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CATEGORIFICATION OF INFINITE-DIMENSIONAL sl2-MODULES
AND BRAID GROUP 2-ACTIONS I : TENSOR PRODUCTS

BENJAMIN DUPONT AND GRÉGOIRE NAISSE

Abstract. This is the first part of a series of two papers aiming to construct a categori-
fication of the braiding on tensor products of Verma modules, and in particular of the
Lawrence–Krammer–Bigelow representations.
In this part, we categorify all tensor products of Verma modules and integrable modules
for quantum sl2. The categorification is given by derived categories of dg versions of
KLRW algebras which generalize both the tensor product algebras of Webster, and the
dg-algebras used by Lacabanne, the second author and Vaz. We compute a basis for
these dgKLRW algebras by using rewriting methods modulo braid-like isotopy, which we
develop in an Appendix.

1. Introduction

Categorification was motivated since its beginning by low-dimensional topology and
physics. For instance, one of the goals of the program of categorifying quantum groups
was to give a representation theoretic explanation for the existence of link homology the-
ories. Indeed Khovanov [21] and Khovanov–Rozansky [25] constructed categorifications
of the Reshetikhin–Turaev [39] polynomial link invariants associated to (the fundamental
representations of) quantum sln. However their constructions rely on the categorification
of certain combinatorial descriptions of the link invariants, and not on the representation
theoretic ones.

The above-mentioned program has been very fruitful since its start with the seminal
work of Bernstein–Frenkel–Khovanov [3] and Frenkel–Khovanov–Stroppel [14] who gave a
categorification of the tensor products of quantum sl2 fundamental representations using
category O. Categorification of Lusztig integral versions of the quantum groups was devel-
oped by Khovanov–Lauda [22, 24, 23] and independently Rouquier [40], extending on the
grounding work of Chuang–Rouquier [8] and Lauda [28]. At the heart of these construc-
tions are the KLR algebras. These are Z-graded algebras which control the higher structure
between compositions of categorical analog of the Chevalley generators. Categorification
of the integrable modules for all quantum Kac–Moody algebras was conjectured in [22]
and proved in [18] and independently in [47], using certain finite dimensional quotients of
KLR algebras called cyclotomic quotients. More precisely, to each Kac–Moody algebra g

is associated a KLR algebra Rg, and to each integral dominant g-weight Λ is associated a
quotient RΛ

g . The category of graded modules over RΛ
g categorifies the integrable Uqpgq-

module V pΛq of highest weight Λ. Categorifications of all tensor products of integrable
modules were constructed by Webster in [47], using KLR-like diagrammatic algebras that
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2 BENJAMIN DUPONT AND GRÉGOIRE NAISSE

we refer to as KLRW algebras, generalizing RΛ
g . He also defined a categorical braid group

action on his construction, giving a higher version of the action of the R-matrix, as well as
higher versions of evaluation and coevalution maps. These allowed the construction of ho-
mology link invariants for any g which coincides with Khovanov–Rozansky for quantum sln
[31]. Alternatively, these link homologies can also be obtained from higher representation
theory of quantum groups through a categorical instance of skew Howe duality [29].

While the theory of categorification of integrable modules is already well-studied and
understood, with deep connections to geometry (e.g. [7, 46]), to category O (e.g. [14, 43])
and to low-dimensional topology (e.g. [47, 29]), the categorification of infinite dimensional
(in the sense non-integrable) representations is still quite new and not so well understood.
The second author and Vaz constructed categorifications of universal Verma modules for
sl2 in [35, 36], and extended it to any generic parabolic Verma module for any quantum
Kac–Moody algebra in [34]. They also showed in [37] that their construction is related to
Khovanov–Rozansky triply-graded link homology [26]. Moreover, in a collaboration [27]
with Lacabanne, they gave a categorification of the tensor product of a Verma module
with multiple integrable modules for quantum sl2. They also showed that their construc-
tion yields a categorification of the blob algebra of Martin–Saleur [32], which allow the
construction of invariants of tangles in the annulus.

One of the main ingredients in the categorification of Verma modules in the above-
mentioned papers is the notion of a dg-enhancement. The idea is to replace the cyclotomic
quotient of the KLR algebra by a resolution of the quotiented ideal. It turns out that all
cyclotomic quotients can then be encoded by a universal dg-algebra that we refer to as
dgKLR algebra, with the same underlying graded algebra but equipping it with different
differentials dΛ (there is one for each choice of integral highest weight Λ). The dg-algebra
with differential dΛ is then quasi-isomorphic to the cyclotomic quotient RΛ

g . Setting the
differential to zero instead yields a categorification of a Verma module.

1.1. Content of the paper. This is the first part of a series of two papers aiming to
construct and study more general tensor products of Verma and integrable modules. In
this first part, we propose a categorification of any such tensor product for quantum sl2
using dgKLRW algebras, generalizing the construction in [47] and in [27]. In a second
part in preparation [13], we construct a categorical braid group action lifting the action
of the R-matrix. By considering the categorical analog of Jackson–Kerler [17], this yields
categorifications of the Burau and of the two parameters Lawrence–Krammer–Bigelow
representations by restricting to certain categorified weight spaces.

1.1.1. The dgKLRW algebras. KLR algebras are usually defined by generators and rela-
tions, and pictured in the form of braid-like diagrams with strands colored by simple roots
and decorated by dots. Since we will consider only the sl2 case here, all strands will be
implicitly colored by the unique simple root of sl2, and drawn as a solid black line. For a
string of dominant integral weights µ “ pµ1, . . . , µrq, one defines the KLRW algebra T µ by
considering KLR-like diagrams, but containing r additional red strands labeled from left
to right by µ1, . . . , µr, and that are not allowed to intersect each other. These red strands
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respect the following local relations with the black strands, depending on their label µi:

µi

“

µi

µi

µi

“ µi

µi

µi

“

µi

`
ÿ

u`v“
µi´1

u v

µi

for µi P N,(1)

where a non-negative label k next to a dot means we put k consecutive dots. In Webster’s
setting [47], one also has to quotient by the violating condition stating that we kill any
diagram with a black strand at the left of the leftmost red strand:

µ1

“ 0,

which plays role of the cyclotomic quotient condition. Categories of (graded) modules over
T µ categorify the tensor product V pµ1q b ¨ ¨ ¨ b V pµrq.

The dgKLRW algebras that we consider here are similar, but also adding blue strands
for the non-integral weights µi (i.e. the Verma tensor factors). These blue strands respect
degenerated braid-type relations:

µi

“ 0,

µi

“ 0,

µi

“

µi

for µi non-integral.(2)

Moreover, we need to replace the violating quotient condition by a dg-enhancement, mean-
ing we add a new generator connecting the first black strand with the first colored strand,
with a differential replacing the relations implied by Eq. (1) for the first colored strand:

dµ

¨
˝

µ1

˛
‚:“

µ1

µ1

if µ1 P N,

dµ

¨
˝

µ1

˛
‚:“ 0, if µ1 is non-integral,

see Definition 4.1 for a precise definition. The derived category of dg-modules over a
dgKLRW algebra categorifies the corresponding tensor product of Verma and integrable
modules. Moreover, it comes with a dg-categorical action of quantum sl2 (in the sense of
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[34, §7]) by the usual setup of acting by induction/restriction functor along the map that
adds a vertical black strand at the right of a diagram.

One of the difficulties in proving such statements is that one usually relies on the use
of an explicit basis of the dgKLRW algebra. While finding a candidate basis and proving
that it generates the algebra is not a difficult task, proving the linear independence can
be more challenging. A classical way of doing this is to construct a faithful action on
a polynomial space, and show that the candidate elements act by linearly independent
operators. However, the degenerate nature of the braid-moves in Eq. (2) that we need to
consider for the categorification of the Verma modules prevent the construction of such
an action (at least in an obvious way). To solve this issue, we apply tools from rewriting
theory up to braid-like isotopy, as developed in Appendix A. We refer to Sections 1.1.3
and 3.3 for more explanation about rewriting theory.

1.1.2. Derived standardly stratified structure. An important ingredient in the categorifica-
tion of tensor products in [14, 47] is the notion of standardly stratified categories, which
are generalizations of highest weight categories, already abstracting the structure of a
BGG category O. Indeed, the KLRW algebras are standardly stratified, and the classes
of standard modules correspond to induced basis elements of the tensor product in the
Grothendieck group. Furthermore, the standardization functor can be interpreted as the
categorification of the inclusion of each factor into the tensor product. This structure is
also mandatory to get uniqueness results as in [30].

In the case of the dgKLRW, one does not obtain a standardly stratified category. How-
ever, the derived category shares many similarities with a standardly stratified structure:
there is a stratification given by certain derived standard modules, and the (relatively)
projective modules can be preordered and obtained from iterated extensions of the stan-
dard modules with lower weight. Furthermore, the classes of derived standard modules
correspond with the induced basis elements in the Grothendieck group, and there is an
explicit derived standardization functor categorifying the inclusion of the tensor factors.

1.1.3. Appendix A: rewriting methods up to braid-like isotopy. Rewriting theory is a com-
binatorial theory of equivalence classes, consisting in transforming an object into another
by a successive sequence of oriented moves. In an algebraic context, it consists in orienting
relations of presentations by generators and relations of algebraic structures. In particu-
lar, several tools following the principles of rewriting were developed in numerous works
in linear algebra, in order to compute normal forms for different types of algebras, with
applications to the decision of the ideal membership problem, and to the construction of
linear bases, such as Poincaré-Birkhoff-Witt bases. For example, Shirshov introduced in
[41] an algorithm to compute a linear basis of a Lie algebra presented by generators and
relations, and deduced a constructive proof of the Poincaré-Birkhoff-Witt theorem, and
Gröbner basis theory was introduced to compute with ideals of commutative polynomial
rings [4, 5]. Buchberger described an algorithm to compute Gröbner bases from the notion
of S-polynomials, describing obstructions to local confluence in terms of overlappings be-
tween reductions. These approaches were extended in [15], where a rewriting theoretical
approach was introduced in order to study associative algebras without any assumption
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of compatibility of the rewriting rules with respect to a well-founded total order. This
approach is based on the structure of linear polygraphs. Polygraphs have been introduced
by Burroni [6] and Street [42] as generating systems for higher dimensional globular strict
categories, and have been extended in a linear setting in [15, 1]. The computation of lin-
ear bases lay on two fundamental rewriting properties: the termination, stating that an
element can not be reduced infinitely many times, and the confluence, stating that if an
element can be reduced in two different ways, there has to exist rewriting paths starting
from the two resulting elements leading to the same final result. Termination of a linear
rewriting system implies that a polynomial can be reduced in finitely many steps into a lin-
ear combination of irreducible monomials, so that these latter span the presented algebra.
Moreover, confluence ensures the linear independence of irreducible monomials.

Many works studying diagrammatic presentations through rewriting techniques consist
in rewriting on string diagrams in monoidal k-linear categories, or k-linear 2-categories.
These latter are presented by 3-dimensional polygraphs, see for example [16, 1]. In this
setting, the braid-like distant isotopy relations correspond to the exchange relations of the
2-categories, and thus are structural relations that we do not need to orient. However, if
we use rewriting in the dimension of the algebras, which is needed in order to deal with
the violating condition that diagrams with a leftmost strand being black are zero, these
relations have to be taken into account as oriented rewriting rules. In order to mimic the
well-known setting of rewriting in linear 2-categories, we will use rewriting modulo braid-
like planar isotopies. Rewriting modulo extends the usual rewriting techniques by allowing
to consider a set E of non-oriented equations together with a set R of oriented rules. It is
used mainly to split confluence proofs into many incremental steps, by first proving that the
set E forms a convergent rewriting system, and then study the remaining relations on E-
equivalence classes. Following [10] the usual basis result given by the irreducible monomials
of a convergent presentation is extended in that setting, by considering E-normal forms of
irreducible monomials with respect to S.

In Appendix A, we develop the formalism of rewriting modulo braid-like isotopies for
diagrammatic algebras. Given an algebra A, we introduce the linear 2-polygraph IsopAq
containing distant isotopy relations as rewriting rules, and prove that it is convergent, i.e.
terminating and confluent. We then describe how to prove that the linear 2-polygraph
containing the remaining relations of A, oriented with respect to a termination order, is
confluent modulo braid-like isotopies.

Acknowledgments. The authors would like to thank Catharina Stroppel for interesting
discussions and suggesting to consider a deformed dgKLRW algebra, which led to the proof
of Theorem 4.6 in Section 5. The authors would also like to thank Philippe Malbos and
Stéphane Gaussent for helpful discussions. G.N. is grateful to the Max Planck Institute
for Mathematics in Bonn for its hospitality and financial support.
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2. Quantum sl2 and its representations

Recall that quantum sl2 can be defined as the Qppqqq-algebra Uqpsl2q generated by the
elements K,K´1, E and F with relations

KE “ q2EK, KK´1 “ 1 “ K´1K,

KF “ q´2FK, EF ´ FE “
K ´ K´1

q ´ q´1
.

It becomes a bialgebra when endowed with comultiplication

∆pK˘1q :“ K˘1 b K˘1, ∆pF q :“ F b K ` 1 b F, ∆pEq :“ E b 1 ` K´1 b E,

and with counit εpK˘1q :“ ˘1, εpEq :“ εpF q :“ 0.

Remark 2.1. Usually, one would define Uqpsl2q over the rational fractions Qpqq (or the
complex numbers C) instead of the Laurent series Qppqqq. However, Qppqqq has a natural
categorification by considering a certain category of graded vector spaces, while it is not
clear what a categorification of Qpqq or C should be. Therefore we always work with
Laurent series in this paper.

There is a Qppqqq-linear anti-involution τ̄ of Uqpsl2q defined on the generators by

τ̄pEq :“ q´1K´1F, τ̄ pF q :“ qEK, τ̄pKq :“ K.

2.1. Integrable module V pNq. For each N P N, there is a finite dimensional irreducible
Uqpsl2q-module V pNq called integrable module. It has a basis tvN :“ vN,0, vN,1, . . . , vN,Nu
called induced basis, respecting

K ¨ vN,i :“ qN´2ivN,i,

F ¨ vN,i :“ vN,i`1,

E ¨ vN,i :“ risqrN ´ i ` 1sqvN,i´1,

where

rksq :“
qk ´ q´k

q ´ q´1
.

Note that vN,i “ F ipvNq. It is also common the consider the divided power basis (or
canonical basis) given by vN,i :“ F piqpvNq where F piq is the divided power defined as

F piq :“
1

risq!
F i,

where risq! :“ risqri´ 1sq ¨ ¨ ¨ r1sq and r0sq! :“ 1.

There is a unique non-degenerate bilinear form x¨, ¨yN : V pNq b V pNq Ñ Qppqqq such
that xv0, v0yN “ 1 and which is τ̄ -Hermitian: for any v, v1 P V pNq and u P Uqpsl2q we have
xu ¨ v, v1yN “ xv, τ̄puq ¨ v1yN . This map is called the Shapovalov form.
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2.2. Verma module Mpµq. Let β be a formal parameter and write λ :“ qβ as a formal
variable. Let b be the standard Borel subalgebra of sl2 and Uqpbq be its quantum version.
It is the Uqpsl2q-subalgebra generated by K,K´1 and E. For µ “ β ` z P β ` Z, let Kµ be
a 1-dimensional Qppq, λqq-vector space with a fixed a basis element vµ. We endow Kµ with
a Uqpbq-action by declaring that

K˘1 ¨ vµ :“ λ˘1q˘zvλ, E ¨ vµ :“ 0,

and extending linearly through the obvious map Qppqqq ãÑ Qppq, λqq. The Verma module
Mpµq is the induced module

Mpµq :“ Uqpsl2q bUqpbq Kµ.

It is infinite dimensional over Qppq, λqq with induced basis tvµ,i :“ F ipvµquiě0. The action
of the quantum group is explicitly given by

K ¨ vµ,i “ λqz´2ivµ,i,

F ¨ vµ,i “ vµ,i`1,

E ¨ vµ,i “ risqrβ ` z ´ i` 1sqvµ,i´1,

where

rkβ ` ℓsq :“
qkβ`ℓ ´ q´kβ´ℓ

q ´ q´1
“
λkqℓ ´ λ´kq´ℓ

q ´ q´1
,

for all k, ℓ P Z. One can also define the divided power basis as tvµ,i :“ F piqpvµquiě0.

The Verma module Mpµq can also be equipped with a Shapovalov form p¨, ¨qµ, which is
again the unique non-degenerate Qppq, λqq-bilinear form such that pvµ, vµqµ “ 1 and which
is τ̄ -Hermitian: for any v, v1 P Mpµq and u P Uqpsl2q, we have pu ¨ v, v1qµ “ pv, τ̄puq ¨ v1qµ.

2.3. Tensor product. Given two Uqpsl2q-modulesM andM 1, one forms the tensor product
representation M b M 1 by using the action induced by the comultiplication, explicitly

K˘1 ¨ pm b m1q :“ pK˘1 ¨mq b pK˘1 ¨ m1q,

F ¨ pm b m1q :“ pF ¨ mq b pK ¨m1q ` m b pF ¨ m1q,

E ¨ pm b m1q :“ pE ¨mq b m1 ` pK´1 ¨mq b pE ¨m1q,

for all m P M and m1 P M 1.

For µ P N \ pβ ` Zq, we write

Lpµq :“

#
V pµq, if µ P N,

Mpµq, if µ P pβ ` Zq.

For a string of weights µ “ pµ1, . . . , µrq, with µi P N \ pβ ` Zq, we write

Lpµq :“ Lpµ1q b ¨ ¨ ¨ b Lpµrq.
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2.3.1. Weight spaces. The module Lpµq decomposes into weight spaces

Lpµqkβ`ℓ :“ tv P Lpµq|Kpvq “ λkqℓvu.

Write |µ| :“
řr

i“1 µi P Zβ ` Z. Note that Lpµqkβ`ℓ ‰ 0 only for kβ ` ℓ “ |µ| ´ 2b with

b ě 0. We also write wpxq :“ λkqℓ for x P Lpµqkβ`ℓ.

2.3.2. Basis. Let Pr
b be the set of (weak) compositions of b into r parts, that is:

P
r
b :“

#
ρ “ pb1, . . . , brq P Nr

ˇ̌
ˇ̌
ˇ

rÿ

i“1

bi “ b

+
.

