0,...,0,b), and w = oy, --

k

-0y, € ™" be a reduced expression such
that w(p) = po:

1poTwl, =

H1 H2 Hr—1 Hr

Then we have 7,h,(1,) = h,(1,,)7w. We obviously have h,(1,,) = 0 by Eq. ([I8), thus
h,(1,) = 0, and we conclude that h, = 0. O

Let T := @)oo Ty, and F i= @Dy Frs E = @pop B Let K @ Dygy(TL d,) —
Daq(TH, d,,) denotes the auto-equivalence functor given by the grading shift

KT% = q|ﬁ|*2b(T§).
Let [K], denotes
[K], := Cone (@ ¢PTK N qu“Kl) ,

p=0 p=0

which we think of as a categorification of (K~! — K)/(¢7! — q).

Theorem 6.5. There is a quasi-isomorphism

Cone(FE % EF) > [K],,
of dg-functors.
Proof. The statement follows from Lemma and Lemma O
We also obtain the following immediately from the induction/restriction adjunction:
Proposition 6.6. The dg-functor F is left-adjoint to qEK.

6.1.1. Induction along colored strands. Take = (1, ..., u,) and p' = (p, ptr41). Consider

the (non-unital) map of dg-algebras (T}, d,) — (Tfl, d,s) that consists in adding a vertical
colored strand labeled p,,q at the right of a diagram:

|| IR I | IR | B R B | B KR | || I R I | IR | I KRS B | B R |
D | — | D

TT—Tm 0T ThT 1 TT— T 0T ThT1

M1 M2 fr—1 M1 M2 Hr—1 e Hrgd

Let J : E%dg(Tg, d,) — deg(Tgl,dﬂl) be the corresponding induction dg-functor, and let
3 : Day(T, ,dyy) — Dag(T},d,) be the restriction dg-functor.

Proposition 6.7. There is a natural isomorphism JoJ =~ Id.

Proof. The statement follows from Proposition 7] O
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6.2. Categorification theorem. In this section, we suppose k is a field. Recall that
Z(( A, q)) is given by Laurent series with non-zero coefficients contained in certain cones
of Z* (see [2] for a nice exposition, or [33, §5] for categorification). For a Z*-graded dg-
algebra (A, d), let ngglf (A, d) be its c.b.l.f. derived category, that is the full sub-category
of dg-modules having a cone bounded, locally finite dimensional homology, or in other
words having graded Euler characteristic contained in Z((), ¢)). We denote by K5 (A, d)
the asymptotic Grothendieck group (it is a version of Grothendieck group where we mod
out relations coming from infinite iterated extensions, see [33] for details) of 9)22” (A, d).
Since (Tf, d,) is a positive ¢.b.L.f. dimensional Z?-graded dg-algebra (in the sense of [33]
§9]), we know that K5 (T}, d,) is a free Z((g, A)-module and is spanned by the classes of
indecomposable relatively projective (T}, d,,)-modules (i.e. direct summands of (T}, d,,)).
The action of ¢ (resp. ) is given by a grading shift up in the g-degree (resp. A-degree).
We also write o K5 (T}, d,,) := K5(T},d,) ®z(q.n) Qg, V).

For an element f =3, , a, bq“)\b € Z((q, \)) where o, = 0, we write
@ (M @WMM@M® -® M),

a,b

Qg b

for any module M. Therefore we have in K5 (T, d,) that [@;(M)] = f[M].
For each p € % there is a relatively projective (T}, d,)-module given by (P, d,) where

TE

rLompEy

Poi=Toly= LAl TLATTT
M1 b1 MQ b 1’u7 br

Let NH,, be the nilHecke algebra on n-strands (it is presented as a diagrammatic algebra
with only black strands and dots, subject to the relations Eq. (I2]) and Eq. (I3])). There is
an inclusion (because of Theorem [1.6))

(36) 2: NH,, ®NH,, ® - - - @ NH,, — Ty,

ﬁmhh>wm2® <3$ﬁ# Hﬁﬁﬁ ﬁﬁ#

Furthermore, it is well-known (see for example [22 Section 2.2]) that NH,, admits a unique
primitive idempotent up to equivalence given by

given by

NH@

2 K3 oy

en = Ty, T} 1:B§ 2...2,.1€NH,,

where ,, € S,, is the longest element, Ty, wyw, = Ty Tws * * * Twy,, With 7; being a crossing
between the i-th and (i + 1)-th strands, and z; is a dot on the i-th strand. Moreover, for
degree reasons and using [47, Lemma 4.37], any primitive idempotent of Tg is equivalent
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to the image of a collection of idempotents under the inclusion Eq. (36d]), and thus is of the
form

e, =1(ep, @ - Qeyp,).

We say that a Z2-graded dg-category @ is c.b.l.f. generated by a collection of objects
{X;};es if any object in € is isomorphic to an iterated extensions of shifted copies of
elements from a finite subset of {X,} e, with coefficients contained in Z((q, \)) (see [27,
Appendix B] for a precise definition). In this case, we also have that K5 (%) is spanned as
Z((q, \)) by the classes of [Xj] for all j € J. As a consequence of the explanations above,
we obtain the following:

Proposition 6.8. The dg-category %nglf(Tbﬁ, d,) is c.b.lLf. generated by {(The, d,)|p €
P}
It is also well-known (see [22], §2.2.3] for example) that there is a decomposition
NH, = ¢""92 (P NH, e,

[n]q!
as left NH,,-modules. For the same reasons, we obtain
(37) Pl > ¢Xi-1bibim1)/2 D Tie,.

szl[bi]q!

In the other direction, one can construct a free resolution of NH,, e, over NH,, with co-
efficients (i.e. grading shifts) corresponding to 1/(¢"™~Y/2[n],!) and contained in Z((q)).
Similarly, we one can construct a c.b.lf. resolution of The, over P5, and thus we obtain
the following:

Corollary 6.9. The dg-category %;glf(Tf, d,) is c.b.Lf. generated by {(P5, d,)|peP}.

In particular, we have that K& (T5,d,) is spanned either by the classes of [(The,,d,)]
for all p e PJ, or by the classes of [(P},d,)]. The following lemma is well-known, and one
can find a proof of it for example in [36, Proposition 3.17].

Lemma 6.10. For k > n we have

for a certain finite collection of elements u;, v; € NHy.
Lemma 6.11. There is a surjection

L(H)|ﬁ|*2b - QKOA(Tbﬁv dﬂ)? Up [(P%7 du)]v
of Q((g, \))-modules.
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Proof. We want to show that K5 (T}, d,) is spanned by the classes of [(Pj,d,)] for all
pE 975;’&. Take any p € P/, and also assume that b; < p if g1 € N. Because of Lemmal[6.10]
we have that 1, can be rewritten as a sum of elements factorizing through 1, for various
p e @%by Eq. (I8). Then (Pp, d,) is isomorphic to a direct sum of shifted copies of
(P%,,du) for various p' € 95;’&. If uy € B+ Z we are done. Suppose p; € N and by > p;.
Then (P}, d,) is acyclic by Lemma | concluding the proof. O

FETH - TR
: H Eii— o2

H1 § 1

b1

Example 6.12. We consider p = (p1,1) and p = (b1, 2). We have

If 4y = 1 € N, then we have similarly that
1 1 1

and thus P} is acyclic whenever by > 2.

6.2.1. Categorifed Shapovalov form. As in [22, §2.5], let ¢ : T — (T%)°® be the map that
takes the mirror image of diagrams along the horizontal axis. Given a left (T, d,,)-module
M, we obtain a right (T%,d,)-module M with action given by

m¥ = (—1)deen ) deen(m)y, () Ly

for m e M and r € TE. Then we define the dg-bifunctor

(_v _> : %dg(Tﬁv du) X @dg(Tﬁv du) - @dgaka O), (W, W/) =W ®%Tﬁ,du) wr.
Proposition 6.13. The dg-bifunctor defined above satisfies:

o ((To, dy), (Tg, dy)) = (k,0);

o (Ind)™ M, M) =~ (M, Resy™ M) for all M, M’ € Dy,(T,d,);

o (@M, M) = (M,@;M") = &;(M, M) for all f € Z((q, \):

o (M, M) = (3(M),3(M")).
Proof. Straightforward, except for the last point which follows from:

(3(M),3(M")) = (M,303(M)) = (M, M),

using Proposition together with the adjunction J I J. O

Comparing Proposition [6.13] to Section [Z3.3], we deduce that (—, —) has the same prop-
erties on the asymptotic Grothendieck group of (T#,d,) as the Shapovalov form on L(u).
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6.2.2. Categorification theorem. Because of Theorem [6.5, we know that the functors E and
F induce an U, (sl,)-action on oK§ (T, d,) = D=0 oK 5 (Ty, d,).

Theorem 6.14. There is an isomorphism of U,(sl,)-modules

v L(:U) = QK(?(TEa du)a Vp = [(P%> du)]

Moreover the divided power basis elements are sent to T, — [(Tye,, d,.)].

Proof. The argument is similar as in [27, Theorem 4.7]. By Lemma [6.11], we know that the
Q((q, N)-linear map - is surjective. Moreover, the map ~ clearly commutes with the action
of K*! and with E because of Proposition 7 together with Eq. (6). By Proposition [6.13}
7 intertwines the Shapovalov form with the bilinear form induced by the bifunctor (—, —)
on K5 (T, d,). Therefore y is a Q((g, \)-linear isomorphism by non-degeneracy of the
Shapovalov form. Since the map v intertwines the Shapovalov form with the bifunctor
(—, =), and commutes with the action of E and K*!, we also deduce by non-degeneracy
of the Shapovalov form that v commutes with the action of F. In conclusion, v is an
isomorphism of U,(s(,)-modules.

The statement with the divided power basis elements is immediate from Eq. (37). O

7. DERIVED STANDARD STRATIFICATION

In [47], the change of basis corresponding to Lemma is categorified by introducing
a standard module (with respect to some standard stratification on T} -mod) for each p.
This standard module categorifies the basis elements v,. The change of basis is encoded
in the fact that the projective module T}‘1, that categorifies the basis element v, admits a
filtration with quotient being the standard modules. We introduce similar modules for TZ
that play the role of the standard modules. Strictly speaking, they do not give a standard
stratification of (T#,d,)-mod, but they do have a similar behavior in a derived way, see
Section [7.3] below.

7.1. Standard modules. There are two ways to construct the standard modules: either
directly, or as an iterated mapping cone construction. We describe both constructions in
this order.

7.1.1. Definition of standard modules. Fix p = (b1,...,b.) € P[. Let

Jp = |_|Jz7p, Jg’pZ: {1,...,()5}.
£=2

For j = J, we write j, = {Jy1,-- -, Je 5,1} =3 0 Jep With Jyq <+ < jy;,- We define

Pj = (bl + |j2|7b2 - |-72| + |j3|7 . '7b7‘ - |jr71| + |jr|7b7‘ - |.7r|)7
or in others words we obtain p; from p by increasing b;_; by 1 and decreasing b; by 1 for
each j € j nJy,. Then we define

DWEED IR (W—QH‘?)P% [
j

B ;
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Consider j' < j such that |j] = |j'| + 1. We have j' = j\{0' € J;,} for some V' and ¢. We
obtain a map of left (T%, d,)-modules (S% ., d,) — (Sfj,, d,) by gluing on the bottom the

p.J’
element:

g ) g

p1 fe D2

where p; +po =0 — 1 and p; = #{j € 3 n Jy,|j <V}, and extending on the left and right
with vertical strands with color and label matching 1 ol

Lemma 7.1. Consider 3" < 3' = 3 and 3" < j" < 7 such that |7] = |7'| + 1 = |3"| + 1 =
17" + 2 and 7' # j". We have

75,375 3" = T5.3"T5" 5"

Proof. We first assume that 3° = j\{V' € Ji,} and 5" = g\{V" € J;,} for the same ¢, and
thus b’ # b”. Without loss of generality, we can also assume that b’ < b”. Then we obtain

Tj,j”Tj”JW =

ag lu,g g —

P1 P2 b/l _ b/ -1

where p; +pp, =V —1land py = #{j € 3 n Jy,lj <V}, and

T st Tat qgm = " °°

3.3 73\
pl p2 b// _ b/ _ 1
Thus we have 7; ;7 jw = 7; j»T;» j» by the braid moves in Eq. (I2) and Eq. (14).
We now assume that j' = j\{t/ € Jy,} and 3' = g\{b" € Jp ,} for ¢’ # ¢". Then we have
T i Tj' " = Tj T m by a braid-like planar isotopy, exchanging distant crossings. 0

We extend the natural order on each J; , to a total order on J, by declaring that v < V"
whenever V' € Jy , and 0" € Jp , and ¢’ < {".