Consider also

P
r,µ

b :“ tpb1, . . . , brq P P
r
b |bi ď µi for all µi P Nu Ă P

r
b .

The module Lpµq admits an obvious basis induced by the ones of Lpµiq:
 
ṽρ :“ F b1pvµ1q b F b2pvµ2q b ¨ ¨ ¨ b F brpvµrq|ρ P P

r,µ

b

(
.

It also admits another basis that will reveal to be useful for categorification purposes:
 
vρ :“ F br

`
¨ ¨ ¨F b2pF b1pvµ1q b vµ2q ¨ ¨ ¨ b vµr

˘
|ρ P P

r,µ

b

(
.

Indeed, in Lpµ “ pµ1, µ2qq, we have

(3) xb F pyq “ F pxb yq ´ wpyqF pxq b y,

with x P Lpµ1q and y P Lpµ2q, by definition of ∆pF q. This allows to rewrite any element
ṽρ0 in the basis of tvρu by bringing recursively all F ’s to the left.

Lemma 2.2. Any basis element ṽρ0 can be written as a linear combination of elements in
tvρ|ρ P Pr

b u.

Proof. Consider an element of the form

(4) vt,ℓρ1,ρ2 :“ F t
`
vρ1 b F ℓpvµq

˘
b ṽρ2 ,

where t, ℓ ě 0, ρ1 P Nr1 , ρ2 P Nr2, r1 ` 1 ` r2 “ r, and µ “ µr1`1. If r1 “ 0, then it is an
element of tṽρu, and if ℓ “ r2 “ 0, then of tvρu.

Applying Eq. (3) on Eq. (4), we obtain

vt,ℓρ1,ρ2 “ F t`1
`
vρ1 b F ℓ´1pvµq

˘
b ṽρ2 ´ qµ`2´2ℓF t

`
F pvρ1q b F ℓ´1pvµq

˘
b ṽρ2

“ vt`1,ℓ´1
ρ1,ρ2

´ qµ`2´2ℓv
t,ℓ´1
F pρ1q,ρ2

,
(5)

where F pρ1q is given by increasing the last term of ρ1 by 1. Furthermore, if ℓ ´ 1 “ 0,
then they are of the form vρ1

1
b ṽρ1

2
for different ρ1

1 P Nr1`1 and ρ1
2 P Nr2. Since ṽρ1

2
“

F ℓ1
pvµr1`2

q b vρ2
2
with ρ2

2 P Nr2´1, we can rewrite the expression as an element of the
form Eq. (4) with r2 decreased by 1. In conclusion, applying Eq. (5) recursively allows to
decrease both ℓ and r2 to zero, giving the desired expression. �
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Example 2.3. Consider µ “ pβ, βq, and ṽp0,2q “ vβ b F 2pvβq. We compute

vλ b F 2pvλq “ F
`
vλ b F pvλq

˘
´ λq´2F pvλq b F pvλq,

F
`
vλ b F pvλq

˘
“ F 2pvλ b vλq ´ λF

`
F pvλq ´ vλ

˘
,

F pvλq b F pvλq “ F
`
F pvλq b vλ

˘
´ λF 2pvλq b vλ.

For another example, consider µ “ pβ, β, βq and vp0,1,1q “ vλ bF pvλq bF pvλq. We compute

vλ b F pvλq b F pvλq “ F pvλ b vλq b F pvλq ´ λF pvλq b vλ b F pvλq,

F pvλ b vλq b F pvλq “ F
`
F pvλ b vλq b vλ

˘
´ λF 2pvλ b vλq b vλ,

F pvλq b vλ b F pvλq “ F
`
F pvλq b vλ b vλ

˘
´ λF

`
F pvλq b vλ

˘
b vλ.

One can also consider the basis induced by the divided power basis
 
ṽρ :“ F pb1qpvµ1q b F pb2qpvµ2q b ¨ ¨ ¨ b F pbrqpvµrq|ρ P P

r,µ

b

(
,

and  
vρ :“ F pbrq

`
¨ ¨ ¨F pb2qpF pb1qpvµ1q b vµ2q ¨ ¨ ¨ b vµr

˘
|ρ P P

r,µ

b

(
.

Lemma 2.4. For ρ “ pb1, . . . , brq P P
r,µ

b , we have

(6) Epvρq “

˜
brÿ

i“1

r|µ| ´ 2b ` 2isq

¸
F br´1pvρăr b vµrq ` F brpEvρăr b vµrq,

where ρăr :“ pb1, . . . , br´1q.

Proof. We apply the main sl2-commutator relation br times. �

2.3.3. Shapovalov forms for tensor products. Following [47, §4.7], we consider a family of
bilinear forms p¨, ¨qµ on tensor products of the form Lpµq satisfying the following properties:

(1) each form p¨, ¨qµ is non-degenerate;

(2) for any u P Uqpsl2q we have pu ¨ v, v1qµ “ pv, τ̄puq ¨ v1qµ;

(3) for any f P Qppq, λqq, we have pfv, v1qµ “ pv, fv1qµ “ fpv, v1qµ;

(4) we have pv, v1qµ “ pv b vµr`1
, v1 b vµr`1

qµ1 where µ1 “ pµ1, . . . , µr, µr`1q,

for all v, v1 P Lpµq.

Similarly to [47, Proposition 4.33] we have:

Proposition 2.5. There exists a unique system of such bilinear forms which are given by

pv, v1qµ “
rź

i“1

pvi, v
1
iqµi ,

for every v “ v1 b ¨ ¨ ¨ b vr, v
1 “ v1

1 b ¨ ¨ ¨ b v1
r P Lpµq.
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3. Preliminaries and conventions

Before defining the dgKLRW algebras, we fix some conventions, and we recall some
common facts about dg-structures (classical references for this are [19] and [44], see also
[34, Appendix A] for a short survey oriented towards categorification), and about rewriting
methods. Since we use the same conventions as in [27], a part of this section is almost
identical to [27, §3.1 and Appendix B].

3.1. Homological algebra. First, let k be a commutative unital ring for the remaining
of the paper.

3.1.1. Dg-algebras. A Zn-graded dg-(k-)algebra pA, dAq is a unital ZˆZn-graded (k-)algebra
A “

À
ph,gqPZˆZn Ahg, where we refer to the Z-grading as homological (or h-degree) and the

Zn-grading as g-degree, with a differential dA : A Ñ A such that:

‚ dApAhgq Ă Ah´1
g for all g P Zn, h P Z;

(the differential preserves the Zn-grading and decreases the homological grading)
‚ dApxyq “ dApxqy ` p´1qdeghpxqxdApyq;
(the differential respects the graded Leibniz rule)

‚ d2A “ 0.
(the differential yields a complex)

The homology of pA, dAq is HpA, dAq :“ kerpdAq{ impdAq, which is a ZˆZn-graded algebra
decomposing as

HpA, dAq –
à

ph,gqPZˆZn

Hh
g pA, dAq, Hh

g pA, dAq :“
kerpdA : Ahg Ñ Ah´1

g q

impdA : Ah`1
g Ñ Ahgq

.

A morphism of dg-algebras f : pA, dAq Ñ pA1, dA1q is a morphism of algebras that preserves
the Z ˆ Zn-grading and commutes with the differentials. Such a morphism induces a
morphism f˚ : HpA, dAq Ñ HpA1, dA1q. We say that f is a quasi-isomorphism whenever f˚

is an isomorphism. Moreover, we say that pA, dAq is formal if there is a quasi-isomorphism

pA, dAq
»
ÝÑ pHpA, dAq, 0q. This happens whenever HpA, dAq is concentrated in homological

degree zero.

Remark 3.1. Note that in contrast to [19], our differential decreases the homological
degree instead of increasing it.

Similarly, a Zn-graded left dg-module over pA, dAq, or simply pA, dAq-module, is a ZˆZn-
graded A-module M “

À
ph,gqPZˆZn Mh

g with a differential dM :M Ñ M such that:

‚ dMpMh
g q Ă Mh´1

g for all g P Zn, h P Z;

‚ dMpx ¨mq “ dApxq ¨ y ` p´1qdeghpxqx ¨ dMpyq;
‚ d2M “ 0.

Homology, maps between dg-modules and quasi-isomorphisms are defined as above. There
are similar notions of Zn-graded right dg-modules and dg-bimodules, with only subtlety
that dMpm ¨ xq “ dMpmq ¨ x ` p´1qdeghpmqm ¨ dApxq.
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Remark 3.2. For a dg-algebra pA, dAq, we sometimes talk about a graded A-module
M . This means we consider M as a Z ˆ Zn-graded module over A, forgetting about the
differential dA.

In our convention, a Zm-graded category is a category with a collection of m autoequiva-
lences, strictly commuting with each others. The category pA, dAq -mod of (left) Zn-graded
dg-modules over a dg-algebra pA, dAq is a Z ˆ Zn-graded abelian category, with kernels
and cokernels defined as usual. The action of Z is given by the homological shift functor
r1s : pA, dAq -mod Ñ pA, dAq -mod sending M ÞÑ Mr1s :“ tmr1s|m P Mu and such that:

‚ deghpmr1sq :“ deghpmq ` 1;
(it increases the h-degree of all elements up by 1)

‚ dMr1s :“ ´dM ;
(it switches the sign of the differential)

‚ r ¨ pmr1sq :“ p´1qdeghprqpr ¨mqr1s,
(it twists the left action)

and sending f : M Ñ N to f r1s : Mr1s Ñ Nr1s, mr1s ÞÑ fpmqr1s. The action of g P Zn is
given by increasing the Zn-degree of all elements up by g, in the sense that

pgMqg0`g :“ pMqg0
,

or in other terms, an element x P M with degree g0 becomes of degree g0 ` g in gM .
There are similar definitions for categories of right dg-modules and dg-bimodules, with the
subtlety that the homological shift functor does not twist the right-action:

pmr1sq ¨ r :“ pm ¨ rqr1s.

As usual, a short exact sequence of dg-(bi)modules induces a long exact sequence in ho-
mology.

Let f : pM, dMq Ñ pN, dNq be a morphism of dg-(bi)modules. Then, one constructs the
mapping cone of f as

Conepfq :“ pMr1s ‘ N, dCq, dC :“

ˆ
´dM 0
f dN

˙
.(7)

The mapping cone is a dg-(bi)module, and it fits in a short exact sequence:

0 Ñ N
ıNÝÑ Conepfq

πMr1s
ÝÝÝÑ Mr1s Ñ 0,

where ıN and πMr1s are the canonical inclusion and projection N
ıNÝÑ Mr1s‘N

πMr1s
ÝÝÝÑ Mr1s.

3.1.2. Hom and tensor functors. Given a left dg-module pM, dMq and a right dg-module
pN, dNq, one constructs the tensor product

pN, dNq bpA,dAq pM, dMq :“
`
pM bA Nq, dMbN

˘
,

dMbNpmb nq :“ dMpmq b n` p´1qdeghpmqm b dNpnq.
(8)

If pN, dNq (resp. pM, dMq) has the structure of a dg-bimodule, then the tensor product
inherits a left (resp. right) dg-module structure.
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Given a pair of left dg-modules pM, dMq and pN, dNq, one constructs the dg-hom space

HOMpA,dAq

`
pM, dMq, pN, dNq

˘
:“

`
HOMApM,Nq, dHOMpM,Nq

˘
,

dHOMpM,Nqpfq :“ dN ˝ f ´ p´1qdeghpfqf ˝ dM ,
(9)

where HOMA is the ZˆZn-graded hom space of maps between ZˆZn-graded A-modules.
Again, if pM, dMq (resp. pN, dNq) has the structure of a dg-bimodule, then it inherits a
left (resp. right) dg-module structure.

In particular, given a dg-bimodule pB, dBq over a pair of dg-algebras pS, dSq-pR, dRq, we
obtain tensor and hom functors

pB, dBq bpR,dRq p´q : pR, dRq -mod Ñ pS, dSq -mod,

HOMpS,dSqppB, dBq,´q : pS, dSq -mod Ñ pR, dRq -mod,

which form a adjoint pair ppB, dBq bpR,dRq ´q $ HOMpS,dSqppB, dBq,´q.

3.1.3. Derived categories. The derived category DpA, dAq of pA, dAq is the localization of
the category pA, dAq -mod of Zn-graded pA, dAq-dg-modules along quasi-isomorphisms. It
is a triangulated category with translation functor induced by the homological shift functor
r1s, and distinguished triangles are equivalent to

pM, dNq
f
ÝÑ pN, dNq

ıNÝÑ Conepfq
πMr1s
ÝÝÝÑ pM, dNqr1s,

for every maps of dg-modules f : pM, dMq Ñ pN, dNq.

3.1.4. Cofibrant replacements. A cofibrant dg-module pP, dP q is a dg-module such that P
is projective as ZˆZn-graded A-module. Equivalently, it is a dg-module pP, dP q such that

for every surjective quasi-isomorphism pL, dLq
»
ÝÑÑ pM, dMq, every morphism pP, dP q Ñ

pM, dMq factors through pL, dLq. For any dg-module pN, dNq and cofibrant dg-module
pP, dP q, we have

HomDpA,dAq

`
pP, dP q, pN, dNq

˘
– H0

0

`
HOMpA,dAq

`
pP, dP q, pN, dNq

˘˘
.

Moreover, tensoring with a cofibrant dg-module preserves quasi-isomorphisms.
Given a left dg-module pM, dMq, there exists a cofibrant dg-module ppM, dpMq together

with a surjective quasi-isomorphism πM : ppM, dpMq
»
ÝÑÑ pM, dMq. Moreover, the as-

signment pM, dMq ÞÑ ppM, dpMq is natural, and we refer to ppM, dpMq as the cofibrant
replacement of pM, dMq. Thus, we can compute HomDpA,dAq

`
pM, dMq, pN, dNq

˘
by taking

H0
0

`
HOMpA,dAq

`
ppM, dpMq, pN, dNq

˘˘
– HomDpA,dAq

`
pM, dMq, pN, dNq

˘
.

3.1.5. Dg-derived categories. One of the issues with triangulated categories is that the
category of functors between triangulated categories is in general not triangulated. To fix
this, we work with a dg-enhancement of the derived category. In particular, this allows us
to talk about distinguished triangles of dg-functors.

Recall that a dg-category is a category where the hom-spaces are dg-modules over pk, 0q,
and compositions are compatible with this structure (see [19, §1.2] for a precise definition).
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The homotopy category H0pCq of a dg-category C is the category with the same objects
as C but with hom-spaces given by the degree zero homology of the dg-hom spaces of C.

The dg-derived category DdgpA, dAq of a Zn-graded dg-algebra pA, dAq is the Zn-graded
dg-category with objects being cofibrant dg-modules over pA, dAq, and hom-spaces being
subspaces of the graded dg-spaces HOMpA,dAq from (9), given by maps that preserve the
Zn-grading:

HomDdgpA,dAqpM,Nq :“ HOMpA,dAqpM,Nq˚
0 ,

for pM, dMq and pN, dNq cofibrant dg-modules.
The dg-derived category DdgpA, dAq is a dg-triangulated category, meaning its homo-

topy category is canonically triangulated (see [44] for a precise definition, or [34, Ap-
pendix A] for a summary oriented toward categorification). It turns out that the ho-
motopy category of DdgpA, dAq is triangulated equivalent to the usual derived category
DpA, dAq – H0pDdgpA, dAqq.

3.1.6. Dg-functors. A dg-functor between dg-categories is a functor commuting with the
differentials. Given a dg-functor F : C Ñ C1, it induces a functor on the homotopy
categories rF s : H0pCq Ñ H0pC1q. We say that a dg-functor is a quasi-equivalence if it
gives quasi-isomorphisms on the hom-spaces, and induces an equivalence on the homotopy
categories. We want to consider dg-category up to quasi-equivalences. Let Hqe be the ho-
motopy category of dg-categories up to quasi-equivalence , and we write RHomHqe for the
dg-space of quasi-functors between dg-categories (see [44] or [45]). These quasi-functors are
not strictly speaking functors, but they induce honest functors on the homotopy categories.
Whenever C1 is dg-triangulated, then RHomHqepC, C

1q is dg-triangulated.

Remark 3.3. The space of quasi-functors is equivalent to the space of strictly unital
A8-functors.

It is in general a hard problem to understand the space of quasi-functors between dg-
categories. However, by the results of Toen [44], if k is a field and pA, dAq and pA1, dA1q
are dg-algebras, then it is possible to compute the space of ‘coproduct preserving’ quasi-
functors RHomcop

HqepDdgpA, dAq, DdgpA
1, dA1qq. Indeed, in the same way as the category of

coproducts preserving functors between categories of modules is equivalent to the category
of bimodules, there is a triangulated quasi-equivalence

(10) RHomcop
HqepDdgpA, dAq, DdgpA

1, dA1qq – DdgppA1, dA1q, pA, dAqq,

where DdgppA1, dA1q, pA, dAqq is the dg-derived category of dg-bimodules. Composition
of functors is equivalent to derived tensor product, and understanding the triangulated
structure of RHomcop

HqepDdgpA, dAq, DdgpA
1, dA1qq becomes as easy as to understand the

structure of DppA, dAq, pA1, dA1qq. In particular, a short exact sequence of dg-bimodules
gives a distinguished triangle of dg-functors.

3.1.7. Derived hom and tensor dg-functors. Let pR, dRq and pS, dSq be dg-algebras. Let
pM, dMq and pN, dNq be pR, dRq-module and pS, dSq-module respectively. Let pB, dBq be a
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dg-bimodule over pS, dSq-pR, dRq. The derived tensor product is

pB, dBq bL
pR,dRq pM, dMq :“ pB, dBq b ppM, dpMq,

and the derived hom space is

RHOMpS,dSqppB, dBq, pN, dNqq :“ HOMpS,dSqpppB, dpBq, pN, dNqq.

This defines in turns triangulated dg-functors

pB, dBq bL
pR,dRq p´q : DdgpR, dRq Ñ DdgpS, dSq,

and

RHOMpS,dSqppB, dBq,´q : DdgpS, dSq Ñ DdgpR, dRq,

which are adjoint pB, dBq bL
pR,dRq p´q $ RHOMpS,dSqppB, dBq,´q.

3.2. Diagrammatic algebras. We always read diagram from bottom to top. We say that
a diagram is braid-like when it is given by strands connecting a collection of points on the
bottom to a collection of points on the top, without being able to turn back. Suppose these
diagrams can have singularities (like dots, 4-valent crossings, or other similar decorations).

A braid-like planar isotopy is an isotopy fixing the endpoints and that does not create
any critical point, in particular it means we can exchange distant singularities f and g:

g

¨ ¨ ¨
f

“
g

¨ ¨ ¨
f

3.3. Rewriting methods. Rewriting theory is a theory of equivalences that consist in
transforming algebraic objects using successive applications of oriented relations. It has
been developed in linear settings to solve the problem of membership to an ideal and to
compute linear bases, with the theory of Gröbner bases [4, 5]. In this context, rewriting
rules are oriented with respect to an ambient monomial order on the algebra. In this section,
we recall the linear context of polygraphic rewriting for associative algebras introduced in
[15], where this restriction on rewriting rules is removed. The calculations lay on two
fundamental rewriting properties:

(1) Termination states that an element can not be rewritten infinitely many times, and
therefore reaches a linear combination of irreducible monomials (i.e. monomials
that cannot be rewritten) after finitely many steps. In particular these irreducible
monomials form a spanning set.

(2) Confluence states that if a given element can be reduced in two distinct ways,
there have to exist rewriting paths allowing to reduce both resulting elements into
a common one. In particular the irreducible monomials are linearly independent.

The combination of termination and confluence, called convergence, then ensures that the
set of irreducible monomials form a basis of the original algebra. Moreover, rewriting with
polygraphs allows to obtain strong local confluence criteria. In particular, one proves that
if a linear polygraph is terminating, its confluence is equivalent to the confluence of the
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minimal overlappings between any given two relations, called critical branchings : suppose
there are rewriting rules xy ñ f and yz ñ g, then there is an overlapping over y and we
need the check the confluence between xyz ñ fz and xyz ñ xg. In contrast, we do not
need to verify the confluence of xyzx nor xxyz because they are not minimal overlappings
in the sense that the rightmost x (resp. leftmost x) is never rewritten by a rule. Under
the assumption of termination, confluence of a branching of the form xyyz does not have
to be verified as well, in the sense that it is not an overlapping but what is called a Peiffer
branching, and is automatically confluent as explained below.

Rewriting modulo extends these constructions by allowing to rewrite with respect to a
set of non-oriented relations, seen as axioms that one can freely use in rewriting paths.
This allows in particular to split the proofs of confluence of rewriting systems into incre-
mental steps. We develop in Appendix A rewriting methods modulo braid-like isotopy,
allowing to construct bases for diagrammatic algebras defined up to braid-like isotopy. See
Example A.5 for an example of this theory applied to the nilHecke algebra.

In [15], associative algebras over a field k are interpreted as monoidal objects in the
category Vectk of k-vector spaces and linear maps, and are presented by linear p1´q-
polygraphs. In the sequel, in view of an extension of the constructions of Appendix B
towards linear 2-categories, we interpret associative algebras as categories enriched over
Vectk with only one 0-cell, and in that context they are presented by linear 2-polygraphs.
As a consequence, there is a shift in dimensions of objects compared to [15], but the
terminology and constructions remain the same. These objects are triples pP0, P1, P2q made
of sets containing generating elements for the algebra, and the relations of the algebra. In
this context, P0 is always a singleton, P1 contains generating 1-cells that correspond to the
generators of the algebra, so that all the 1-cells correspond to monomials, i.e. products of
the generators, and the generating 2-cells correspond to the relations of the algebra. More
precisely, a linear 2-polygraph is a data of P “ pP0, P1, P2q such that:

i) pP0, P1q is an oriented graph with vertices P0 and edges P1, equipped with source and
target maps s0, t0 : P1 Ñ P0.

ii) P2 is a cellular extension of the free 1-algebroid P ℓ
1 , that is a set equipped with two

source and target maps s1, t1 : P2 Ñ P ℓ
1 such that the globular relations s0s1pαq “

s0t1pαq and t0s1pαq “ t0t1pαq hold for any α P P2, where the free 1-algebroid P ℓ
1

on pP0, P1q is defined as the 1-category enriched over Vectk whose objects are the
elements of P0, and for any p, q in P0, P

ℓ
1pp, qq is the free k-vector space with basis

the elements of the free 1-category generated by pP0, P1q with source p and target q.

For a linear 2-polygraph P “ pP0, P1, P2q, the elements of Pi are called the generating i-
cells of P . When P0 is a singleton, then P ℓ

1 corresponds to the free associative k-algebra on
the set P1, and thus a linear 2-polygraph with only one 0-cell corresponds to a presentation
by generators and oriented relations of an associative algebra, where the rewriting rules
are given in P2. More precisely, denote by IpP q the 2-sided ideal of P ℓ

1 generated by the
set of elements ts1pαq ´ t1pαq | α P P2u.

A linear 2-polygraph P presents an algebra A if A is isomorphic to P ℓ
1{IpP q. The

rewriting sequences will then correspond to 2-cells in the free 2-algebra P ℓ
2 on P , we refer
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to [15] for more details on these constructions. From now on, we will consider linear
2-polygraphs with only one 0-cell. A monomial in P ℓ

2 is a 1-cell of the free 1-category
P ˚
1 , every 1-cell f in P ℓ

1 can be uniquely decomposed as a linear combination of monomials
f “ λ1f1 `¨ ¨ ¨`λpfp, with λi P kzt0u for all 0 ď i ď p. The set of monomials tf1, . . . , fpu is
called the support of f , denoted by Supppfq. A linear 2-polygraph P is called left-monomial
if, for any α in P2, the 1-cell s1pαq is a monomial in P ℓ

1 .

A rewriting step is a 2-cell in P ℓ
2 with shape

λ ‚ ‚ ‚ ‚u

s1pαq

t1pαq

v
α ` ‚ ‚

g

where α P P2, λ P k, and g is a 1-cell in P ℓ
1 such that the monomial us1pαqv does not

belong to Supppgq, see [15]. A rewriting sequence is either and identity reduction f ñ f ,
or a 1-composite

f0
α1

ñ f1 ñ . . . fk´1
αk
ñ fk,

of rewriting steps of P . The linear 2-polygraph P is said to be terminating if there is
no infinite rewriting sequence in P . A normal form of P is a 1-cell in P ℓ

1 that cannot
be reduced by any rewriting step. When P is terminating, any 1-cell admits at least one
normal form. A branching of P is a pair pα, βq of rewriting sequences of P with a common
source s1pαq “ s1pβq. It is local if both α and β are rewriting steps of P . A branching
pα, βq of P is confluent if there exist rewriting sequences α1 and β 1 in P as in the following
diagram:

g

f f 1

h

α1α

β β1

We say that P is confluent (resp. locally confluent) if any branching (resp. local branching)
of P is confluent. When P is confluent, every 1-cell in P ℓ

1 admits at most one normal form.
When both termination and confluence properties are satisfied, we say that P is convergent,

and in that case any 1-cell f in P ℓ
1 admits a unique normal form, denoted by pf . Newman

lemma [38] states that if P is terminating and locally confluent, then it is confluent.
We are particularly interested in convergent presentations of algebras. Indeed, [15,

Theorem 3.4.2] states that if an algebra A is presented by a convergent linear 2-polygraph
P , then the set of monomials in normal form for P form a basis of the algebra A. Moreover,
there exist some local criteria to reach confluence of a linear 2-polygraph.

Following [15], local branchings of a linear 2-polygraph P can be classified into 4 families:
aspherical branchings that are branchings between a rewriting step f and itself, Peiffer
branchings that are branchings consisting in applying two rules on a monomial at different
positions with no overlapping, additive branchings that are branchigs consisting in applying
two rules on two different monomials of a polynomial, and overlapping branchings that are
the remaining ones. Aspherical branchings are trivially confluent, and if P is terminating,
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Peiffer and additive branchings are confluent, [15, Theorem 4.2.1]. A critical branching of
P is an overlapping branching pα, βq that is minimal for the relation on branchings defined
by pα, βq Ď pfαf 1, fβf 1q for any monomials f , f 1 in P ˚

1 . Following [15, Theorem 4.2.1], if
P is terminating it is locally confluent if and only if all its critical branchings are confluent.
Thus, if P is a terminating linear 2-polyraph, proving its confluence amounts to checking
the confluence of all its critical branchings.

In [12], a polygraphic context of rewriting modulo was introduced. Given two linear 2-
polygraphs pP0, P1, Eq and pP0, P1, Rq, one defines the cellular extension ERE of P ℓ

1 as the
set of 2-cells that can be written as a composition e‹1f ‹1e

1, where e and e1 are 2-cells in Eℓ

and f is a rewriting step of R. Namely, there is a rewriting step from f to g in ERE if and
only if there exists f 1 and g1 in P ℓ

1 such that f is E-equivalent to f 1, g is E-equivalent to g1

and there is a rewriting step for P with source f 1 and target g1. Explicitely, this consists in
rewriting with respect to R on equivalence classes modulo E. The data pP0, P1, EREq thus
defines a linear 2-polygraph, that we denote by ERE . A l inear 2-polygraph modulo is a data
made of a triple pR,E, Sq where R and E are linear 2-polygraphs with the same underlying
1-polygraph, denoted by P , and S is a cellular extension of P ℓ

1 such that R Ď S Ď ERE .
A branching modulo of pR,E, Sq is a triple pα, e, βq where f and g are rewriting paths of
Sℓ2 and e is a 2-cell of Eℓ

2 such that s1pαq “ s1peq and s1pβq “ t1peq. Such a branching is
said to be confluent modulo E if there exist rewriting paths α1, β 1 in Sℓ2 and a 2-cell e1 in
Eℓ

2 as in the following diagram:

f f 1 f 2

g g1 g2.

α

e

α1

e1

γ γ1

The linear 2-polygraph modulo pR,E, Sq is said to be confluent modulo E if any of its
branching modulo is confluent modulo E. We refer the reader to [12, 10] for rewriting
properties of polygraphs and linear polygraphs modulo. The local confluence criteria in
terms of critical branchings for terminating linear rewriting systems has been extended in
[10] in the context of linear rewriting modulo. When ERE is terminating, in order to prove
that the linear 2-polygraph ERE is confluent modulo, it suffices to prove that the critical
branchings modulo pα, βq where α is a rewriting step of R and β is a rewriting step of

ERE are confluent. Namely, these critical branchings modulo are given by application of
a rewriting step α of R and a rewriting step γ of R on two 1-cells that are E-equivalent,
with pα, e, γq being minimal for the order pα, e, βq Ď phαh1, heh1, hγh1q.

Moreover, following [10], when the linear 2-polygraph E is convergent, the basis theo-
rem of [15] extends to that context of rewriting modulo. Explicitely, given an algebra A
presented by a linear 2-polygraph P that we split into two parts E (non-oriented) and R
(oriented), if E is convergent, ERE is terminating and ERE is confluent modulo E, then
the set of E-normal forms of monomials in normal form with respect to ERE yields a basis
of A.
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4. Dg-enhanced KLRW algebras

Inspired by the KLRW algebra in [47, §4] (called “tensor product algebra” in the ref-
erence), which we think of as associated to a string of dominant integral g-weights, and
generalizing the dg-enhanced KLRW algebra in [27], which we think of as associated to
a generic weight β and a string of dominant integral g-weights, we introduce a dgKLRW
(dg-)algebra associated to a string of weights that can each either be generic or integral.

Definition 4.1. For µ “ pµ1, . . . , µrq P pN \ pβ ` Zqqr, the dgKLRW-algebra T
µ

b is the
diagrammatic k-algebra defined as follows:

‚ T
µ

b is generated by braid-like diagrams on b black strands and r colored strands.
The colored strand are labeled from left to right by µ1, . . . , µr, and we refer to the
colored strands labeled by elements in N as red strands, while the ones labeled by
elements in β`Z are called blue strands. We also require that the left-most strand
is always colored (and thus labeled µ1).

‚ The colored strands cannot intersect each other, but the black strands can intersect
all other strands (both black and colored) transversely. Moreover, black strands can
carry dots, and can be ‘nailed’ on the left-most colored strand:

black crossing

q´2

µi µi
colored crossings

qµi

dot

q2

µ1

nail

hq2µi

(11)

‚ The product xy of two diagrams x and y is given by stacking x on top of y if the
color of the strands match, and is zero otherwise.

‚ We consider these diagrams up to braid-like planar isotopy, and subject to the
following local relations:

– the nilHecke relations:

“ 0 “(12)

“ ` “ `(13)
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– the sliding relations for all µi P N \ pβ ` Zq:

µi

“

µi µi

“

µi

(14)

µi

“

µi µi

“

µi

(15)

– the red relations for all µi P N and i ą 1:

µi

“

µi

µi

µi

“ µi

µi

(16)

µi

“

µi

`
ÿ

u`v“
µi´1

u v

µi

(17)

where a non-negative label k next to a dot means we put k consecutive dots,
– the blue relations for all µi P β ` Z and i ą 1:

µi

“ 0,

µi

“ 0,

µi

“

µi

(18)

– the nail relations:

µ1

“

µ1
µ1

“ ´

µ1 µ1

“ 0.(19)

‚ We endow T
µ

b with a Z ˆ Z2 grading, where the first grading is homological and
denoted h, and the second and third one are extra grading denoted q and λ respec-
tively. For this, we declare that the generators are in degree given by the monomial
written below them in Eq. (11), where the monomial haqb`cβ :“ haqbλc means the
element is in homological degree a, q-degree b and λ-degree c.
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‚ We turn T
µ

b into a Z2-graded dg-algebra pT
µ

b , dµq by defining a differential dµ as
being zero on the dots and crossings, and

dµ

¨
˝

µ1

˛
‚:“

$
’’’’&
’’’’%

0, if µ1 P β ` Z,

µ1

µ1

if µ1 P N,

and extending using the graded Leibniz rule (it is straightforward to verify that dµ
is well-defined).

Note that for µ1 “ β and all µi P N for i ą 1, then the dg-algebra pT
µ

b , dµq coincides
with the dg-enhanced KLRW dg-algebra of [27, §3.2]. When µ1 P N, then it coincides with
the dg-enhanced KLRW dg-algebra of [27, §3.4] equipped with the non-trivial differential.
Thus we get the following:

Proposition 4.2 ([27, Theorem 3.13]). For a string of integral dominant weights µ P Nr,
there is a quasi-isomorphism

pT
µ

b , dµq
»
ÝÑ pT

µ

b , 0q,

where pT
µ

b , 0q is the KLRW algebra (tensor product algebra) of [47, §4] viewed as a Z2-graded
dg-algebra concentrated in homological and λ-degrees zero.

For the sake of keeping notations short, we introduce the following:

β :“ 0.

In particular, it allows us to write in general

dµ

¨
˝

µ1

˛
‚“

µ1

µ1

and rewrite the relations (16)-(18) as

µi

“

µi

µi

µi

“ µi

µi

µi

“

µi

`
ÿ

u`v“
µi´1

u v

µi

where the sum is zero whenever µi P β ` Z since there are no pair of non-negative integer
u and v such that u ` v “ β ` z ´ 1.
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4.1. Basis. For any ρ “ pb1, . . . , brq P Pr
b , define the idempotent

1ρ :“

µ1

. . .

b1
µ2

. . .

µr

. . .

br

of T
µ

b . We will construct a Z ˆ Z2-graded k-basis κBρ for 1κT
µ

b 1ρ, similarly as in [34,
Section 3.2.3].

4.1.1. Left-adjusted expressions. Let Sn be the symmetric group viewed as a Coxeter group
generated by the simple transpositions σ1, . . . , σn´1. Recall the notion of left-adjusted
expressions of [36, Section 2.2.1]: a reduced expression σi1 ¨ ¨ ¨σik of an element w P Sn is
said to be left-adjusted if i1 `¨ ¨ ¨` ik is minimal. One can obtain a left-adjusted expression
of any element of Sn by taking recursively its representative in the left coset decomposition

Sn “
nğ

t“1

Sn´1σn´1 ¨ ¨ ¨σt.

If we think of permutations as string diagrams, a left-adjusted reduced expression is
obtained by pulling every string as far as possible to the left.

4.1.2. A basis of T
µ

b . For an element ρ P Pr
b and 1 ď k ď b, we define the tightened nail

θk,ρ P 1ρT
µ

b 1ρ as the following element:

θk,ρ :“

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

µi`1

. . .

. . .

µr

. . .

. . .

µiµ2µ1

k ` i

where the nail is on the k-th black strand from the left. This element is of degree degpθk,ρq “
q2pµ1`¨¨¨`µiq´4pk´1q.

Lemma 4.3. Tightened nails anticommute with each other:

θk,ρθℓ,ρ “ ´θℓ,ρθk,ρ, θ2k,ρ “ 0,

for all 1 ď k, ℓ ď b.

Proof. It follows from Lemma B.2 and Lemma B.1. �

Fix κ, ρ P Pr
b and consider the subset of permutations w P κSρ of Sr`b, viewed as strand

diagrams with b black strands and r colored strands, such that:

‚ there are no black strand on the left,
‚ the strands are ordered at the bottom by 1κ and at the top by 1ρ,
‚ for any reduced expression of w, there is no crossing between colored strands.
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Example 4.4. If κ “ ρ “ p0, 1, 1q, the set κSρ has two elements, namely

and

Note that the second element is not left-adjusted.

For each w P κSρ, l “ pl1, . . . , lbq P t0, 1ub and a “ pa1, . . . , abq P Nb we define an element

bw,l,a P 1κT
µ

b 1ρ as follows:

(1) choose a left-adjusted reduced expression of w in terms of diagrams as above,
(2) for each 1 ď i ď b, if li “ 1, nail the i-th black strand (counting at the top, from

the left) on the left-most colored strand by pulling it from its leftmost position,
(3) for each 1 ď i ď b, add ai dots on the i-th black strand at the top.

Let κBρ be the set of all bw,l,a for w P κSρ, l P t0, 1ub and a P Nb, where we also assume
that the tightened floating dots are ordered such that whenever we have θk,ρθℓ,ρ, then ℓ ą k.