Definition 7.2. The standard module (S5, dg) is defined as

S; = @S,

JjcJ,
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with

dS = Z (_1)‘]‘(du : S%’J —> S%,J) + (dS,j : Si] — S%),

icJp

dS,j = Z (_1)#{b//ej‘b//>b/}7j’jl.
J'=3\{v'}

We have di = 0 by Lemma [Tl

Example 7.3. We take yu = (pu1, p2) and p = (0,2). We have J, = Jp, with Jp , = {1,2}.
We draw all possible j < J, as

e
(1,2) o
Ty

where the arrows represent the 7; 5. Then we can picture S(ﬁ0 9 85 the complex

||>‘7/<

| X |
\

0
Siog) = "7 ®

1 2 11 2

_ ||>/$<
I >/< o

where the d,, part of the differential is implicit.
As another example, take p = (p1, po, u3) and p = (0,1,1). We have J, = Jp, 1 J3,
with J;, = {1} and J; , = {1}. Similarly as above, we draw j < J, as

Moz
(1} u {1} oug
z o
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Then we picture S(ﬁo,m) as
TH

IXTL " e 1 X

@ T TE
©0,1,1) = qN2+M3 (&)

o op2 o ps /’ pp2 g3

i — 1 X1
X ]

w1 g2 3

7.1.2. Standard modules as iterated mapping cones. Alternatively, we can build the stan-
dard modules recursively as iterated mapping cones by categorifying the following equation
from Lemma 2.2

e o t+10—1 pu42-20, tl—1
(IE) Ypi,p2 = Ypi,po q YR (p1),p2

where p := pt,,4+1. In particular, we will lift all the intermediate elements

U?ﬁpz = I (Upl ® FZ(UM)) ® Vg,
with p; € N and py e N, 7 =71 + 1+ 15,

Define the element

P1,P2 = Z Z 1P1 ] W | 1p/2
phery? ixla
where [X] means we put diagrams next to each other.
Definition 7.4. We define recursively (V5 . dy) as
£,0 1 #,0 0,0/
<V01 jog dv) := (P(Pl t)’ d“)’ <VP1,p2:(5'7P') dv) = (V(Ph £),05 dv),

.
- -1 7
( pL, pz’dv) = Cone <qu 2€+2(V;(P1),p2’dv) —2 (Vf)—l’_j)zé ' ,d ))

for £ > 0 and py # &, and where 7 p1 », defines a map of left (T%, d,)-modules for the same

reasons as in the proof of Lemma [7.1]
Note that we have (S 5, ds) = (V%’i,, dv). Moreover [(S5, ds)] (resp. (VL dv)])

coincides with o, (resp. vfjf, p2) under the isomorphism of Theorem [G.141
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Example 7.5. We take p = (j1, p12). We have

0,2
B 700 702 —2x70,1 70,2 1,1
So2) = Voo = V.g = Cone(@ Vi) 5 — V) z);
0,1
0,1 0,0 po T, 1,0 I3
Vii)g = Cone(¢* V) o =Pog —— Vi g = Py,
1,1
1,1 10 _ pt  TO.2 720  pH
Viong = Cone(d*V ) 5 =Py —— V(5 5 = Po);
which we can picture as
T TH
q"? q?

o I 7K b

Siog) = Cone [ ¢ [ | & | LI |
" | A< T«

p p2 B p2

As another example, take p = (1, pto, p13) and we obtain

0,0
M ~ 70,0 _ xs01 0,0 T,(1,1) 1,0
Sy = Vaan = Vo = Cone(@ V) o) — Vg 0);
0,1
00 70,1 . 2%70,0 Dk 7(1,0),0 1,0 _ ph
V.o = Vg = Coneld“ Vi 5 =Piig — Viog = Proy)
0,1
1,0 0,1 0,0 i3 T(0,1),2 1,0 "
Vio.m = Vg = Coneld Vg o = Poag — Vg = Powy)
which we picture as
T T
qu3 q,U‘S
1 2 13 || >//< | || H1 2 13
® ~ H2
011 = Cone [ ¢ L ]| >/<l lll I X
-
T I 2Z 11 TE
1258 2 (3 M1 (2 3

Remark 7.6. If p contains only integral weights, then the underlying complex of the
standard module is exact everywhere except in the last rightmost term. In this case we
can replace it by the quotient of P% by the ideal given by diagrams with a black/colored
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<

Hhi
This coincides up to quasi-isomorphism with the standard modules in [47] (viewed as dg-
modules concentrated in homological and A-degrees zero).

crossing of the type:

7.1.3. Preorder. Inspired by [47], we say that there is an arrow p <« p' for p,p' € P
whenever there is some 1 < j < 7 such that b; = ) for all i # j,j + 1 and b; = V) + 1

and bj;1 = b, — 1. Consider the preorder on &%} given by p < p’ whenever there is a

chain of arrows p = pg < p; < -+ < p; = p/. Note that there is a maximal element
given by (0,0, ...,b) and a minimal element given by (b,...,0,0). If we think in terms of
idempotents 1,, then p < p’ whenever we can obtain 1, from 1, by sliding colored strands
to the left.

Example 7.7. Writing the idempotent 1, to picture the element p, we have the following
arrows:

I
I el N [ I Il | N O

Proposition 7.8. The dg-module (P%, d,) can be obtained as a mapping cone

(P%7 du) = Cone((S%, dS)[_]'] - (Q<padQ))a
where (Q<,,dq) is a finite iterated extension of shifted copies of elements in the set
{(Sy.ds)le < p}.

Proof. If p = (b,0,...,0) is minimal, then S5 =~ P%, and we are done by setting Q-,:=0.
Suppose by induction that the theorem is true for p’ < p.
We have an injection of (T%, d,)-modules

Io+ (Pody) = (S, 55, ds) = (Sp. ds),
and we define (Q<,, dq) := cok f,, so that we get a distinguished triangle
(PF,d,) — (S5.ds) = (Qx, dq) —
implying that
(Pp.dy) = Cone((Sy, ds)[~1] — (Q<p. dq))-
We observe that Q<, = @ P%j, and p; < pfor j # &. Therefore, by induction hypothesis,
jcJ,
%8
(Q<,, dq) is isomorphic to an iterated extension of various shifted (S%,,, ds) with p” < p. O
Corollary 7.9. The dg-category Qbszlf(Tg, d,) is c.b.L.f. generated by {(Sp,ds)|pe P,"}.