Example 4.5. We continue the example of κ “ ρ “ p0, 1, 1q. If we choose for w the
permutation with a black/black crossing, l “ p1, 0q and a “ p0, 1q we have

bw,l,a “

Note that we added the nail at the top and not the bottom because that is where the black
strand is at its left-most position.

Theorem 4.6. As a Z ˆ Z2-graded k-module, 1κT
µ

b 1ρ is free with basis given by κBρ .

Proof. The statement is given by Corollary 5.12 in the next section. �

4.1.3. Left decomposition. In the following, we draw T
µ

b 1ρ with ρ “ pb0, . . . , brq as a box
diagram

µ1

. . .

b1 µ2

. . .

b2 µ3

. . .

µr

. . .

br

T
µ

b

Let ρî :“ pb1, . . . , bi´1, bi ´ 1, bi`1, . . . , brq. When we draw a box in a diagram as follows:

µ1

. . .

b1 µ2

. . .

µi

. . .

t

p
. . .

µi`1

. . .

µr

. . .

br

T
µ

b´1

with p ě 0 and 0 ď t ă bi, it means we consider the subset of T
µ

b 1ρ isomorphic to a grading

shift of T
µ

b´11ρî given by replacing the box labeled T
µ

b´1 with any diagram of T
µ

b´1 in the
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diagram above, and consider it as a diagram of T
µ

b 1ρ. We also write

µ1

p :“
p

µ1

“
p

µ1

for all p ě 0, and

θk,ρppq :“

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

µi`1

. . .

. . .

µr

. . .

. . .

µiµ2µ1

p

k ` i

Note that θk,ρp0q “ θk,ρ.

Proposition 4.7. As a Z ˆ Z2-graded k-module, T
µ

b 1ρ decomposes as a direct sum

µ1

. . .

b1 µ2

. . .

b2 µ3

. . .

µr

. . .

br

T
µ

b

–
. . .

µ2

. . .
µr´1

. . . . . .

µrµ1

T
µ1

b

‘
rà
i“1

à
0ďtăbi
pě0 µ1

p

. . .

µ2

. . .
µi

. . .

t

p
. . .

µi`1

. . .
µr

. . .

T
µ

b´1

‘
rà
i“1

à
0ďtăbi
pě0

. . . . . . . . .

t

. . .

µi`1

. . .
µr

. . .

µiµ2µ1

p

T
µ

b´1

(20)

where µ1 “ pµ1, . . . , µr´1q, and the isomorphism is given by inclusion.

Proof. By Theorem 4.6, we get a similar decomposition as in Eq. (20), but where we put
the p dots on the upper-right part of the black strand. Since we can slides dots up to
adding terms with a lower number of crossings using Eq. (13) and Eq. (15), it means we
get the decomposition of the statement by a diagonal change of basis. �

Let 1b,1 P T
µ

b`1 be the idempotent given by

1b,1 :“
ÿ

ρPPr
b µ1

. . .

b1
µ2

. . .

µr

. . .

br
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We define

G1pi, t, pq :“ q2pbi´t´1`pq`
ř

sąipµs`2bsq
`
T
µ

b 1ρî, dµ
˘
,

G2pi, t, pq :“ q|µ|´2b`µi`2pp´tq`
ř

săipµs´2bsq
`ĂTµ

b1ρ
î
,´dµ

˘
,

where ĂM is defined as M but with twisted left-action: x ¨ rm :“ p´1qdeghpxq Čpx ¨mq. Note
that G1pi, t, pq is isomorphic as ZˆZ2-graded T

µ

b -module to the subset of T
µ

b`11ρ given by
the diagrams pictured at the second line of Eq. (20), and G2pi, t, pqr1s to the ones at the
third line.

Remark 4.8. We need to introduce some twist in the definition of G2pi, t, pq to get the
correct signs because in our convention the homological shift twists the left-action, while
the inclusion G2pi, t, pq ãÑ T

µ

b 1ρ is given by adding diagrams below (i.e. multiplication on
the right).

Moreover, dµpθk,ρppqq is either 0 (if µ1 P β ` Z) or can be rewritten as a combination
of diagrams with dots and crossings only involving the first i colored strands and k black
strands. Therefore, we obtain an isomorphism of left pT

µ

b´1, dµq-modules:

(21) p1b,1T
µ

b`11ρ, dµq – Cone

¨
˚̋ rà

i“1

à
0ďtăbi
pě0

G2pi, t, pq
Lµ
ÝÑ

rà
i“1

à
0ďtăbi
pě0

G1pi, t, pq

˛
‹‚,

for some morphism Lµ of left pT
µ

b , dµq-modules determined by dµ and using Proposition 4.7.
More precisely, for x P G2pi, t, pq we set Lµpxq :“ p´1qdeghpxqx ¨ dµpθpb1`¨¨¨`bi´1`tq,ρppqq. The
sign is due to the fact we have twisted the left action in the definition of G2pi, t, pq.

Example 4.9. Consider r “ 2, µ “ pµ1, µ2q, b “ 2, ρ “ p2, 0q. Proposition 4.7 gives:

µ1 µ2

T
µ

2

–

µ1 µ2

T
µ1

2
‘
à
pě0

µ1

p

µ2

T
µ

1

‘
à
pě0

µ1

p

µ2

T
µ

1

‘
à
pě0

µ2µ1

p

T
µ

1

‘
à
pě0

µ2µ1

p

T
µ

1

where µ1 “ pµ1q. Then we have

G1p1, 0, pq –

µ1

p

µ2

T
µ

1

G1p1, 1, pq –

µ1

p

µ2

T
µ

1

G2p1, 0, pqr1s –

µ2µ1

p

T
µ

1

G2p1, 1, pqr1s –

µ2µ1

p

T
µ

1
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In order to compute Lµ, we compute

dµ

¨
˝

µ2µ1

p

˛
‚“ p1

µ2µ1

with p1 :“ p ` µ1,

dµ

¨
˝

µ2µ1

p

˛
‚“

ÿ

u`v
“p1´1

v
u

µ2µ1

´
ÿ

u`v
“p1´1

ÿ

a`b
“v´1

µ1

a
u

b

µ2

In particular, note that G2p1, 0, pq has its image only in G1p1, 0, p
1q, while G2p1, 1, pq has

its image in both G1p1, 0, p
2q and G1p1, 1, p

2q for p2 ď p1 ´ 1.

5. Basis theorem

The goal of this section is to prove Theorem 4.6. Usually with KLR-like algebra, one
proves such a statement by constructing a faithful action on a polynomial space. However,
the degenerate nature of the relations in Eq. (18) make the construction of such an action
a non-obvious problem. To get around this issue, we define a new parametrized algebra
T
µ

b pδq where the degenerate relations are replaced by non-degenerate ones, and which gives

back T
µ

b when specializing the parameter δ to zero. We show that T
µ

b pδq comes with a
faithful polynomial action, and use it to prove Theorem 4.6 through rewriting methods.

Definition 5.1. Let T
µ

b pδq be the ZˆZ2-graded diagrammatic krδs-algebra defined exactly

as T
µ

b in Definition 4.1 except that the relations in Eq. (18) are replaced by

µi

“ δ

µi µi

“ δ

µi

(22)

µi

“

µi

(23)

Note that if we specialize δ “ 0, then we obtain T
µ

b p0q – T
µ

b .

Our goal is to equip T
µ

b with a rewriting system up to braid-like isotopy in the sense of
Appendix A, and then specialize it to the case δ “ 0 in order to prove Theorem 4.6.

5.1. Rewriting rules. Let Γ
µ

b pδq be the set of diagrams of the same form as in the defi-

nition of T
µ

b pδq, up to braid-like planar isotopy (see Section 3.2).

We define a weight function w : Γ
µ

b pδq Ñ Z3 that takes a diagram to the element of Z3

given by starting at p0, 0, 0q and applying the following procedure:

‚ for each black or colored crossing, count the number i of strands at its left and add
pi, 0, 0q;
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‚ for each dot, follow the strand above and sum k the amount of crossings and nails
involving the strand, then add p0, k, 0q;

‚ for each nail, count the number ℓ of crossings in the region at the bottom left
delimited by following the nailed strand from the nail to the bottom, then add
p0, 0, ℓq.

Clearly, this weight function is well-defined as it is stable under braid-like planar isotopy.
Therefore this gives a preorder ĺ on Γ

µ

b pδq by saying D ĺ D1 whenever wpDq ď wpD1q for
the lexicographic order on Z3.

Example 5.2. Consider the following diagram:

µ2µ1

We obtain that its weight is p7, 3, 1q.

Following Appendix A, we will rewrite in the algebras T
µ

b pδq modulo braid-like isotopies.

Let T
µ

b pδq be the linear 2-polygraph having one 0-cell, with generating 1-cells given by

µ1

. . .

µ2

. . .. . .

µr

. . . ,

µ1

. . .

µ2

. . .. . .

µr

. . .

µ1

. . .

µi

. . .. . . . . . ,

µ1

. . .

µi

. . .. . . . . .

µ1

¨ ¨ ¨

µ2

. . .

µr

. . .

and containing the following rewriting rules as generating 2-cells:

ñ 0, ñ(24)

ñ ` ñ ´(25)
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µi

ñ

µi µi

ñ

µi

(26)

µi

ñ

µi µi

ñ

µi

(27)

µi

ñ

µi

µi

µi

ñ µi

µi

if µi P N,(28)

µi

ñ δ

µi µi

ñ δ

µi

if µi P β ` Z,(29)

µi

ñ

µi

´
ÿ

u`v“
µi´1

u v

µi

(30)

where we recall the sum is 0 by convention whenever µi P β ` Z,

µ1

ñ

µ1
µ1

ñ ´

µ1 µ1

ñ 0,(31)

and finally the collections of local rewriting rules

. . .

. . .

µ1 ℓ

ñ

. . .

. . .

µ1 ℓ

(32)

. . .

. . .

µ1 ℓ µi

ñ

. . .

. . .

µ1 ℓ µi

`
ÿ

u`v“
µi´1 u v

. . .

. . .

µ1 ℓ µi

(33)
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. . .

. . .

µ1 ℓ µi

ñ

. . .

. . .

µ1 ℓ µi

´
ÿ

u`v“
µi´1

u v

. . .

. . .

µ1 ℓ µi

(34)

for all ℓ ě 0 and where a dashed strand mean it can either be black or colored. Note that
going from left to right strictly decreases the weight. Also note that all these relations
holds in T

µ

b pδq, and together they present T
µ

b pδq.
In the sequel, we rewrite with the rewriting rules above modulo braid-like planar iso-

topies. As a consequence, we consider rewriting with respect to the linear 2-polygraph
modulo IsopT

µ

b pδqqT
µ

b pδqIsopT
µ

b pδqq consisting in applying the rewriting rules of T
µ

b pδq on dia-

grams of Γ
µ

b pδq that are defined up to braid-like planar isotopies. In order to shorten the

notations, we will denote by rTµb pδq the linear 2-polygraph modulo IsopT
µ

b pδqqT
µ

b pδqIsopT
µ

b pδqq.

Remark 5.3. Note that we added the rewriting rules Eq. (32), Eq. (33) and Eq. (34),
which do not come from orienting defining relations of the algebra, in order to reach

confluence modulo of the linear 2-polygraph modulo rTµb pδq. Indeed, there are indexed
critical branchings of the form

. . .

. . .

µ1 ℓ

. . .

. . .

µ1 ℓ

. . .

. . .

µ1 ℓ

(32)

(24)

(24)

that is not confluent if we don’t add the relation Eq. (32). Other shapes of indexed critical
branchings also impose to add the relations Eq. (33) and Eq. (34). Moreover, without
these relations we sould still have a terminating rewriting system, but some normal forms
would not be basis elements.

The rewriting rules above terminate on diagrams up to braid-like isotopy, i.e. we have
the following proposition:

Proposition 5.4. The linear 2-polygraph modulo rTµb pδq is terminating.

Proof. Note that for anyD P Γ
µ

b pδq, then wpDq ě p0, 0, 0q. Moreover, we have the following:
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‚ the 2-cells above strictly decrease the weight, that is wps2pαqq ą wphq for any h in
Supppt2pαqq.

‚ the weight function is stable under multiplication, that is for any monomials D,D1,
D1,D2 of T

µ

b , wpDq ą wpD1q implies that wpD1DD2q ą wpD1D
1D2q since we add

to the triples wpDq and wpD1q the same elements in each entry.

Therefore, the preorder ĺ defines a termination order for the linear 2-polygraph R. As
it is stable under the application of braid-like isotopy 2-cells, it extends to a termination
order for the linear 2-polygraph modulo ERE . �

5.2. Polynomial action. Our goal is to construct a faithful action of T
µ

b pδq on a poly-

nomial ring. The construction is similar to [27, §3.3.1]. Let R :“ krδs, and let Pol
µ

b :“À
ρPPr

b
Polb ερ be the free module over the ring Polb :“ Rrx1, . . . , xbs b

Ź‚pω1, . . . , ωbq gen-

erated by ερ for each ρ P Pr
b .

There is an R-linear action of the symmetric group Sb on Polb, similar to the one already
used in [36, §2.2]. For each simple transposition σi we put

σipxjq :“ xσipjq,

σipωjq :“ ωj ` δi,jpxi ´ xi`1qωi`1,

where δi,j :“ 1 if i “ j and δi,j :“ 0 if i ‰ j.

For κ, ρ P Pr
b , we let any element of 1κT

µ

b pδq1ρ act as zero on Polb ερ1 for ρ1 ‰ ρ and
sends elements in Polb ερ to elements in Polb εκ. We now describe the action of the local

generators of T
µ

b pδq on a polynomial fερ P Polb ερ. First, similarly as in [47, Lemma 4.12],
we put

. . . . . . ¨ fερ :“ xifεκ, . . . . . . ¨ fερ :“
f ´ σipfq

xi ´ xi`1
εκ,

. . .

N

. . . ¨ fερ :“ fεκ, . . .

N

. . . ¨ fερ :“ xNi fεκ,

where we only have drawn the i-th or the i-th and pi` 1q-th black strands, counting from
left to right. We also put

. . .

β ` N

. . . ¨ fερ :“ fεκ, . . .

β ` N

. . . ¨ fερ :“ δfεκ,

Finally, as in [36, §2.2] we put

µ1

. . . ¨ fερ :“ ω1fεκ.

Proposition 5.5. The rules above define an action of T
µ

b pδq on Pol
µ

b .
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Proof. One easily checks that the defining relations of T
µ

b pδq are satisfied, similarly as in
[34, Proposition 3.7]. We leave the details to the reader. �

Note that the elements in κBρ can all be seen as elements in 1κT
µ

b pδq1ρ.

Theorem 5.6. As a Z ˆ Z2-graded k-module, 1κT
µ

b pδq1ρ is free with basis given by κBρ .

Proof. First, we observe that the elements in κBρ are the normal forms for the rewriting

rules of Section 5.1. Thus, Proposition 5.4 shows that κBρ generates 1κT
µ

b pδq1ρ. We obtain
linear independence by observing that elements in κBρ act by linearly independent elements

on Pol
µ

b as in [27, Theorem 3.11]. �

Corollary 5.7. The action of T
µ

b pδq on Pol
µ

b described above is faithful.

Remark 5.8. Note that the action of T
µ

b p0q on Pol
µ

b after specializing δ “ 0 is no longer
faithful since

. . .

β ` N

. . .

acts as zero.

5.3. Basis for δ “ 0. The rewriting rules on Γ
µ

b pδq defined above are confluent modulo
braid-like isotopies:

Proposition 5.9. The linear 2-polygraph modulo rTµb pδq is confluent modulo IsopT
µ

b pδqq.

Proof. By Theorem 5.6, we know that the normal forms are linearly independent. Therefore
the rewriting rules are confluent. �

Remark 5.10. One can also verify by hand that all the regular critical branchings modulo

of rTµb pδq are confluent modulo braid-like isotopies. However, indexed critical branchings
given by overlappings of the rewriting rules (32), (33) and (34) produce infinitely many
cases to check, which can be unwieldy in practice. We show that they are confluent in the
case of tensor products of Verma modules (i.e. µi P β ` Z for alli) but the general case is
more complicated. Since we find this to be an interesting problem in terms of confluence,
we describe this in details in Appendix B.

Corollary 5.11. After specializing δ “ 0, the linear 2-polygraph modulo rTµb p0q is confluent
modulo braid-like isotopies.

Proof. If an equation holds for generic δ, then it holds for δ “ 0. �

Corollary 5.12. As a Z ˆ Z2-graded k-module, 1κT
µ

b 1ρ is free with basis given by κBρ .

6. Categorification of Lpµq

In this section, we explain how derived categories of pTµ, dµq-modules categorify Lpµq.
Since the categorical action is similar to [36] and [34], we will rely heavily on the references
for the details.
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Recall we write DdgpT
µ

b , dµq for the (dg-enhanced) derived dg-category of Z2-graded

pT
µ

b , dµq-dg-modules, see Section 3.1.5. We will also write b for bk and bb for bpT
µ

b
,dµq.

Similarly RHOMb denotes RHOMpT
µ

b
,dµq

6.1. Categorical action. There is a (non-unital) map pT
µ

b , dµq Ñ pT
µ

b`1, dµq given by
adding a vertical black strand on the right:

(35)
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

D ÞÑ
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

D

It sends 1 P T
µ

b to 1b,1 P T
µ

b`1. Moreover, it gives rise to derived induction and restriction
dg-functors

Indb`1
b : DdgpT

µ

b , dµq Ñ DdgpT
µ

b`1, dµq,

Indb`1
b p´q – pT

µ

b`11b,1, dµq bL
b ´,

Resb`1
b : DdgpT

µ

b`1, dµq Ñ DdgpT
µ

b , dµq,

Resb`1
b p´q – RHOMb`1ppT

µ

b`11b,1, dµq,´q,

which are adjoint. By Proposition 4.7, we know that pT
µ

b`11ρ,1, dµq is a cofibrant right dg-

module over pT
µ

b , dµq, so that we can replace derived tensor product (resp. derived hom)
by usual tensor products:

Indb`1
b p´q – pT

µ

b`11b,1, dµq bb ´, Resb`1
b p´q – p1b,1T

µ

b`1, dµq bb`1 ´.

Then we define

Fb :“ Indb`1
b , Eb :“ q2b`1´|µ| Resb`1

b ,

and Idb is the identity dg-functor on DdgpT
µ

b , dµq.
Consider the map

ψ : q´2pT
µ

b 1b´1,1 bb´1 1b´1,1T
µ

b q Ñ 1b,1T
µ

b`11b,1,

given by

x bb´1 y ÞÑ xτby,

where τb is a crossing between the b-th and pb ` 1q-th black strands. Diagrammatically,
one can picture it as

. . .

. . .

. . .

ÞÑ

. . .

. . .

. . .

where the bent black strands depict the induction/restriction functors. Consider also the
map

φ : 1b,1T
µ

b`11b,1 Ñ
à
pě0

q2ppT
µ

b q ‘ q2p`2|µ|´4bpT
µ

b qr1s,



32 BENJAMIN DUPONT AND GRÉGOIRE NAISSE

given by projection onto the following summands

à
pě0 . . .

b1 µ2

. . .

µr

. . .

br

p

µ1

T
µ

b

‘
. . .

b1 µ2

. . .

µr

. . .

brµ1

p

T
µ

b

of Proposition 4.7 (i.e. when i “ r and t “ br).

Lemma 6.1. There is a short exact sequence

0 Ñ q´2pT
µ

b 1b´1,1 bb´1 1b´1,1T
µ

b q
ψ

ÝÝÑ 1b,1T
µ

b`11b,1
φ

ÝÝÑ
à
pě0

q2ppT
µ

b q ‘ q2p`2|µ|´4bpT
µ

b qr1s Ñ 0,

of Z ˆ Z2-graded T
µ

b -T
µ

b -bimodules.

Proof. The map ψ is clearly a morphism of graded bimodules, while the map φ is clearly
a morphism of graded left modules. By similar computations as in [34, Lemma 5.4], one
can show that φ defines a map of bimodules, and we omit the details. Exactness follows
from an immediate dimensional argument using Proposition 4.7. �

We observe that ψ lift immediately to a map of dg-bimodules

ψ̂ : q´2pT
µ

b 1b´1,1, dµq bb´1 p1b´1,1T
µ

b , dµq
ψ
ÝÑ p1b,1T

µ

b`11b,1, dµq.

Define
hµ :

à
pě0

q2p`2|µ|´4bpT
µ

b q Ñ
à
pě0

q2ppT
µ

b q,

as the morphism of left pT
µ

b , dµq-modules

hµpxq :“ φ ˝ Lµ ˝ φ´1pxq,

where we recall Lµ is defined in Eq. (21).

Lemma 6.2. The map hµ defined above is a morphism of graded dg-bimodules.

Proof. There is a similar decomposition as in Proposition 4.7 of 1b,1T
µ

b`11b,1, but flipped

vertically, yielding a decomposition as right T
µ

b -module. We denote the decomposition

summand as G̃1pi, t, pq and G̃2pi, t, pq. Then, we get an isomorphism of right pT
µ

b , dµq-
modules

p1b,1T
µ

b`11b,1, dµq – Cone

¨
˚̋ rà

i“1

à
0ďtăbi
pě0

G̃2pi, t, pq
Rµ
ÝÑ

rà
i“1

à
0ďtăbi
pě0

G̃1pi, t, pq

˛
‹‚,

for a certain map of right modules Rµ defined similarly as Lµ. Since φ is a map of

bimodules, it appears that the projections on Gkpr, br, pq and on G̃kpr, br, pq coincides
for all k P t1, 2u and p ě 0. Finally, we observe that LµpG2pr, br, pqq|‘ℓě0G1pr,br ,ℓq –
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RµpG̃2pr, br, pqq|‘ℓě0G̃1pr,br,ℓq
under the above mentioned identification, because all defining

relations of T
µ

b are symmetric with respect to a vertical flip, and so is dµpθρ,bq. Therefore we
have hµ “ φ˝Rµ˝φ´1 as well, and we conclude that hµ is a morphism of right modules. �

Consequently, we get an induced morphism

φ̂ : p1b,1T
µ

b`11b,1, dµq
φ
ÝÑ Cone

˜
à
pě0

q2p`2|µ|´4bpT
µ

b q
hµ
ÝÑ

à
pě0

q2ppT
µ

b q

¸
,

of dg-bimodules.

Example 6.3. Take µ “ pN, βq. We compute

hµ

¨
˚̋

βN

P q2p`2|µ|´4bpT
µ

b q

˛
‹‚“ φ ˝ Lµ

¨
˚̋

βN

p

˛
‹‚“ φ

¨
˚̋ ÿ

k`ℓ“
p`N´1

k

ℓ

βN

˛
‹‚“ 0.

For µ “ pN, 1q, we compute

hµ

¨
˝

1N

P q2p`2|µ|´4bpT
µ

b q

˛
‚

“ φ

¨
˚̊
˚̋

ÿ

k`ℓ“
p`N´1

k

ℓ

1N

´ k
ℓ

1N

´
ÿ

s`t“
ℓ´1

k
s

t ` 1

1N

˛
‹‹‹‚

“ ´
p`N´1ÿ

ℓ“0

pℓ ` 1q

¨
˝ ℓ

1N

P q2pp`N´1´ℓqpT
µ

b q

˛
‚

Proposition 6.4. If |µ| R N, then hµ “ 0 and we obtain an isomorphism

Cone

˜
à
pě0

q2p`2|µ|´4bpT
µ

b q
hµ
ÝÑ

à
pě0

q2ppT
µ

b q

¸
–
à
pě0

q2p`2|µ|´4bpT
µ

b qr1s ‘ q2ppT
µ

b q.

of dg-bimodules. If |µ| P N, then we have a quasi-isomorphism

Cone

˜
à
pě0

q2p`2|µ|´4bpT
µ

b q
hµ
ÝÑ

à
pě0

q2ppT
µ

b q

¸
»
ÝÑ

#À|µ|´2b´1

p“0 q2pT
µ

b , if |µ| ´ 2b ě 0,
À2b´|µ|´1

p“0 q2pT
µ

b r1s, if |µ| ´ 2b ď 0,

of dg-bimodules.

Proof. If |µ| P N, then it is [27, Proposition 4.3]. Suppose |µ| R N. Since hµp1ρq is symmetric
w.r.t. vertical flip of diagrams, and commutes with dots, we can conclude it is given by
a linear combination of diagram without black crossing, and thus also without colored
crossing. Therefore hµp1ρq is a polynomial of dots on 1ρ. By Proposition 4.7, adding
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crossings at the top or bottom of the subset of polynomials of dots in T
µ

b`1 is an injective
operation. Let ρ0 :“ p0, . . . , 0, bq, and w “ σik ¨ ¨ ¨σi1 P Sr`n be a reduced expression such
that wpρq “ ρ0:

1ρ0τw1ρ :“
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

µrµr´1

. . .

µ2µ1

Then we have τwhµp1ρq “ hµp1ρ0qτw. We obviously have hµp1ρ0q “ 0 by Eq. (18), thus
hµp1ρq “ 0, and we conclude that hµ “ 0. �

Let Tµ :“
À

bě0T
µ

b , and F :“
À

bě0 Fb, E :“
À

bě0 Eb. Let K : DdgpT
µ, dµq Ñ

DdgpT
µ, dµq denotes the auto-equivalence functor given by the grading shift

KT
µ

b :“ q|µ|´2bpT
µ

b q.

Let rKsq denotes

rKsq :“ Cone

˜
à
pě0

q2p`1
K

hµ
ÝÝÑ

à
pě0

q2p`1
K

´1

¸
,

which we think of as a categorification of pK´1 ´ Kq{pq´1 ´ qq.

Theorem 6.5. There is a quasi-isomorphism

ConepFE
ψ̂
ÝÑ EFq

»
ÝÑ rKsq,

of dg-functors.

Proof. The statement follows from Lemma 6.1 and Lemma 6.2. �

We also obtain the following immediately from the induction/restriction adjunction:

Proposition 6.6. The dg-functor F is left-adjoint to qEK.

6.1.1. Induction along colored strands. Take µ “ pµ1, . . . , µrq and µ
1 “ pµ, µr`1q. Consider

the (non-unital) map of dg-algebras pT
µ

b , dµq Ñ pT
µ1

b , dµ1q that consists in adding a vertical
colored strand labeled µr`1 at the right of a diagram:

µ1

. . .

. . .

µ2

. . .

. . .

µr´1

. . .

. . .

µr

. . .

. . .

D ÞÑ

µ1

. . .

. . .

µ2

. . .

. . .

µr´1

. . .

. . .

µr

. . .

. . .

D

µr`1

Let I : DdgpT
µ

b , dµq Ñ DdgpT
µ1

b , dµ1q be the corresponding induction dg-functor, and let

Ī : DdgpT
µ1

b , dµ1q Ñ DdgpT
µ

b , dµq be the restriction dg-functor.

Proposition 6.7. There is a natural isomorphism Ī ˝ I – Id.

Proof. The statement follows from Proposition 4.7. �
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6.2. Categorification theorem. In this section, we suppose k is a field. Recall that
Zppλ, qqq is given by Laurent series with non-zero coefficients contained in certain cones
of Z2 (see [2] for a nice exposition, or [33, §5] for categorification). For a Z2-graded dg-

algebra pA, dq, let D
cblf
dg pA, dq be its c.b.l.f. derived category, that is the full sub-category

of dg-modules having a cone bounded, locally finite dimensional homology, or in other
words having graded Euler characteristic contained in Zppλ, qqq. We denote by K∆

0 pA, dq
the asymptotic Grothendieck group (it is a version of Grothendieck group where we mod

out relations coming from infinite iterated extensions, see [33] for details) of D
cblf
dg pA, dq.

Since pT
µ

b , dµq is a positive c.b.l.f. dimensional Z2-graded dg-algebra (in the sense of [33,

§9]), we know that K∆
0 pT

µ

b , dµq is a free Zppq, λqq-module and is spanned by the classes of

indecomposable relatively projective pT
µ

b , dµq-modules (i.e. direct summands of pT
µ

b , dµq).
The action of q (resp. λ) is given by a grading shift up in the q-degree (resp. λ-degree).
We also write QK

∆
0 pT

µ

b , dµq :“ K∆
0 pT

µ

b , dµq bZppq,λqq Qppq, λqq.

For an element f “
ř
a,b αa,bq

aλb P Zppq, λqq where αa,b ě 0, we write

‘fpMq :“
à
a,b

qaλbpM ‘ M ‘ ¨ ¨ ¨ ‘ Mloooooooooomoooooooooon
αa,b

q,

for any module M . Therefore we have in K∆
0 pT

µ

b , dµq that r‘fpMqs “ f rMs.

For each ρ P Pr
b there is a relatively projective pT

µ

b , dµq-module given by pP
µ
ρ , dµq where

P
µ
ρ :“ T

µ

b 1ρ “

µ1

. . .

b1
µ2

. . . . . .

br´1
µr

. . .

br

T
µ

b

Let NHn be the nilHecke algebra on n-strands (it is presented as a diagrammatic algebra
with only black strands and dots, subject to the relations Eq. (12) and Eq. (13)). There is
an inclusion (because of Theorem 4.6)

(36) ı : NHb1 bNHb2 b ¨ ¨ ¨ b NHbr ãÑ T
µ

b ,

given by

. . .

. . .

NHb1 b
. . .

. . .

NHb2 b ¨ ¨ ¨ b
. . .

. . .

NHbr ÞÑ

µ1

. . .

. . .

µ2

. . .

. . .

µ3

. . .

µr

. . .

. . .

NHb1 NHb2 NHbr

Furthermore, it is well-known (see for example [22, Section 2.2]) that NHn admits a unique
primitive idempotent up to equivalence given by

en :“ τϑnx
n´1
1 xn´2

2 ¨ ¨ ¨xn´1 P NHn,

where ϑn P Sn is the longest element, τw1w2¨¨¨wk
:“ τw1

τw2
¨ ¨ ¨ τwk

, with τi being a crossing
between the i-th and pi ` 1q-th strands, and xi is a dot on the i-th strand. Moreover, for
degree reasons and using [47, Lemma 4.37], any primitive idempotent of T

µ

b is equivalent
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to the image of a collection of idempotents under the inclusion Eq. (36), and thus is of the
form

eρ :“ ı peb1 b ¨ ¨ ¨ b ebnq .

We say that a Z2-graded dg-category C is c.b.l.f. generated by a collection of objects
tXjujPJ if any object in C is isomorphic to an iterated extensions of shifted copies of
elements from a finite subset of tXjujPJ , with coefficients contained in Zppq, λqq (see [27,
Appendix B] for a precise definition). In this case, we also have that K∆

0 pCq is spanned as
Zppq, λqq by the classes of rXjs for all j P J . As a consequence of the explanations above,
we obtain the following:

Proposition 6.8. The dg-category D
cblf
dg pT

µ

b , dµq is c.b.l.f. generated by tpT
µ

b eρ, dµq|ρ P
Pr
b u.

It is also well-known (see [22, §2.2.3] for example) that there is a decomposition

NHn – qnpn´1q{2
à

rnsq !

NHn en,

as left NHn-modules. For the same reasons, we obtain

(37) P
µ
ρ – q

řr
i“1

bipbi´1q{2
à

śr
i“1

rbisq !

T
µ

b eρ.

In the other direction, one can construct a free resolution of NHn en over NHn with co-
efficients (i.e. grading shifts) corresponding to 1{pqnpn´1q{2rnsq!q and contained in Zppqqq.

Similarly, we one can construct a c.b.l.f. resolution of T
µ

b eρ over P
µ
ρ , and thus we obtain

the following:

Corollary 6.9. The dg-category D
cblf
dg pT

µ

b , dµq is c.b.l.f. generated by tpP
µ
ρ , dµq|ρ P Pr

b u.

In particular, we have that K∆
0 pT

µ

b , dµq is spanned either by the classes of rpT
µ

b eρ, dµqs

for all ρ P Pr
b , or by the classes of rpP

µ
ρ , dµqs. The following lemma is well-known, and one

can find a proof of it for example in [36, Proposition 3.17].

Lemma 6.10. For k ą n we have

. . .

k

“
ÿ

i

n . . .

vi

ui

for a certain finite collection of elements ui, vi P NHk.

Lemma 6.11. There is a surjection

Lpµq|µ|´2b ։ QK
∆
0 pT

µ

b , dµq, vρ ÞÑ rpP
µ
ρ , dµqs,

of Qppq, λqq-modules.
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Proof. We want to show that K∆
0 pT

µ

b , dµq is spanned by the classes of rpP
µ
ρ , dµqs for all

ρ P P
r,µ

b . Take any ρ P Pr
b , and also assume that b1 ď µ1 if µ1 P N. Because of Lemma 6.10,

we have that 1ρ can be rewritten as a sum of elements factorizing through 1ρ1 for various

ρ1 P P
r,µ

b by Eq. (16). Then pP
µ
ρ , dµq is isomorphic to a direct sum of shifted copies of

pP
µ

ρ1, dµq for various ρ1 P P
r,µ

b . If µ1 P β ` Z we are done. Suppose µ1 P N and b1 ą µ1.

Then pP
µ
ρ , dµq is acyclic by Lemma 6.10, concluding the proof. �

Example 6.12. We consider µ “ pµ1, 1q and ρ “ pb1, 2q. We have

µ1

. . .

b1
1

“

µ1

. . .

b1
1

´

µ1

. . .

b1
1

“

µ1

. . .

b1
1

´

µ1

. . .

b1
1

If µ1 “ 1 P N, then we have similarly that

dµ

¨
˝

1

´

1

˛
‚“

1

and thus P
µ
ρ is acyclic whenever b1 ě 2.

6.2.1. Categorifed Shapovalov form. As in [22, §2.5], let ψ : Tµ Ñ pTµqop be the map that
takes the mirror image of diagrams along the horizontal axis. Given a left pTµ, dµq-module
M , we obtain a right pTµ, dµq-module Mψ with action given by

mψ ¨ r :“ p´1qdeghprq deghpmqψprq ¨m,

for m P M and r P Tµ. Then we define the dg-bifunctor

p´,´q : DdgpT
µ, dµq ˆ DdgpT

µ, dµq Ñ Ddgpk, 0q, pW,W 1q :“ W ψ bL
pTµ,dµq W

1.

Proposition 6.13. The dg-bifunctor defined above satisfies:

‚ ppT
µ

0 , dµq, pT
µ

0 , dµqq – pk, 0q;

‚ pIndb`1
b M,M 1q – pM,Resb`1

b M 1q for all M,M 1 P DdgpT
µ, dµq;

‚ p‘fM,M 1q – pM,‘fM
1q – ‘fpM,M 1q for all f P Zppq, λqq;

‚ pM,M 1q – pIpMq, IpM 1qq.

Proof. Straightforward, except for the last point which follows from:

pIpMq, IpM 1qq – pM, Ī ˝ IpM 1qq – pM,M 1q,

using Proposition 6.7 together with the adjunction I $ Ī. �

Comparing Proposition 6.13 to Section 2.3.3, we deduce that p´,´q has the same prop-
erties on the asymptotic Grothendieck group of pTµ, dµq as the Shapovalov form on Lpµq.
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6.2.2. Categorification theorem. Because of Theorem 6.5, we know that the functors E and
F induce an Uqpsl2q-action on QK

∆
0 pTµ, dµq –

À
bě0 QK

∆
0 pT

µ

b , dµq.

Theorem 6.14. There is an isomorphism of Uqpsl2q-modules

γ : Lpµq
»
ÝÑ QK

∆
0 pTµ, dµq, vρ ÞÑ rpP

µ
ρ , dµqs.

Moreover the divided power basis elements are sent to vρ ÞÑ rpT
µ

b eρ, dµqs.

Proof. The argument is similar as in [27, Theorem 4.7]. By Lemma 6.11, we know that the
Qppq, λqq-linear map γ is surjective. Moreover, the map γ clearly commutes with the action
of K˘1, and with E because of Proposition 4.7 together with Eq. (6). By Proposition 6.13,
γ intertwines the Shapovalov form with the bilinear form induced by the bifunctor p´,´q
on QK

∆
0 pTµ, dµq. Therefore γ is a Qppq, λqq-linear isomorphism by non-degeneracy of the

Shapovalov form. Since the map γ intertwines the Shapovalov form with the bifunctor
p´,´q, and commutes with the action of E and K˘1, we also deduce by non-degeneracy
of the Shapovalov form that γ commutes with the action of F . In conclusion, γ is an
isomorphism of Uqpsl2q-modules.