Proof. This is immediate by Corollary [6.9 and Proposition [7.8] O
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7.2. Standardization functor. We want to construct a standardization functor
S:Dyy(TH Q@ ---@TH ,dyy +---+dp,) = Dag(TE,d,,),
such that it is exact and sends
P ® - @P) — S5
In order to do this, we endow S5 with a dg-bimodule structure.

7.2.1. Bimodule structure on S%. We start by defining the right action of r®1®---®1 €
T,' ®- - ®T," as gluing diagrams at the bottom of each summand S%’ i C S5

St
123
®1®---®1: S, — =
TT-TT — || ‘
7

s P 2

241 2

Since the differential dg only touches the strands on the right, except for the d,, part which
is already in (T}", d,), the action of T} respects the graded Leibniz rule.

Since we want to define a bimodule structure, it is enough to define the right action on
each generating elements of S% as left-module. We fix ¢ and we describe below the right
action of T}* on S5.

We need some preparation. For j € J,, we define

fe T

j—1

e T}
0

and for j, = {Jo1,-- -, dej,} =3 0 Jep With Joq < -+ < Jy);, we put
(.Uj[ = wj[,|je| o 'wjl,f
In terms of pictures, we can draw this as

|9l be — 13,

TR O

agens,

Jeigl —Telil-1— 1
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By Theorem we have that TZZ decomposes as a graded k-module as

H NH,,
T} | |
(39) 1 = D Wj,

He 3eJep T 1
27

where NH,, is the nilHecke algebra on b, strands, that is the diagrammatic algebra on by
black strands with dots subject to the relations in Eq. (I2]) and Eq. (13).

Example 7.10. We have

NH2 NH2 NH2 NHZ

I

T2‘Z
|
e

e e e e

To define the action of x € T} on

e ||

M 4 Y.
Gl b= |50l

we consider the collection of unique z;, € NH,, such that

(40) wj, T = Z Tj,Wi,
3t

®
€ Spvj’

given by the decomposition in Eq. (39). Note that x;, = 0 whenever 1701 < |7,
Lemma 7.11. We have

{o, ifi=1,
wiwj =

—Twwi—1  ifi<j andi > 1.

Proof. This is a straightforward computation using the nilHecke relations in Eq. (I2]) and
Eq. (I3]) together with the nail relations in Eq. ([I9]). We leave the details to the reader. [

Lemma 7.12. In Eq. (40), we have that

1 2
. = . X N
Tj xJ,Z xj,z €

‘ NH oy [ INHp,— 5,
T T 1
127

for some x}, € NHy;r, and 2% € NH,, ;1.
Jy vy ) = 1Je
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Proof. We need to investigate how w;,x decomposes when z is either a dot, a crossing or
a nail.

First assume that x is a nail. By looking at the diagram in Eq. (38]), we observe that
adding a nail at the bottom gives 0 by Eq. (I9) if 1 € j,, and we get wjz = wjLqey,,)
otherwise. Thus, z; is either 0 or 1.

Suppose z is a crossing between the i-th and (i + 1)-th black strands. Looking at the
diagram in Eq. (38)), if the crossing is below one of the horizontal brackets at the bottom,

then we can use the braid move in Eq. ([I2]) to slide it to the top right, so that ZE;-Z =1 and
x?l is a crossing. If i + 1 = j,, for some ¢, then w;z = 0 by Eq. (I2). For the remaining
cases, suppose i = j,, for some ¢t. If i +1 = j,,,; then we can use the braid move
to bring the crossing to the levels of nail, slide it through the nails using Eq. (I9), and
finally slide it to the top. Thus we obtain that xl is a crossing and x?( = 1. Otherwise,
Wj,T = Wj,\{tjuft+1}, and thus x; i is either 0 or 1; -

Finally, suppose x is a dot on the 1-th black strand We can slide the dot to the top using
the nilHecke relations in Eq. (I3) at the cost of adding diagrams with one fewer crossings.
Therefore, we consider what happens whenever we remove a crossing from the diagram
in Eq. (3]). If we remove a crossing situated in the upper left triangle below the bracket
|7,|, then we obtain zero because we would have two nails on the same black strand. If we
remove a crossing elsewhere, we can first slide to the top right all crossings at the bottom

right of the crossing we removed using the braid move in Eq. (I2)), giving an element :E -

Then we observe that having removed a crossing turned some w; to wy with ¢’ < . Thus
we use Lemma [.11] to reorder the w;’s, at the cost of adding crossings that can be slided
to the top left part, giving the elements x x In particular, we never obtain a crossing at

the top between the |5,|-th and (|7, + 1)- th black strands, concluding the proof. O

Because of Lemma [7.12], we can define

0 zim (—1)EEEOEL DY |

-/

Je

n
€S-,
p:J

1

]

where 7' is obtain from j by replacing 7, with j5. Note that this is well-defined because of
the isomorphism in Eq. (39). Moreover, it is homogeneous because qlielret Zaej, =242 15|
deg(wy, ).
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Example 7.13. Take b; = 0,by = 3. We have

2 2 M2

and thus we obtain

el LT LT e TR
1 M1 T 2 M1 7;1—' M2
Lemma 7.14. We have
1,0 |1® +N| |®1
e
( p
+N c S;,J’ iflejb
e

, ‘
+N €S,; — (=1 2 gy ;_ u
| MN€igoy N g

UN €St if1¢4,

Proof. The case 1 € j, is immediate by looking at Eq. (38)) and observing that sliding the
dots to the top using Eq. (I3]) produces diagrams with fewer crossings in the top left region,
so that they all have two nails on a single black strand, and are zero.