The statement with the divided power basis elements is immediate from Eq. (37). �

7. Derived standard stratification

In [47], the change of basis corresponding to Lemma 2.2 is categorified by introducing
a standard module (with respect to some standard stratification on T µb -mod) for each ρ.
This standard module categorifies the basis elements ṽρ. The change of basis is encoded
in the fact that the projective module T µb 1ρ that categorifies the basis element vρ admits a
filtration with quotient being the standard modules. We introduce similar modules for Tµ

that play the role of the standard modules. Strictly speaking, they do not give a standard
stratification of pTµ, dµq -mod, but they do have a similar behavior in a derived way, see
Section 7.3 below.

7.1. Standard modules. There are two ways to construct the standard modules: either
directly, or as an iterated mapping cone construction. We describe both constructions in
this order.

7.1.1. Definition of standard modules. Fix ρ “ pb1, . . . , brq P Pr
b . Let

Jρ :“
rğ

ℓ“2

Jℓ,ρ, Jℓ,ρ :“ t1, . . . , bℓu.

For j Ă Jρ we write jℓ “ tjℓ,1, . . . , jℓ,|jℓ|u :“ j X Jℓ,ρ with jℓ,1 ă ¨ ¨ ¨ ă jℓ,|jℓ|. We define

ρj :“ pb1 ` |j2|, b2 ´ |j2| ` |j3|, . . . , br ´ |jr´1| ` |jr|, br ´ |jr|q,

or in others words we obtain ρj from ρ by increasing bj´1 by 1 and decreasing bj by 1 for
each j P j X Jℓ,ρ. Then we define

S
µ

ρ,j :“ q
řr

ℓ“2

ř
tPjℓ

pµℓ´2t`2qP
µ
ρj r|j|s.
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Consider j 1 Ă j such that |j| “ |j 1| ` 1. We have j 1 “ jztb1 P Jℓ,ρu for some b1 and ℓ. We

obtain a map of left pTµ, dµq-modules pS
µ

ρ,j , dµq Ñ pS
µ

ρ,j1, dµq by gluing on the bottom the

element:

τj,j1 :“ . . .
. . .

. . .

. . .

. . .

p1 p2

. . .

µℓ

where p1 ` p2 “ b1 ´ 1 and p1 “ #tj P j X Jℓ,ρ|j ă b1u, and extending on the left and right
with vertical strands with color and label matching 1ρ1

j
.

Lemma 7.1. Consider j3 Ă j 1 Ă j and j3 Ă j2 Ă j such that |j| “ |j 1| ` 1 “ |j2| ` 1 “
|j3| ` 2 and j 1 ‰ j2. We have

τj,j1τj1,j3 “ τj,j2τj2,j3 .

Proof. We first assume that j 1 “ jztb1 P Jℓ,ρu and j2 “ jztb2 P Jℓ,ρu for the same ℓ, and
thus b1 ‰ b2. Without loss of generality, we can also assume that b1 ă b2. Then we obtain

τj,j2τj2,j3 “

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

p1 p2 b2 ´ b1 ´ 1

. . . . . .

µℓ

where p1 ` p2 “ b1 ´ 1 and p1 “ #tj P j X Jℓ,ρ|j ă b1u, and

τj,j1τj1,j3 “

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

p1 p2 b2 ´ b1 ´ 1

. . . . . .

µℓ

Thus we have τj,j1τj 1,j3 “ τj,j2τj2,j3 by the braid moves in Eq. (12) and Eq. (14).
We now assume that j 1 “ jztb1 P Jℓ1,ρu and j 1 “ jztb2 P Jℓ2,ρu for ℓ1 ‰ ℓ2. Then we have

τj,j1τj1,j3 “ τj,j2τj2,j3 by a braid-like planar isotopy, exchanging distant crossings. �

We extend the natural order on each Jℓ,ρ to a total order on Jρ by declaring that b1 ă b2

whenever b1 P Jℓ1,ρ and b
2 P Jℓ2,ρ and ℓ

1 ă ℓ2.

Definition 7.2. The standard module pS
µ
ρ , dSq is defined as

S
µ
ρ :“

à
jĂJρ

S
µ

ρ,j ,
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with

dS :“
ÿ

jĂJρ

p´1q|j|pdµ : S
µ

ρ,j Ñ S
µ

ρ,jq `
`
dS,j : S

µ

ρ,j Ñ S
µ
ρ

˘
,

dS,j :“
ÿ

j1“jztb1u

p´1q#tb2Pj|b2ąb1uτj,j1.

We have d2S “ 0 by Lemma 7.1.

Example 7.3. We take µ “ pµ1, µ2q and ρ “ p0, 2q. We have Jρ “ J2,ρ with J2,ρ “ t1, 2u.
We draw all possible j Ă Jρ as

t1u

t1, 2u H

t2u

where the arrows represent the τj,j1. Then we can picture S
µ

p0,2q as the complex

S
µ

p0,2q “

qµ2

µ1 µ2

T
µ

q2µ2´2

µ1 µ2

T
µ

‘

µ1 µ2

T
µ

qµ2´2

µ1 µ2

T
µ´

where the dµ part of the differential is implicit.
As another example, take µ “ pµ1, µ2, µ3q and ρ “ p0, 1, 1q. We have Jρ “ J2,ρ \ J3,ρ

with J2,ρ “ t1u and J3,ρ “ t1u. Similarly as above, we draw j Ă Jρ as

t1u \ H

t1u \ t1u H \ H

H \ t1u
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Then we picture S
µ

p0,1,1q as

S
µ

p0,1,1q “

qµ3

µ1 µ2 µ3

T
µ

qµ2`µ3

µ1 µ2 µ3

T
µ

‘

µ1 µ2 µ3

T
µ

qµ2

µ1 µ2 µ3

T
µ´

7.1.2. Standard modules as iterated mapping cones. Alternatively, we can build the stan-
dard modules recursively as iterated mapping cones by categorifying the following equation
from Lemma 2.2:

(5) vt,ℓρ1,ρ2 “ vt`1,ℓ´1
ρ1,ρ2

´ qµ`2´2ℓv
t,ℓ´1
F pρ1q,ρ2

,

where µ :“ µr1`1. In particular, we will lift all the intermediate elements

vt,ℓρ1,ρ2 :“ F t
`
vρ1 b F ℓpvµq

˘
b ṽρ2 ,

with ρ1 P Nr1 and ρ2 P Nr2 , r “ r1 ` 1 ` r2.

Define the element

τ t,ℓρ1,ρ2 :“
ÿ

ρ1
2

PP
r2
b2

ÿ

ℓ1`ℓ2
“ℓ´1

1ρ1 b
. . .

. . .

. . .

. . .

ℓ1 ℓ2

. . .

t

µ

b 1ρ1
2

where b means we put diagrams next to each other.

Definition 7.4. We define recursively pVt,ℓ
ρ1,ρ2

, dVq as

pVt,0
ρ1,H

, dVq :“ pP
µ

pρ1,tq
, dµq, pVt,0

ρ1,ρ2“pℓ1,ρ1
2

q, dVq :“ pV0,ℓ1

pρ1,tq,ρ1
2

, dVq,

pVt,ℓ
ρ1,ρ2

, dVq :“ Cone

ˆ
qµ´2ℓ`2pVt,ℓ´1

F pρ1q,ρ2
, dVq

τ
t,ℓ
ρ1,ρ2ÝÝÝÑ pVt`1,ℓ´1

ρ1,ρ2
, dVq

˙
.

for ℓ ą 0 and ρ2 ‰ H, and where τ t,ℓρ1,ρ2 defines a map of left pTµ, dµq-modules for the same
reasons as in the proof of Lemma 7.1.

Note that we have pS
µ

ρ“pb1,ρ1q, dSq – pVb1,0
H,ρ1, dVq. Moreover rpS

µ
ρ , dSqs (resp. rpVt,ℓ

ρ1,ρ2
, dVqs)

coincides with ṽρ (resp. v
t,ℓ
ρ1,ρ2

) under the isomorphism of Theorem 6.14.
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Example 7.5. We take µ “ pµ1, µ2q. We have

S
µ

p0,2q – V0,0
H,p2q “ V0,2

p0q,H “ Conepqµ2´2V0,1
p1q,H

τ
0,2

p0q,H
ÝÝÝÑ V1,1

p0q,Hq,

V0,1
p1q,H “ Conepqµ2V0,0

p2q,H “ P
µ

p2,0q

τ
0,1

p1q,H
ÝÝÝÑ V1,0

p1q,H “ P
µ

p1,1qq,

V1,1
p0q,H “ Conepqµ2V1,0

p1q,H “ P
µ

p1,1q

τ
1,1

p0q,H
ÝÝÝÑ V2,0

p0q,H “ P
µ

p0,2qq,

which we can picture as

S
µ

p0,2q – Cone

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

qµ2´2

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

qµ2

µ1 µ2

T
µ

µ1 µ2

T
µ

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

qµ2

µ1 µ2

T
µ

µ1 µ2

T
µ

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

As another example, take µ “ pµ1, µ2, µ3q and we obtain

S
µ

p0,1,1q – V0,0
H,p1,1q “ V0,1

p0q,p1q “ Conepqµ2V0,0
p1q,p1q

τ
0,0

H,p1,1q
ÝÝÝÝÑ V1,0

p0q,p1qq,

V0,0
p1q,p1q “ V0,1

p1,0q,H “ Conepqµ3V0,0
p1,1q,H “ P

µ

p1,1,0q

τ
0,1

p1,0q,H
ÝÝÝÝÑ V1,0

p1,0q,H “ P
µ

p1,0,1qq,

V1,0
p0q,p1q “ V0,1

p0,1q,H “ Conepqµ3V0,0
p0,2q,H “ P

µ

p0,2,0q

τ
0,1

p0,1q,H
ÝÝÝÝÑ V1,0

p0,1q,H “ P
µ

p0,1,1qq,

which we picture as

S
µ

p0,1,1q – Cone

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

qµ2

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

qµ3

µ1 µ2 µ3

T
µ

µ1 µ2 µ3

T
µ

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

qµ3

µ1 µ2 µ3

T
µ

µ1 µ2 µ3

T
µ

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

Remark 7.6. If µ contains only integral weights, then the underlying complex of the
standard module is exact everywhere except in the last rightmost term. In this case we
can replace it by the quotient of P

µ
ρ by the ideal given by diagrams with a black/colored
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crossing of the type:

µi

This coincides up to quasi-isomorphism with the standard modules in [47] (viewed as dg-
modules concentrated in homological and λ-degrees zero).

7.1.3. Preorder. Inspired by [47], we say that there is an arrow ρ Ð ρ1 for ρ, ρ1 P P
r
b

whenever there is some 1 ď j ď r such that bi “ b1
i for all i ‰ j, j ` 1 and bj “ b1

j ` 1
and bj`1 “ b1

j`1 ´ 1. Consider the preorder on Pr
b given by ρ ď ρ1 whenever there is a

chain of arrows ρ “ ρ0 Ð ρ1 Ð ¨ ¨ ¨ Ð ρt “ ρ1. Note that there is a maximal element
given by p0, 0, . . . , bq and a minimal element given by pb, . . . , 0, 0q. If we think in terms of
idempotents 1ρ, then ρ ď ρ1 whenever we can obtain 1ρ1 from 1ρ by sliding colored strands
to the left.

Example 7.7. Writing the idempotent 1ρ to picture the element ρ, we have the following
arrows:

Proposition 7.8. The dg-module pP
µ
ρ , dµq can be obtained as a mapping cone

pP
µ
ρ , dµq – ConeppS

µ
ρ , dSqr´1s Ñ pQăρ, dQqq,

where pQăρ, dQq is a finite iterated extension of shifted copies of elements in the set

tpS
µ

ρ1 , dSq|ρ1 ă ρu.

Proof. If ρ “ pb, 0, . . . , 0q is minimal, then S
µ
ρ – P

µ
ρ , and we are done by setting Qąρ :“ 0.

Suppose by induction that the theorem is true for ρ1 ă ρ.
We have an injection of pTµ, dµq-modules

fρ : pP
µ
ρ , dµq “ pS

µ

ρ,H, dSq ãÑ pS
µ
ρ , dSq,

and we define pQăρ, dQq :“ cok fρ, so that we get a distinguished triangle

pP
µ
ρ , dµq Ñ pS

µ
ρ , dSq Ñ pQăρ, dQq Ñ

implying that
pP

µ
ρ , dµq – ConeppS

µ
ρ , dSqr´1s Ñ pQăρ, dQqq.

We observe thatQăρ –
À
jĂJρ
j‰H

P
µ
ρj , and ρj ă ρ for j ‰ H. Therefore, by induction hypothesis,

pQăρ, dQq is isomorphic to an iterated extension of various shifted pS
µ

ρ2 , dSq with ρ2 ă ρ. �

Corollary 7.9. The dg-category D
cblf
dg pT

µ

b , dµq is c.b.l.f. generated by tpS
µ
ρ , dSq|ρ P P

r,µ

b u.

Proof. This is immediate by Corollary 6.9 and Proposition 7.8. �
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7.2. Standardization functor. We want to construct a standardization functor

S : DdgpT
µ1 b ¨ ¨ ¨ b Tµr , dµ1 ` ¨ ¨ ¨ ` dµrq Ñ DdgpT

µ, dµq,

such that it is exact and sends

Pµ1
b1

b ¨ ¨ ¨ b Pµr
br

ÞÑ S
µ
ρ .

In order to do this, we endow S
µ
ρ with a dg-bimodule structure.

7.2.1. Bimodule structure on S
µ
ρ . We start by defining the right action of xb 1 b ¨ ¨ ¨ b 1 P

Tµ1
b1

b ¨ ¨ ¨ b Tµr
br

as gluing diagrams at the bottom of each summand S
µ

ρ,j Ă S
µ
ρ :

µ1

¨ ¨ ¨

¨ ¨ ¨
x b 1 b ¨ ¨ ¨ b 1 :

µ1

¨ ¨ ¨

µ2

¨ ¨ ¨

S
µ

ρ,j ÞÑ

µ1

¨ ¨ ¨ ¨ ¨ ¨

µ2

¨ ¨ ¨
¨ ¨ ¨

¨ ¨ ¨
x

S
µ

ρ,j

Since the differential dS only touches the strands on the right, except for the dµ part which
is already in pTµ1

b1
, dµq, the action of Tµ1

b1
respects the graded Leibniz rule.

Since we want to define a bimodule structure, it is enough to define the right action on
each generating elements of S

µ
ρ as left-module. We fix ℓ and we describe below the right

action of Tµℓ
bℓ

on S
µ
ρ .

We need some preparation. For j P Jℓ,ρ we define

ωj :“
. . .

. . .

j ´ 1

. . .

µℓ

P Tµℓ
bℓ
.

and for jℓ “ tjℓ,1, . . . , jℓ,|j|ℓ
u :“ j X Jℓ,ρ with jℓ,1 ă ¨ ¨ ¨ ă jℓ,|jℓ| we put

ωjℓ
:“ ωjℓ,|jℓ|

¨ ¨ ¨ωjℓ,1
.

In terms of pictures, we can draw this as

(38) ωjℓ
“

. . .

. . .

. . .

. . .

. . .

jℓ,1 ´ 1

. . .

. . .

. . .

. . .

. . .

jℓ,2 ´ jℓ,1 ´ 1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

jℓ,|jℓ| ´ jℓ,|jℓ|´1 ´ 1

. . .

. . .

. . .

. . .

. . .

µℓ

|jℓ| bℓ ´ |jℓ|
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By Theorem 4.6 we have that Tµℓ
bℓ

decomposes as a graded k-module as

(39)
µℓ

¨ ¨ ¨

Tµℓ
bℓ –

à
jℓĂJℓ,ρ

µℓ
¨ ¨ ¨

ωjℓ

NHbℓ

where NHbℓ is the nilHecke algebra on bℓ strands, that is the diagrammatic algebra on bℓ
black strands with dots subject to the relations in Eq. (12) and Eq. (13).

Example 7.10. We have

µℓ

Tµℓ
2

–

µℓ

NH2

‘

NH2

µℓ

‘

NH2

µℓ

‘

NH2

µℓ

To define the action of x P Tµℓ
bℓ

on

1ρj “ . . . . . .

|jℓ|
µℓ

. . .

bℓ ´ |jℓ|

. . . P S
µ

ρ,j ,

we consider the collection of unique xj1
ℓ

P NHbℓ such that

(40) ωjℓ
x “

ÿ

j1
ℓ

xj1
ℓ
ωj1

ℓ
,

given by the decomposition in Eq. (39). Note that xj1
ℓ

“ 0 whenever |j 1
ℓ| ă |jℓ|.

Lemma 7.11. We have

ωiωj “

#
0, if i “ 1,

´τ1ωjωi´1 if i ď j and i ą 1.

Proof. This is a straightforward computation using the nilHecke relations in Eq. (12) and
Eq. (13) together with the nail relations in Eq. (19). We leave the details to the reader. �

Lemma 7.12. In Eq. (40), we have that

xj1
ℓ

“ x1j1
ℓ

b x2j1
ℓ

P

µℓ

. . .

NH|j1
ℓ|

. . .

NHbℓ´|j1
ℓ|

for some x1
j1
ℓ

P NH|j1
ℓ| and x

2
j 1
ℓ

P NHbℓ´|j1
ℓ|.
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Proof. We need to investigate how ωjℓ
x decomposes when x is either a dot, a crossing or

a nail.
First assume that x is a nail. By looking at the diagram in Eq. (38), we observe that

adding a nail at the bottom gives 0 by Eq. (19) if 1 P jℓ, and we get ωjx “ ωj\t1PJℓ,ρu

otherwise. Thus, xj1
ℓ
is either 0 or 1j1

ℓ
.

Suppose x is a crossing between the i-th and pi ` 1q-th black strands. Looking at the
diagram in Eq. (38), if the crossing is below one of the horizontal brackets at the bottom,
then we can use the braid move in Eq. (12) to slide it to the top right, so that x1jℓ “ 1 and

x2jℓ is a crossing. If i ` 1 “ jℓ,t for some t, then ωjx “ 0 by Eq. (12). For the remaining
cases, suppose i “ jℓ,t for some t. If i ` 1 “ jℓ,t`1 then we can use the braid move
to bring the crossing to the levels of nail, slide it through the nails using Eq. (19), and
finally slide it to the top. Thus we obtain that x1jℓ is a crossing and x2jℓ “ 1. Otherwise,
ωjℓ

x “ ωjℓzttu\tt`1u, and thus xj1
ℓ
is either 0 or 1j1

ℓ
.

Finally, suppose x is a dot on the i-th black strand. We can slide the dot to the top using
the nilHecke relations in Eq. (13) at the cost of adding diagrams with one fewer crossings.
Therefore, we consider what happens whenever we remove a crossing from the diagram
in Eq. (38). If we remove a crossing situated in the upper left triangle below the bracket
|jℓ|, then we obtain zero because we would have two nails on the same black strand. If we
remove a crossing elsewhere, we can first slide to the top right all crossings at the bottom
right of the crossing we removed using the braid move in Eq. (12), giving an element x2

j1
ℓ
.

Then we observe that having removed a crossing turned some ωt to ωt1 with t
1 ă t. Thus

we use Lemma 7.11 to reorder the ωt’s, at the cost of adding crossings that can be slided
to the top left part, giving the elements x1

j 1
ℓ
. In particular, we never obtain a crossing at

the top between the |jℓ|-th and p|jℓ| ` 1q-th black strands, concluding the proof. �

Because of Lemma 7.12, we can define

1ρj ‚ x :“ p´1qdeghpxqp
ř

tąℓ |jt|q
ÿ

j1
ℓ

. . .

. . .

. . .

. . .
|j 1
ℓ| ´ |jℓ|

. . .

. . .

. . .

x1
j1
ℓ

µℓ

. . .

. . .

. . .

x2
j1
ℓ

. . . P S
µ

ρ,j1,

where j 1 is obtain from j by replacing jℓ with j 1
ℓ. Note that this is well-defined because of

the isomorphism in Eq. (39). Moreover, it is homogeneous because q|jℓ|µℓ`
ř

tPjℓ
µℓ´2t`2

h|jℓ| “
degpωjℓ

q.
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Example 7.13. Take b1 ě 0, b2 “ 3. We have

µ2

“

µ2

`

µ2

and thus we obtain

1ρp2,3q
‚

¨
˚̊
˝1pb1q b

µ1

˛
‹‹‚“

µ1

. . .

µ2
b1

.1ρp2,3q
`

µ1

. . .

µ2
b1

.1ρp1,2q
.

Lemma 7.14. We have

1ρj ‚

¨
˚̊
˝1 b

µℓ

N . . . b 1

˛
‹‹‚

“

$
’’’’’’&
’’’’’’%

N

µℓ

P S
µ

ρ,j , if 1 P jℓ,

N

µℓ

P S
µ

ρ,j ´ p´1q|jℓ|
ř
j1“

jzttPjℓu\t1u

αj,t

ř
u`v“
N´1

u
. . .

. . .

. . .

. . .
v

µℓ

P S
µ

ρ,j1, if 1 R jℓ.

Proof. The case 1 P jℓ is immediate by looking at Eq. (38) and observing that sliding the
dots to the top using Eq. (13) produces diagrams with fewer crossings in the top left region,
so that they all have two nails on a single black strand, and are zero.

The case 1 R jℓ follows immediately from Proposition C.4. �

Remark 7.15. Using the diagrams ωjℓ
, there is a convenient way to write how dS,j acts

on S
µ

ρ,j . For each ℓ, there is a differential d0 (not preserving the degree) on Tµℓ
bℓ

given by

d0

¨
˝

µℓ

˛
‚:“

µℓ

and d0 is zero on the other generators (note that it coincides with d0 “ dµ for µ “ p0q).
Let ωj :“ ωj2

b¨ ¨ ¨bωjr
and we extend d0 by the graded Leibniz rule to the tensor product

Tµ2
b2

b ¨ ¨ ¨ b Tµr
br
. By the decomposition in Eq. (39) we have

d0pωjq “
ÿ

j1“jztb1u

yb1ωj1,
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where

yb1 “ ˘1 b

µℓ

. . .
. . .

. . .
. . .

b1 ´ 1

b 1

for b1 P jℓ. Then if we define

ωj1 :“ 1ρj1 , yb1 :“ ˘ . . . . . .
. . .

. . .

. . .

. . .

p1 p2

|jℓ|

. . . . . .

µℓ

where p1 ` p2 “ b1 ´ 1, we have

dSp1ρjq “ d0pωjq.

For example consider µ “ pµ1, µ2q and ρ “ p0, 2q, and we compute

d0pωt1,2uq “ d0

¨
˚̊
˝

µ2

˛
‹‹‚“

µ2

´

µ2

“

µ2

ωt1u ´ ωt2u,

dSp1ρt1,2u
q “ d0pωt1,2uq “

µ1 µ2

1ρt1u
´

µ1 µ2

1ρt2u
,

which agrees with Example 7.5.

Proposition 7.16. The construction described above gives pS
µ
ρ , dSq the structure of a

pTµ, dµq-pTµ1 b ¨ ¨ ¨ b Tµr , dµ1 ` ¨ ¨ ¨ ` dµrq-bimodule.

Proof. Clearly, the action of each pTµℓ , dµq (graded) commute with each other, and with
the left-action of pTµ, dµq. Thus we only need to check that it respects the differentials. In
particular, we need to verify that

(41) dSpm ‚ xq “ dSpmq ‚ x ` p´1q|m|m ‚ dµℓpxq,
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for all homogeneous m P S
µ
ρ and x P Tµℓ

bℓ
. We can assume m “ 1ρj and x is either a nail, a

crossing or a dot. If x is a nail, we compute

dSp1ρj ‚ xq “

$
’’&
’’%

0, if 1 P jℓ,

p´1q|jℓ|

µℓ

P S
µ

ρ,j `
ř
j1“

jzttPjℓu\t1u

αj,t
. . .

. . .

. . .

. . .

µℓ

P S
µ

ρ,j1, if 1 R jℓ,

dSp1ρjq ‚ x “

$
’’’’’’&
’’’’’’%

p´1q|jℓ|´1

µℓ

P S
µ

ρ,j , if 1 P jℓ,

ř
j1“

jzttPjℓu\t1u

αj,t
. . .

. . .

. . .

. . .

µℓ

P S
µ

ρ,j1, if 1 R jℓ,

and using Lemma 7.14 we also have

1ρj ‚ dµℓpxq

“

$
’’’’’’&
’’’’’’%

µℓ

µℓ

P S
µ

ρ,j , if 1 P jℓ,

µℓ

µℓ

P S
µ

ρ,j ´ p´1q|jℓ|
ř
j1“

jzttPjℓu\t1u

αj,t

ř
u`v“
µℓ´1

u
. . .

. . .

. . .

. . .
v

µℓ

P S
µ

ρ,j1, if 1 R jℓ.

where each one of the diagrams are embedded in bigger diagrams with only vertical strand
whose colors are determined by the idempotents 1ρj and 1ρj1 , and αj,t :“ p´1q#tt1Pjℓ|t1ątu.

Then Eq. (41) follows from Eq. (16-18).
If x is a dot or a crossing, then we obtain immediately dSpm ‚ xq “ dSpmq ‚ x by

Remark 7.15, since d0 is well-defined and thus pushing x to the top and then applying d0
is the same as applying d0 and then pushing x to the top. �

7.2.2. Standardization functor.

Definition 7.17. We define the standardization functor as

S : DdgpT
µ1 b ¨ ¨ ¨ b Tµr , dµ1 ` ¨ ¨ ¨ ` dµrq Ñ DdgpT

µ, dµq, M ÞÑ Sµ bL M,

where Sµ :“
À

ρPNr S
µ
ρ .

For 1 ď i ď r, let E
ris, Fris and K

˘ris denotes the categorical action of Uqpsl2q on each
Tµi
bi

in DdgpT
µ1 b ¨ ¨ ¨ bTµr , dµ1 ` ¨ ¨ ¨ ` dµrq, defined by induction/restriction along a black

strand as in Section 6.1. Let us write Idρ with ρ “ pb1, . . . , brq for the functor given by
tensoring with pTµ1

b1
b ¨ ¨ ¨ b Tµr

br
q.
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Proposition 7.18. The standardization functor is exact and essentially surjective. In
particular, it induces a surjection

QK
∆
0 pTµ1 , dµ1q b ¨ ¨ ¨ b QK

∆
0 pTµr , dµrq ։ QK

∆
0 pTµ, dµq,

which sends vµ1,b1b¨ ¨ ¨bvµr,br “ rPµ1
b1

sb¨ ¨ ¨brPµr
br

s ÞÑ rpS
µ
ρ , dSqs “ vρ under the isomorphism

of Theorem 6.14.

Proof. This follows immediately from the fact that SpTµ1
b1

b ¨ ¨ ¨ b Tµr
br
, dµ1 ` ¨ ¨ ¨ ` dµrq –

pS
µ
ρ , dSq together with Corollary 7.9. �

Note that we have

K
˘1S – SK˘r1s ¨ ¨ ¨K˘rrs,

which lift the equality ∆pK˘1q “ K˘1 bK˘1. Furthermore, as in [47, Proposition 5.5], we
can lift the equality

F p1 b 1 b ¨ ¨ ¨ b 1q “F b K b K b ¨ ¨ ¨ b K ` 1 b F b K b ¨ ¨ ¨ b K ` ¨ ¨ ¨

¨ ¨ ¨ ` 1 b ¨ ¨ ¨ b 1 b F b K ` 1 b ¨ ¨ ¨ b 1 b 1 b F,

to the categorical setting as follows:

Proposition 7.19. There is a natural isomorphism FS – Qr with Qr being obtained as an
iterated extension

0 “ Q0 Q1 Q2 ¨ ¨ ¨ Qr – FS,

Q1{Q0 Q2{Q1 Q3{Q2 Qr{Qr´1

r1s r1s r1s r1s

where

Qℓ{Qℓ´1 – SFrℓs
K

rℓ`1s ¨ ¨ ¨Krrs,

for 1 ď ℓ ď r.

Proof. Take ρ “ pb1, . . . , brq with
ř
bi “ b. Since the functor S is given by derived tensor

product with a bimodule which is cofibrant as left module, we have

FS Idρp´q –
`
pT

µ

b`1, dµq bb S
µ
ρ

˘
bL ´ – pFS

µ
ρ q bL ´.

Similarly, we have

SFrℓs Idρp´q – S
µ

F rℓspρq
bL ´,

where F rℓspρq :“ pb1, . . . , bℓ´1, bℓ ` 1, bℓ`1, . . . , brq.
We want to construct categorifications of the elements F pṽρ1q b ṽρ2 for various decom-

positions ρ “ pρ1, ρ2q, and these will give the functors Qℓ.
Let

rQℓ :“
à
jĂJρ

q
řr

ℓ“2

ř
tPjℓ

pµℓ´2t`2qP
µ

F rℓspρjq
r|j|s,
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and define dQ similarly as dS but using

. . .
. . .

. . .

. . .

. . .

p1 p2

. . .

µℓ

instead of τj,j1 whenever j differs from j 1 by an element in jℓ. For the same reasons as

pSµ, dSq, prQℓ, dQq is a dg-bimodule. Note that rQ1 “ S
µ

F r1spρq
and rQr – FS

µ
ρ . Moreover, we

have a map of dg-bimodules

τℓ´1,ℓ : q
µℓ´2bℓ rQℓ´1 Ñ rQℓ

given by gluing on the bottom

. . .
. . .

. . .

. . .

. . .

|jℓ| pbℓ ´ |jℓ|q

. . .

µℓ

By construction of S
µ

F rℓ`1sρ
, we have

S
µ

F rℓsρ
– Cone

´
qµℓ´2bℓ rQℓ´1

τℓ´1,ℓ
ÝÝÝÑ rQℓ

¯
.

Thus, putting Qℓ :“ q
ř

tąℓ µt´2bt rQℓ and Qℓ :“ Qℓ bL ´ concludes the proof. �

7.3. Stratification. Fix b ě 0. Let D :“ D
cblf
dg pT

µ

b , dµq. Define Dľρ as the full subcate-

gory of D c.b.l.f. generated by tS
µ

ρ1 |ρ1 ľ ρu. Define similarly Dąρ Ă Dľρ.
Consider the exact sequence

Dąρ Ñ Dľρ Ñ Dρ,

of dg-categories where Dρ is Verdier dg-quotient (see [20, 9]) of Dľρ by Dąρ.

Lemma 7.20. We have RHOMpT
µ

b ,dµqppP
µ
ρ , dµq, pS

µ

ρ1, dSqq – 0 whenever ρ1 ł ρ.

Proof. We know that pS
µ

ρ1 , dSq can be constructed as an iterated mapping cone, and thus

takes the form of a hypercube of P
µ

ρ2 for ρ2 ĺ ρ1. We can reaarrange the hypercube so that
the first mapping cones are all of the form

pS, dSq :“ Cone

¨
˚̊
˚̋pP

µ
ρ2 , dµq

. . .

µi

. . .

ÝÝÝÝÝÝÝÝÑ pP
µ
ρ1 , dµq

˛
‹‹‹‚,

for various i and ρ1, ρ2 such that ρ1 ł ρ. We claim that RHOMpT
µ

b ,dµqppP
µ
ρ , dµq, pS, dSqq – 0

and then the statement of the lemma follows from exactness of the derived hom functor.
Since pP

µ
ρ , dµq is cofibrant, we can replace the derived hom-space by the dg-hom-space.

We only need to show that the homology of HOMpT
µ

b
,dµqppP

µ
ρ , dµq, pS, dSqq is zero. Recall
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that a map in the dg-hom-space is in the kernel of the differential if and only if it graded
commutes with the differentials of the target and source dg-modules. All these maps are
generated by the map pP

µ
ρ , dµq Ñ pP

µ
ρ1 , dµq that sends 1ρ to the diagrams with the least

number of crossings 1ρW11ρ1 . Then we can consider the map pP
µ
ρ , dµq Ñ pP

µ
ρ2 , dµq (that

does not commute with the differentials) that sends 1ρ to the diagram with the least
number of crossings 1ρW21ρ2 . But then we have dSp1ρW21ρ2q “ 1ρW11ρ1 . Therefore the
dg-hom-space is acyclic, concluding the proof. �

Lemma 7.21. We have RHOMpT
µ

b
,dµqppS

µ
ρ , dSq, pS

µ

ρ1 , dSqq – 0 whenever ρ1 ą ρ.

Proof. It follows by exactness of the derived hom functor together with Lemma 7.20 and
the fact that pS

µ
ρ , dSq is an iterated extension of pP

µ

ρ2, dµq for various ρ2 ĺ ρ. �

Proposition 7.22. There is a quasi-equivalence Dρ – D
cblf
dg pTµ1

b1
b¨ ¨ ¨bTµr

br
, dµ1`¨ ¨ ¨`dµrq.

Moreover the projection Dľρ Ñ Dρ is equivalent to the dg-functor

RHOMpT
µ

b
,dµqppS

µ
ρ , dSq,´q : Dľρ Ñ D

cblf
dg pTµ1

b1
b ¨ ¨ ¨ b Tµr

br
, dµ1 ` ¨ ¨ ¨ ` dµrq,

which is right adjoint to the standardization functor S.

Proof. It follows from Lemma 7.21 and exactness of the derived hom functor. �

Appendix A. Rewriting methods

A.1. Diagrammatic rewriting. Let A be a diagrammatic algebra presented by genera-
tors and relations. It is defined by a set of generators, denoted by Ag, containing diagrams
that are of the form

(42) . . .

λkλ1

x

¨ ¨ ¨

¨ ¨ ¨

µ1 µ2 µm

η1 η2 ηn

. . .

λ1
1 λ1

ℓ

where m,n, k, ℓ are integers, and λ1 . . . , λk, λ
1
1, . . . , λ

1
ℓ, µ1, . . . , µm, η1, . . . , ηn are labels (or

colors) that belong to an indexing set IA. Such a diagram can be considered locally, by
forgetting the vertical strands on the left and on the right, and we say that a diagram x

as in Eq. (42) has arity n and coarity m. To simplify the notations, we will write this as
x : η1 . . . ηn Ñ µ1 . . . µm. In other words, the generators of A are represented by diagrams,
with vertical labelled strands in the leftmost and the rightmost region, and in between
such a diagram with arity n and coarity m, corresponding to a diagram that has n labelled
strands as input and m labelled strand as output. We allow m and n to be 0, however we
assume in the sequel that any generator x in Ag has same arity and coarity, that can be
0. Therefore, we have the following disjoint decomposition for Ag:

Ag “ \
nPN

Agpnq
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where Agpnq denotes the set of generators with arity and coarity n. Moreover, we assume
that A0

g is equipped with a total order ă0. We also assume that the diagrams in an algebra
A admit a constant number of strands, so that the sum k ` n ` ℓ for a diagram x as in
Eq. (42) is constant, equal to a fixed number spAq giving the number of strands of A.

The product of two generators x : η1 . . . ηn Ñ µ1 . . . µn and y : µ1 . . . µn Ñ δ1 . . . δn (that
can admit vertical strands) is obtained by vertically composing the two diagrams, from
bottom to top. It is zero if the common sequence of labels µ1 . . . µn do not match. A
monomial of A is a product in the elements of Ag, that is a diagram containing layers of
generating pieces, in which any generator has a given height. Explicitly, a generator xi in
a monomial x1 . . . xi´1xixi`1 . . . xn admits a diagrammatic height, denoted by hpxiq :“ i.
This extends to monomials ofA: if xk . . . xk`m is a monomial dividing a monomial x1 . . . xn,
then we set hpxk . . . xk`mq :“ k.

The presentation of a diagrammatic algebra is then given by choosing a set of diagram-
matic relations between polynomials made of these monomials, with common source and
target labels. As a consequence, the algebra Ag can be presented by a linear 2-polygraph
PA with only one 0-cells, whose generating 1-cells are given by the elements of Ag and
whose generating 2-cells correspond to a fixed orientation of these relations. The gener-
ating 1-cells of PA are thus also equipped with an arity and coarity, that extends to the
monomials of P ℓ

1 . We denote by P ℓ
1 rn,ms the set of monomials with arity n and coarity m.