The case 1 ¢ j, follows immediately from Proposition OJ

Remark 7.15. Using the diagrams wj,, there is a convenient way to write how ds ; acts
on S%’ ;- For each ¢, there is a differential dy (not preserving the degree) on T}, given by

(1<) -

1274 1274

and dy is zero on the other generators (note that it coincides with dy = d,, for u = (0)).
Let wj := wj, ®- - -®uw; and we extend dy by the graded Leibniz rule to the tensor product
T, ®---®T,”. By the decomposition in Eq. [39) we have

b =Y wy

3'=3\{t'}
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where

s |1 R ] e
T
for ¥ € 3,. Then if we define
3¢l

Tty et || AL |
—_— —_—
yai re b2

where p; + ps = b — 1, we have

ds(1,) = do(wy).

For example consider y = (p1, i12) and p = (0,2), and we compute

RN § =Sy SSEYSVR

Wiy — Wiz},
2 2 2
s T | o || Koo
H1 2 H1 2

which agrees with Example

Proposition 7.16. The construction described above gives (Sy,ds) the structure of a
(T, d,)-(T" ® -+ ® T, d,, + - + d,, )-bimodule.

Proof. Clearly, the action of each (T*¢,d,) (graded) commute with each other, and with
the left-action of (T%,d,). Thus we only need to check that it respects the differentials. In
particular, we need to verify that

(41) ds(m e z) = dg(m) ez + (=1)™med,, (2),
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o . . .
for all homogeneous m € S, and z € Tff;. We can assume m = 1,, and z is either a nail, a
crossing or a dot. If = is a nail, we compute

if 1 e g,

ds(lpjox):< \Je‘ >GSZJ‘ WLAE SM , o if 1 ¢ g,

J\{tGJe}u{l}

1)lel= 1§<§ ES;J, if 1€ 3,

e
Wes“ ., if1é¢ 7,

and using Lemma [[.T4] we also have

1Pj e dy, (z)

+~e st it1e 7,
+M Sk~ (-1 ¥ ay ) Nu UNE St if1¢ 3,
j'= u B: “e “ e

L e q\teg oty el LLe
where each one of the diagrams are embedded in bigger diagrams with only vertical strand
whose colors are determined by the idempotents 1,, and 1, ,, and «;; = (—1)#tedl >t

Then Eq. (@) follows from Eq. (I6HIR).

ds(lpj) oL =+

J\{tGJe}u{l}

If  is a dot or a crossing, then we obtain immediately ds(m e x) = dg(m) e x by
Remark [T.T5 since dj is well-defined and thus pushing = to the top and then applying d
is the same as applying dy and then pushing x to the top. ([l

7.2.2. Standardization functor.
Definition 7.17. We define the standardization functor as
S Dy (T @ - @M dyy dm-) — Dy, (T, du)’ M — SER" M,

where S2:= @ . S5.

For 1 <4 < r, let EFI) Fl1 and K*[1 denotes the categorical action of U,(sl,) on each
T, in Dyg(T" ®---@TH , dy, +---+d,,), defined by induction/restriction along a black
strand as in Section Let us write Id, with p = (by,...,b,) for the functor given by
tensoring with (T)! ® --- ® T}").
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Proposition 7.18. The standardization functor is exact and essentially surjective. In
particular, it induces a surjection

QKOA(T/“’ dm) X QKOA(TM7 d#r) - QKOA(TE> du)a
which sends vy, 5, ®- - -®vy, b, = [P} ]®- - -Q[P}"] — [(S5,ds)] = v, under the isomorphism
of Theorem[6.14).

Proof. This follows immediately from the fact that S(T}' ® --- @ T}, dy, + - + dy,)
(S5, ds) together with Corollary [0l

11

Note that we have
KE!S =~ SKEM .. KT

which lift the equality A(K*!) = K*!'® K*!'. Furthermore, as in [47, Proposition 5.5], we
can lift the equality

FI®1® --®1)=FQKQKQ® - QK +1F®K® - QK + -
+1R- RIFRIK+1® - Q1Q1®F,

to the categorical setting as follows:

Proposition 7.19. There is a natural isomorphism FS = Q, with ), being obtained as an
iterated extension

O_QO Qr;FS

\/\/\/\/

Q1/Qo Q2/Q1 Q3/Q2 Qr/Qr—1

where
Qe/Qe—r = SFHIKIHT . K,
for1<{<r.

Proof. Take p = (by,...,b.) with >}b; = b. Since the functor S is given by derived tensor
product with a bimodule which is cofibrant as left module, we have

FSId,(—) = ((T},,,d.) ® S;) " — = (FS;) ®" —.

Similarly, we have
SFUId, (=) = SEy () ®" —

where FI9(p) := (b, ..., be_1,by + 1,bps1, ..., by).

We want to construct categorifications of the elements F'(7,,) ® 9,, for various decom-
positions p = (p1, p2), and these will give the functors Q.

Let

@ qu 2 D, (e — 2t+2)P [|J|]

jicJdp



CATEGORIFICATION OF INFINITE-DIMENSIONAL slo-MODULES I 51

and define dq similarly as dg but using

v 1 v
b1 pe b2

instead of 7; ; whenever j differs from j' by an element in j,. For the same reasons as

£ dg), ‘s 1s a dg-bimodule. Note that Nl =9 an NT >~ FS,. Moreover, we
St ds), (Qr, dq) is a dg-bimodule. Note that Q s;[](p) dQ, = FS;. M
have a map of dg-bimodules

Toore: @ Qe — Qu

Y He vy
|7l (be — |70l

given by gluing on the bottom

: p
By construction of S, 411, We have

Szﬁrmp =~ Cone (qw_%eQé—l = Qé) -
Thus, putting Q, := q2t>l’“_2bt(§g and Q, := Q; ®" — concludes the proof. O

7.3. Stratification. Fix b > 0. Let & := Qbszlf(Tg, d,). Define 9., as the full subcate-

gory of & c.b.l.f. generated by {S%,|p’ > p}. Define similarly @, , € D.,.
Consider the exact sequence
Dsp = Dep = Dy,

of dg-categories where 9, is Verdier dg-quotient (see [20, 9]) of D, by D-.,.
Lemma 7.20. We have RHOM(Tbg’d#)((P%, d,), (S%,,ds)) ~ (0 whenever p' X p.

Proof. We know that (S%,, dg) can be constructed as an iterated mapping cone, and thus

takes the form of a hypercube of P%,, for p” < p/. We can reaarrange the hypercube so that
the first mapping cones are all of the form

i

(S7 ds) = Cone (P%m d#) (P%lv d,U«) )

for various i and py, p2 such that p; £ p. We claim that RHOM(Tf,dﬂ)(<P%= d,), (S,ds)) =0

and then the statement of the lemma follows from exactness of the derived hom functor.
Since (P%, d,) is cofibrant, we can replace the derived hom-space by the dg-hom-space.
We only need to show that the homology of HOM(T,% dﬂ)((P%, d,), (S,ds)) is zero. Recall
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that a map in the dg-hom-space is in the kernel of the differential if and only if it graded
commutes with the differentials of the target and source dg-modules. All these maps are
generated by the map (P%, d,) — (P%l, d,) that sends 1, to the diagrams with the least
number of crossings 1,W;1,,. Then we can consider the map (P, d,) — (Pp,,d,) (that
does not commute with the differentials) that sends 1, to the diagram with the least
number of crossings 1,Ws1,,. But then we have dg(1,Ws1,,) = 1,W11,,. Therefore the
dg-hom-space is acyclic, concluding the proof. O

Lemma 7.21. We have RHOM(T§7d#)((S%, ds), (Sf,, ds)) = 0 whenever p' > p.

Proof. Tt follows by exactness of the derived hom functor together with Lemma [7.20 and
the fact that (S5, ds) is an iterated extension of (P%//, d,) for various p” < p. O

Proposition 7.22. There is a quasi-equivalence D, = decglf(Tf;@- QT dyy - Hdy,).
Moreover the projection Dy, — D, is equivalent to the dg-functor

RHOM(T%C[H)((S%, ds), =) : Doy = DI (T @ - @ T dyy + -+ + dy),
which is right adjoint to the standardization functor S.
Proof. Tt follows from Lemma [7.2]] and exactness of the derived hom functor. O
APPENDIX A. REWRITING METHODS

A.1. Diagrammatic rewriting. Let A be a diagrammatic algebra presented by genera-
tors and relations. It is defined by a set of generators, denoted by A, containing diagrams
that are of the form

M1 2 Hm
w
A TR Xy A
where m,n, k, ¢ are integers, and Ay ..., Ag, Al .oy Apy i1y - oy fms 1, - - -, M are labels (or

colors) that belong to an indexing set Io. Such a diagram can be considered locally, by
forgetting the vertical strands on the left and on the right, and we say that a diagram x
as in Eq. (42) has arity n and coarity m. To simplify the notations, we will write this as
XM ..My — 41 - m. In other words, the generators of A are represented by diagrams,
with vertical labelled strands in the leftmost and the rightmost region, and in between
such a diagram with arity n and coarity m, corresponding to a diagram that has n labelled
strands as input and m labelled strand as output. We allow m and n to be 0, however we
assume in the sequel that any generator x in A, has same arity and coarity, that can be
0. Therefore, we have the following disjoint decomposition for A:

A, = UuA (n)
neN
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where A (n) denotes the set of generators with arity and coarity n. Moreover, we assume
that AS is equipped with a total order <y. We also assume that the diagrams in an algebra
A admit a constant number of strands, so that the sum k& + n + ¢ for a diagram x as in
Eq. (42) is constant, equal to a fixed number s(A) giving the number of strands of A.

The product of two generators  : 1y ...1, — f1 ... by and y @ fig ... fb, — 01 ...0, (that
can admit vertical strands) is obtained by vertically composing the two diagrams, from
bottom to top. It is zero if the common sequence of labels pu;...u, do not match. A
monomial of A is a product in the elements of A, that is a diagram containing layers of
generating pieces, in which any generator has a given height. Explicitly, a generator x; in
a monomial zy ...%; 17Ty ... %, admits a diagrammatic height, denoted by h(x;) := 1.
This extends to monomials of A: if xy, ... xxy,, is a monomial dividing a monomial x; . .. z,,
then we set h(zg ... Tpim) = k.

The presentation of a diagrammatic algebra is then given by choosing a set of diagram-
matic relations between polynomials made of these monomials, with common source and
target labels. As a consequence, the algebra A, can be presented by a linear 2-polygraph
Pa with only one 0O-cells, whose generating 1-cells are given by the elements of A, and
whose generating 2-cells correspond to a fixed orientation of these relations. The gener-
ating 1-cells of Pa are thus also equipped with an arity and coarity, that extends to the
monomials of Pf. We denote by Pf[n, m] the set of monomials with arity n and coarity m.

Example A.1. For the nilHecke algebra NH,, of degree n, the set Ixy, is a singleton, so
that we may omit labels in the diagrams, s(NH,) = n and the set of generators is given
by (NH,), :={z; | 1<i<n}u{m |1<k<n-—1} of respective (co)arity 1 and 2 that
are diagrammatically depicted as follows:

(43) " ;:| +

7 k

where the label 7 indicates that this is the ¢-th strand at the bottom from left to right.

A.2. The linear 2-polygraph of distant isotopies. Given a linear 2-polygraph Pa
presenting a diagrammatic algebra A with set of generators A, and indexing set I, we
define the linear 2-polygraph Iso(A) of planar isotopies of A that has only one 0-cell and
whose:

i) generating 1-cells are given by the 1-cells of (Pa)}, that correspond to the monomials
of A,
ii) generating 2-cells are given by the following local relations:

UL e M M= Tk U
1

B v i n R

1
1
1
1
A 1y Fi - Al Ky H
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for any monomials D : py...pux — my...m and D' 2 ph.oopl — ny...n, in P of
respective heights 7 and j, with ¢ > j, provided that D <o D" if D and D’ are both of
arity and coarity 0, and for any number of strands with any label bewteen D and D'.

In the sequel, we will prove rewriting properties of the linear 2-polygraph Iso(A) that are
independant of the labels of the generators. Therefore, we omit the labels in the diagrams
in the proofs of termination and confluence for Iso(A). Let us first prove the following
statement:

Proposition A.2. Given a diagrammatic algebra A with the above assumptions, the linear
2-polygraph Iso(A) is terminating.

Proof. Consider the mapping
§: (Pp)f — 75W

that sends any monomial D onto (8:(D),...,dsa)(D)) where 6;(D) is computed as fol-
lows: follow the i-strand (counted from left) from the bottom to the top, and each time we
encounter a generator that intersects this line, add the number of generators (intersecting
or not) that are below. One may check that for any 2-cell « of Iso(A), the inequality
§(51(0)) >1ex 6(t1(c)) for the lexicographic order on Z*“). Moreover, this order is admis-
sible, that is 0(D) >1ex 0(D’) implies that §(D1DDs) >10x 6(D1D'Dy) for any monomials
D.D’, Dy, Dy such that the products are well-defined, since we add on bottom and top
of D and D’ a constant number of generators below any height. Therefore, the order
on P! defined by D < D' if and only if 6(D) <y, 6(D’) defines a termination order for
Iso(A). O

Example A.3. Consider the nilHecke algebra NHg on 6 strands, we have the following:

) ﬁj HJ =(3,7,6,1,1,0), ) Lﬂ HJ = (3,7,4,2,3,1)
0 LH m =(1,3,2,4,7,3), 0 %LJT m =(0,2,3,4,7,3)

On this example, the last element is the normal form of the corresponding diagram with
respect to Iso(NHg).

The linear 2-polygraph Iso(A) is also confluent, since all the critical branchings of Iso(A)
are given by local overlappings of the form

<
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where h(D) > h(D’) > h(D"), for any labels of the strands provided the products are
well-defined. They are proved confluent as follows:

5!
!

| ED% \E’D’D/
Z [:Zzé] [;2;]..::
Lo n @l

8!

35!

We then rewrite with the linear 2-polygraph P modulo the convergent linear 2-polygraph
Iso(A). Therefore, it is similar to the usual rewriting context on string diagrams in the
monoidal category (seen as a 2-category with only one object) admitting as generating
1-cells the elements of T4, so that the 1-cells of 6 are words of the form ppus . .. u, for any

i € Ia, and as generating 2-cells the generating diagrams of A, considered locally, that is
by forgetting the vertical strands on the left and on the right.

Example A.4. For the nilHecke algebra NH,,, rewriting modulo Iso(NH,,) is similar to
rewriting in the monoidal category whose 1-cells are generated by 1, and thus isomorphic
to N, whose generating 2-cells are given by

><:2—>2, +:1—>1

and are subject to the relations (I2) and (13).

As a consequence, the classification of critical branchings modulo in that context is the
same as in the case of rewriting in string diagrams in the monoidal category 6, and most
of them can be considered locally. Following [16], there are 3 different forms of critical
branchings in that context. For 2-cells «, 3 of P§, any 1-cells f,g,h of P{ and any context
C of P}, as defined in [16], there are:

e Regular critical branchings of the form
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These amount to application on two local relations overlapping on the central part h
of the diagram. Since we rewrite modulo distant isotopies, these can be considered
locally as in the 2-category case, and one may forget about the diagrams that are
on the left and on the right of this overlapping.

e Inclusion critical branchings of the form

[ |
s(a) _ s(8)
[

]

These branchings are given by application of a relation [ inside a diagram that is
also reducible by a rule . There is no such example of branching for the linear
2-polygraph modulo (R, F, gRg), and one may in general avoid these branchings,
since there always exist a linear 2-polygraph that does not contain such branchings
and present the same 2-category.

e Left-indexed critical branchings (also right-indexed, multi-indexed) of the form

These branchings come from the overlapping of two rewriting rules a and g with
an identity strand in the middle, in which we can plug new diagrams, giving new
critical branchings to consider. Following [16], it suffices to check the confluence of
the indexed branchings for the instance k being in normal form.

Example A.5. Let us consider the nilHecke algebra NH,, on n strands, presented by the
linear 2-polygraph P having as generating 1-cells the elements 7; and x; for 1 <7 < n and
1<l<n-1asin {@3), and as generating 2-cells the relations (24]) and (25]). One might
prove that P is convergent modulo braid-like isotopies. Indeed, it is terminating using the
weight order introduced in Section .1l Moreover, one might check its confluence modulo
by examining its critical branching. It has regular critical branchings whose sources are
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given by:

xé%{ﬂ{?%{?f@kﬁﬁg

and left-indexed critical branchings given by the overlapping of the Reidemeister 3 relation
with itself (the orientation of the indexation depends on the orientation of the Reidemeister

3-relation):
m ‘

<

for any monomial D. Following [11], it suffices to check the confluence of these indexed

critical branchings for
p
D=>< , +p for any p € N.

One proves following the proof of convergence for the KLR algebras of [11], that all these
critical branchings are confluent modulo braid-like isotopies. As a consequence, P is a
convergent presentation of NH,, and the monomials in normal form with respect to P
yield a linear basis of NH,,, recovering the usual basis for the nilHecke algebra (see for
example [22] Section 2.3]).

APPENDIX B. CONFLUENCE COMPUTATIONS FOR T

Recall the rewriting rules on I'5() defined in Section 5.1}, and consider the specialized
case Iy := I'(0) given by setting & = 0.

We proved in Proposition (.4l that these rewriting rules terminates, and in Corollary [5.11]
that they are confluent using an indirect argument. In this section, we prove it by checking
the connfluence directly.
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Note that we have

(44) p>< ~ >€ +a§_ a+ b+
(46) ﬁ = 0.

M1

The following two lemmas are only useful if one want to try to prove Proposition [B.3 in
generality (i.e. with pu; ¢ 8 + Z for some 1).

Lemma B.1. If Ff s confluent for the rewriting rules above, then we have

Proof. By Proposition we know that the element is zero. Since the rewriting rules are
confluent, there is a sequence of rewriting moves bringing the element to zero. O

Lemma B.2. If F§—1 is confluent for the rewriting rules above, then we have in Fbﬁ
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Proof. The rewriting rules ([B234]) allow us to slide crossings one by one over the nail at
the cost of adding terms, as follows:

where we can consider y; = 0 (or simply the sum to be zero) if the strand is black. Applying
Lemma[B.1] all the terms in the sum on the right rewrite to zero. Applying this recursively,
we bring all crossings to the top, then we apply Eq. (31]), and finally we apply the same
reasoning for the crossings on the bottom, concluding the proof. 0

Proposition B.3. The rewriting rules above are confluent.

Proof. We can assume by induction that the rewriting rules are confluent for less strands.
Confluence between the rules in Eq. (24), Eq. (23), Eq. 6), Eq. 27), Eq. 28) and
Eq. (B0) are essentially the same as in the usual KLR case, see [11], and therefore we leave
the details to the reader. Note that we can use similar computations as in the usual KLRW
case because of the notation that 3 dots is zero and then all relations involving p; dots are
the same. There is however still one more case we need to consider: when we look at the
superposition of two Reidemeister 3 moves with a tightened nail in-between, that is:

and similarly when we consider other Reidemeister 3 type moves from Eq. (26) and Eq. (30).
This explain why we need the rewriting ruls in Eq. (32]), Eq. (33) and Eq. (84)). In order
to check all superpositions, we also need to consider the case where there are dots on the
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nailed strand. For this, we verify that

and

both rewrite to

(48)

for any p > 0. The cases with colored strands are similar,and we leave the details to the
reader.
We need to verify all other superpositions between rewriting rules:

e The first relation of Eq. (24]) overlaps with the second one of Eq. (B31)):

2=~
%2? S a
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e The second relation of Eq. (24) overlaps with Eq. (82):

)

0

Since we consider diagrams up to planar isotopy, we can add diagrams in-between,
giving the collection of additional superpositions to check:

(49)

In order the verify this, we first apply the second relation of Eq. ([24) on LHS of
Eq. (#9). Then we compute the local relations
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On the other hand, we apply Eq. (32) on the LHS of Eq. (@9). Then we compute
the local relations

We conclude that the superposition is confluent.

We now consider the RHS of Eq. ([@9). We do a similar computation as for the
LHS, but replacing the use of the first relation of Eq. ([24]) with Eq. (46). We leave
the details to the reader.

e The first relation of Eq. (26]) overlaps with Eq. (B83):
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e The second relation of Eq. (26) overlaps with Eq. (B34):

One also needs to check additionals superpositions as in Eq. (49). The computations
being similar, we leave the details to the reader.
e The second relation in Eq. (28)) overlaps with Eq. (34):
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e The second relation of Eq. (3] overlaps with the second relation of Eq. (25):

2
j

25 @3), 251

g
E:

23
e The second relation of Eq. (3I]) overlaps with the first one:

(BID/ K1 H1 1 \(AEHJ(BI)

\ 1
:m +0
H1

241

M1
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e The second relation of Eq. (BI)) overlaps with the third one:

(BID/ M
ED

w1 k} 0

e The third relation of Eq. ([BI]) overlaps with the first one:

@y’ i i

(&30

1 (BID\& 0 0

e Eq. (32)) overlaps with the first relation of Eq. (24)):

65
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e Eq. (32) overlap with the second relation of Eq. (24)):

e Eq. (B2) overlaps with Eq. (25]) in multiple ways:




CATEGORIFICATION OF INFINITE-DIMENSIONAL slo-MODULES I 67

where we implicitly first slided the dot to the top right so that we can apply Eq. (48])
and used an inductive argument on ¢ to deal with the remaining terms,

M1



68 BENJAMIN DUPONT AND GREGOIRE NAISSE

H1 H1

M1

H1 H1

and we know both path converge to the same element:

+ (more terms)

because we can isolate the right part of the diagrams.
e Eq. (32)) overlaps with itself and with Eq. (83) and Eq. (34):
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converging to the same elements by similar arguments as above. Eq. (32]) overlaps

also with itself and with Eq. (33)):
where we can interpret p; = 0 if the strand is black.

, and we could not find

This case is much harder to check than the others above
a handy way to write it down in whole generality. Therefore, we will now assume

that p; € 6+ Z for all © > 1.

Then, we have

251

251
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by Lemma B.2] Eq. (82) and Eq. (33). Similarly, we obtain

by Eq. (33) and Lemma
e Finally we have similar intersections with Eq. (B3) and Eq. (34]), which we leave for
the reader.

O

APPENDIX C. ADDITIONAL COMPUTATIONS

This appendix contains some extra computations that are helpful for some proofs in the
main text and the other appendices.

Lemma C.1. We have

Iﬁ
I
Z
+
o~ ol
I |
o —
e
Iﬁn

" 4 .
k k ! ¢ k—t—1

for all u, k = 0.

Proof. 1t follows from applying the relations in Eq. (I3) recursively. O

Lemma C.2. We have

Proof. The statement follows from Eq. (I3), Eq. (I2) and Eq. (I9). O
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Lemma C.3. We have

71
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Then we compute

using first Eq. (I3), then Lemma and finally Eq. (I9).
We also compute
(52)

7 v k—l—1

z U k—l-1 z / k—0—1
Therefore, by Lemma the rightmost term of Eq. (51]) together with the the rightmost
term of Eq. (52) gives
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These elements cancel with the middle terms of Eq. (B0), so that what remains is

We compute

z T k—l-1 z I k—l-1
using Lemma again. Putting all of the above together yields the equation in the
statement. U

Proposition C.4. We have

Proof. We apply recursively the lemma. OJ

C.1. Detailed computations for rewriting. In order the make the following proofs less
notational heavy, we introduce the following shorthand. Fix p = 0. When in a diagram we
draw m stars on the black strands, it means we consider the sum over all diagrams where
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we replace each star by p; dots for >, p; = p —m + 1, where we assume the sum is empty
whenever p — m + 1 < 0. For example

ARRFORE S

This allows us to write local relations as

<

<5<
1
in T}

Lemma C.5. We have
Proof. The statement immediately follows from Eq. (I9) and Eq. (I2). O
Proposition C.6. We have

mn Tf.
Proof. We prove the statement by induction on the number of strands ¢. The base case
¢ =0 is given by

1 H1

and
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For the first one, we directly have

where p' := p + p;, and we conclude by using the induction hypothesis. For the second
case, we compute

where the last term is zero by Lemma For the remaining terms, we can gather them
by number of dots distributed on the two stars on the left, so that we only need to compare
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the following terms:

We observe that

Pl |3 | 7

where the sum is over all black strands. Applying this relation recursively yields

) JMZ(U P i S L

where the sum is over all ways to resolve black/black crossings in the diagram, and c is the
number of resolved crossings. By applying Eq. (55) and its symmetric to

1251 L Al

1

1

we obtain a collection of diagrams that typically look like

(56)
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together with the following diagrams

and

251

All the diagrams of the same shape as in Eq. (B6) are zero since

and because of Eq. (54) and Lemma [C.5l Applying Eq. (53) to

7
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yields a collection of elements

and the element
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yields a collection of elements

Comparing all the remaining terms, we observe that they cancel with each other, concluding
the proof. 0
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