Example A.1. For the nilHecke algebra NHn of degree n, the set INHn
is a singleton, so

that we may omit labels in the diagrams, spNHnq “ n and the set of generators is given
by pNHnqg :“ txi | 1 ď i ď nu Y tτk | 1 ď k ď n´ 1u of respective (co)arity 1 and 2 that
are diagrammatically depicted as follows:

xi :“ . . . ‚

i

. . . τk :“ . . .

k

. . .(43)

where the label i indicates that this is the i-th strand at the bottom from left to right.

A.2. The linear 2-polygraph of distant isotopies. Given a linear 2-polygraph PA

presenting a diagrammatic algebra A with set of generators Ag and indexing set IA, we
define the linear 2-polygraph IsopAq of planar isotopies of A that has only one 0-cell and
whose:

i) generating 1-cells are given by the 1-cells of pPAq˚
1 , that correspond to the monomials

of A,
ii) generating 2-cells are given by the following local relations:

η1̈ ¨ ¨ηk

D

µ1̈ ¨ ¨µk

¨ ¨ ¨ D1

η1
1̈ ¨ η̈1

m

µ1
1̈ ¨ µ̈1

m

ED,D1

⇛
¨ ¨ ¨D

D1

η1̈ ¨ ¨ηk

µ1̈ ¨ ¨µk

η1
1̈ ¨ η̈1

m

µ1
1̈ ¨ µ̈1

m
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for any monomials D : µ1 . . . µk Ñ η1 . . . ηk and D1 : µ1
1 . . . µ

1
m Ñ η1

1 . . . η
1
n in P ℓ

1 of
respective heights i and j, with i ą j, provided that D ă0 D

1 if D and D’ are both of
arity and coarity 0, and for any number of strands with any label bewteen D and D1.

In the sequel, we will prove rewriting properties of the linear 2-polygraph IsopAq that are
independant of the labels of the generators. Therefore, we omit the labels in the diagrams
in the proofs of termination and confluence for IsopAq. Let us first prove the following
statement:

Proposition A.2. Given a diagrammatic algebra A with the above assumptions, the linear
2-polygraph IsopAq is terminating.

Proof. Consider the mapping

δ : pPAq˚
1 Ñ ZspAq

that sends any monomial D onto pδ1pDq, . . . , δspAqpDqq where δipDq is computed as fol-
lows: follow the i-strand (counted from left) from the bottom to the top, and each time we
encounter a generator that intersects this line, add the number of generators (intersecting
or not) that are below. One may check that for any 2-cell α of IsopAq, the inequality
δps1pαqq ąlex δpt1pαqq for the lexicographic order on ZspAq. Moreover, this order is admis-
sible, that is δpDq ąlex δpD1q implies that δpD1DD2q ąlex δpD1D

1D2q for any monomials
D,D1, D1, D2 such that the products are well-defined, since we add on bottom and top
of D and D1 a constant number of generators below any height. Therefore, the order
on P ℓ

1 defined by D ă D1 if and only if δpDq ălex δpD1q defines a termination order for
IsopAq. �

Example A.3. Consider the nilHecke algebra NH6 on 6 strands, we have the following:

δ

¨
˝ ‚

˛
‚“ p3, 7, 6, 1, 1, 0q, δ

¨
˝

‚

˛
‚“ p3, 7, 4, 2, 3, 1q

δ

¨
˚̋

‚

˛
‹‚“ p1, 3, 2, 4, 7, 3q, δ

¨
˝

‚

˛
‚“ p0, 2, 3, 4, 7, 3q

On this example, the last element is the normal form of the corresponding diagram with
respect to IsopNH6q.

The linear 2-polygraph IsopAq is also confluent, since all the critical branchings of IsopAq
are given by local overlappings of the form

D

¨ ¨ ¨ D1
¨ ¨ ¨

D2
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where hpDq ą hpD1q ą hpD2q, for any labels of the strands provided the products are
well-defined. They are proved confluent as follows:

D1

¨ ¨ ¨D ¨ ¨ ¨
D2

D2

¨ ¨ ¨D ¨ ¨ ¨
D1

D
¨ ¨ ¨ D1 ¨ ¨ ¨

D2

D2

¨ ¨ ¨ D1 ¨ ¨ ¨
D

D
¨ ¨ ¨ D2¨ ¨ ¨

D1

D1

¨ ¨ ¨ D2¨ ¨ ¨
D

ED1,D2

ED,D1ED,D1

ED1,D2

ED,D1

ED1,D2

We then rewrite with the linear 2-polygraph P modulo the convergent linear 2-polygraph
IsopAq. Therefore, it is similar to the usual rewriting context on string diagrams in the
monoidal category (seen as a 2-category with only one object) admitting as generating
1-cells the elements of IA, so that the 1-cells of C are words of the form µ1µ2 . . . µn for any
µi P IA, and as generating 2-cells the generating diagrams of Ag considered locally, that is
by forgetting the vertical strands on the left and on the right.

Example A.4. For the nilHecke algebra NHn, rewriting modulo IsopNHnq is similar to
rewriting in the monoidal category whose 1-cells are generated by 1, and thus isomorphic
to N , whose generating 2-cells are given by

: 2 Ñ 2, ‚ : 1 Ñ 1

and are subject to the relations (12) and (13).

As a consequence, the classification of critical branchings modulo in that context is the
same as in the case of rewriting in string diagrams in the monoidal category C, and most
of them can be considered locally. Following [16], there are 3 different forms of critical
branchings in that context. For 2-cells α, β of P ℓ

2 , any 1-cells f ,g,h of P ℓ
1 and any context

C of P ˚
1 , as defined in [16], there are:

‚ Regular critical branchings of the form
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spαq

g

. . .

. . .

“

f

h

g

. . .

. . .

“

f

spβq

. . .

. . .

,

These amount to application on two local relations overlapping on the central part h
of the diagram. Since we rewrite modulo distant isotopies, these can be considered
locally as in the 2-category case, and one may forget about the diagrams that are
on the left and on the right of this overlapping.

‚ Inclusion critical branchings of the form

spαq

. . .

. . .

“ spβq

C

. . .

. . .

,

These branchings are given by application of a relation β inside a diagram that is
also reducible by a rule α. There is no such example of branching for the linear
2-polygraph modulo pR,E, EREq, and one may in general avoid these branchings,
since there always exist a linear 2-polygraph that does not contain such branchings
and present the same 2-category.

‚ Left-indexed critical branchings (also right-indexed, multi-indexed) of the form

spαq

g

k

. . .

. . .

“

f

g

k h

. . .

. . .

“

f

k

spβq

. . .

. . .

.

These branchings come from the overlapping of two rewriting rules α and β with
an identity strand in the middle, in which we can plug new diagrams, giving new
critical branchings to consider. Following [16], it suffices to check the confluence of
the indexed branchings for the instance k being in normal form.

Example A.5. Let us consider the nilHecke algebra NHn on n strands, presented by the
linear 2-polygraph P having as generating 1-cells the elements τi and xl for 1 ď i ď n and
1 ď l ď n ´ 1 as in (43), and as generating 2-cells the relations (24) and (25). One might
prove that P is convergent modulo braid-like isotopies. Indeed, it is terminating using the
weight order introduced in Section 5.1. Moreover, one might check its confluence modulo
by examining its critical branching. It has regular critical branchings whose sources are
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given by:

‚‚
‚ ‚ ‚

and left-indexed critical branchings given by the overlapping of the Reidemeister 3 relation
with itself (the orientation of the indexation depends on the orientation of the Reidemeister
3-relation):

D

for any monomial D. Following [11], it suffices to check the confluence of these indexed
critical branchings for

D “
‚p

, ‚p for any p P N.

One proves following the proof of convergence for the KLR algebras of [11], that all these
critical branchings are confluent modulo braid-like isotopies. As a consequence, P is a
convergent presentation of NHn and the monomials in normal form with respect to P

yield a linear basis of NHn, recovering the usual basis for the nilHecke algebra (see for
example [22, Section 2.3]).

Appendix B. Confluence computations for Γ
µ

b

Recall the rewriting rules on Γ
µ

b pδq defined in Section 5.1, and consider the specialized

case Γ
µ

b :“ Γ
µ

b p0q given by setting δ “ 0.
We proved in Proposition 5.4 that these rewriting rules terminates, and in Corollary 5.11

that they are confluent using an indirect argument. In this section, we prove it by checking
the connfluence directly.
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Note that we have

p ñ
p

`
ÿ

a`b“
p´1

a b(44)

ÿ

a`b“
p´1

a
b

ñ
ÿ

a`b“
p´1

a b
`

ÿ

a`b`c“
p´2

ba c `
ÿ

a`b`c“
p´2

cba(45)

µ1

ñ 0.(46)

The following two lemmas are only useful if one want to try to prove Proposition B.3 in
generality (i.e. with µi R β ` Z for some i).

Lemma B.1. If Γ
µ

b is confluent for the rewriting rules above, then we have

p

. . .

. . .

. . .

µ1 ℓ

ñ 0.

Proof. By Proposition C.6 we know that the element is zero. Since the rewriting rules are
confluent, there is a sequence of rewriting moves bringing the element to zero. �

Lemma B.2. If Γ
µ

b´1 is confluent for the rewriting rules above, then we have in Γ
µ

b

(47)

. . .

. . .

. . .

µ1

ñ ´

. . .

. . .

. . .

µ1
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Proof. The rewriting rules (32-34) allow us to slide crossings one by one over the nail at
the cost of adding terms, as follows:

µi

. . .

. . .

. . .

µ1

ñ

µi

. . .

. . .

. . .

µ1

`
ÿ

u`v“
µi´1

vu

µi

. . .

. . .

. . .

µ1

where we can consider µi “ 0 (or simply the sum to be zero) if the strand is black. Applying
Lemma B.1, all the terms in the sum on the right rewrite to zero. Applying this recursively,
we bring all crossings to the top, then we apply Eq. (31), and finally we apply the same
reasoning for the crossings on the bottom, concluding the proof. �

Proposition B.3. The rewriting rules above are confluent.

Proof. We can assume by induction that the rewriting rules are confluent for less strands.
Confluence between the rules in Eq. (24), Eq. (25), Eq. (26), Eq. (27), Eq. (28) and
Eq. (30) are essentially the same as in the usual KLR case, see [11], and therefore we leave
the details to the reader. Note that we can use similar computations as in the usual KLRW
case because of the notation that β dots is zero and then all relations involving µi dots are
the same. There is however still one more case we need to consider: when we look at the
superposition of two Reidemeister 3 moves with a tightened nail in-between, that is:

. . .

. . .

µ1 ℓ

. . .

. . .

µ1 ℓ

. . .

. . .

µ1 ℓ

(32)

(24)

(24)

and similarly when we consider other Reidemeister 3 type moves from Eq. (26) and Eq. (30).
This explain why we need the rewriting ruls in Eq. (32), Eq. (33) and Eq. (34). In order
to check all superpositions, we also need to consider the case where there are dots on the
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nailed strand. For this, we verify that

p

. . .

. . .

µ1 ℓ

and

p

. . .

. . .

µ1 ℓ

both rewrite to

ñ
ÿ

a`b`c
“p´2

a b c

. . .

. . .

µ1 ℓ

`
ÿ

a`b
“p´1

a b

. . .

. . .

µ1 ℓ

`

p

. . .

. . .

µ1 ℓ

(48)

for any p ě 0. The cases with colored strands are similar,and we leave the details to the
reader.

We need to verify all other superpositions between rewriting rules:

‚ The first relation of Eq. (24) overlaps with the second one of Eq. (31):

0 0

µ1

0

µ1 µ1

(24)

(31)

(31)

(24)

‚ The first relation of Eq. (24) overlaps with Eq. (32) and similarly with Eq. (33):

0

. . .

. . .

µ1

. . .

. . .

µ1

(24)

(32)

(26),(24)
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‚ The second relation of Eq. (24) overlaps with Eq. (32):

0

. . .

. . .

µ1 0

(24)

(32),(24)

Since we consider diagrams up to planar isotopy, we can add diagrams in-between,
giving the collection of additional superpositions to check:

. . .

. . .

p

. . .

. . .

µ1

. . .

. . .
p

. . .

. . .

µ1

(49)

In order the verify this, we first apply the second relation of Eq. (24) on LHS of
Eq. (49). Then we compute the local relations

p

. . .

. . .

(44),(24)
ñ 0 `

ÿ

a`b“
p´1

b

a

. . .

. . .

(45),(24)
ñ

ÿ

a`b“
p´1

b
a

. . .

. . .

`
ÿ

a`b`c“
p´1

ca b

. . .

. . .

Then we apply Eq. (32) and we get

ba

. . .

. . .

`
ÿ

a`b`c“
p´1

ca b

. . .

. . .
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On the other hand, we apply Eq. (32) on the LHS of Eq. (49). Then we compute
the local relations

p

. . .

. . .

(44),(24)
ñ

ÿ

a`b“
p´1

ba

. . .

. . .

`
ÿ

a`b`c“
p´1

ca b

. . .

. . .

We conclude that the superposition is confluent.
We now consider the RHS of Eq. (49). We do a similar computation as for the

LHS, but replacing the use of the first relation of Eq. (24) with Eq. (46). We leave
the details to the reader.

‚ The first relation of Eq. (26) overlaps with Eq. (33):

µi

. . .

. . .

µiµ1

µi

µi
. . .

. . .

µiµ1

. . .

. . .

µiµ1
µiµi

. . .

. . .

µiµ1

`
ř

u`v“
µi´1 u

µi

v
. . .

. . .

µiµ1

(26),(28)

(44)

(26),(28)

(33),(26),(28)
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‚ The second relation of Eq. (26) overlaps with Eq. (34):

0

µi

. . .

. . .

µ1

µi

. . .

. . .

µ1

´
ř

u`v“
µi´1

u

v

µi

. . .

. . .

µ1

(26),(24)

(34)

(28),(44)

One also needs to check additionals superpositions as in Eq. (49). The computations
being similar, we leave the details to the reader.

‚ The second relation in Eq. (28) overlaps with Eq. (34):

. . .

. . .

µi

µiµ1

. . .

. . .

µiµ1

. . .

. . .

µiµ1

´
ř

u`v“
µi´1

v

. . .

. . .

u

µiµ1

(28)

(34)

(26),(28),(44)
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‚ The second relation of Eq. (31) overlaps with the second relation of Eq. (25):

´

µ1

µ1

´

µ1

`

µ1

µ1

´ 0

(25),(31)
(31)

(25),(31)
(25),(31)

‚ The second relation of Eq. (31) overlaps with the first one:

´

µ1

´

µ1

´

µ1

µ1

´

µ1

´

µ1

µ1 µ1

` 0

(25)

(25),(31)(31)

(31)

(25),(31)

(25),(31)
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‚ The second relation of Eq. (31) overlaps with the third one:

´

µ1

µ1 0

(31)

(31)

(31)

‚ The third relation of Eq. (31) overlaps with the first one:

µ1 µ1

µ1 0 0

(31)

(31)

(31)

(31)

‚ Eq. (32) overlaps with the first relation of Eq. (24):

. . .

. . .

µ1

. . .

. . .

µ1 0

(32),(24)

(32)

(24)



66 BENJAMIN DUPONT AND GRÉGOIRE NAISSE

‚ Eq. (32) overlap with the second relation of Eq. (24):

0. . .

. . .

µ1 0

(32),(24)

(24)

‚ Eq. (32) overlaps with Eq. (25) in multiple ways:

. . .

. . .

µ1

. . .

. . .

µ1

´

. . .

. . .

µ1

. . .

. . .

µ1

. . .

. . .

µ1
. . .

. . .

µ1

´

. . .

. . .

µ1

(48)
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where we implicitly first slided the dot to the top right so that we can apply Eq. (48)
and used an inductive argument on ℓ to deal with the remaining terms,

. . .

. . .

µ1

. . .

. . .

µ1

. . .

. . .

µ1

`

. . .

. . .

µ1

´

. . .

. . .

µ1

. . .

. . .

µ1

´

. . .

. . .

µ1

. . .

. . .

µ1

. . .

. . .

µ1

. . .

. . .

µ1

´

. . .

. . .

µ1

`

. . .

. . .

µ1

. . .

. . .

µ1

`

. . .

. . .

µ1
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. . .

. . .

. . .

. . .

µ1

`

. . .

. . .

. . .

. . .

µ1

´

. . .

. . .

. . .

. . .

µ1

. . .

. . .

. . .

. . .

µ1

. . .

. . .

. . .

. . .

µ1

`

. . .

. . .

. . .

. . .

µ1

´

. . .

. . .

. . .

. . .

µ1

and we know both path converge to the same element:

. . .

. . .

. . .

. . .

µ1

`

. . .

. . .

. . .

. . .

µ1

´

. . .

. . .

. . .

. . .

µ1

` (more terms)

because we can isolate the right part of the diagrams.
‚ Eq. (32) overlaps with itself and with Eq. (33) and Eq. (34):

. . .

. . .

. . .

. . .

µ1
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converging to the same elements by similar arguments as above. Eq. (32) overlaps
also with itself and with Eq. (33):

µi

. . .

. . .

. . .

µ1

µi

. . .

. . .

. . .

µ1

µi

. . .

. . .

. . .

µ1

`
ř

u`v“
µi´1

u

µi

v
. . .

. . .

. . .

µ1

where we can interpret µi “ 0 if the strand is black.
This case is much harder to check than the others above, and we could not find

a handy way to write it down in whole generality. Therefore, we will now assume
that µi P β ` Z for all i ą 1.
Then, we have

µi

. . .

. . .

. . .

µ1

ñ

µi

. . .

. . .

. . .

µ1

ñ

µi

. . .

. . .

. . .

µ1
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by Lemma B.2, Eq. (32) and Eq. (33). Similarly, we obtain

µi

. . .

. . .

. . .

µ1

ñ

µi

. . .

. . .

. . .

µ1

ñ

µi

. . .

. . .

. . .

µ1

by Eq. (33) and Lemma B.2.
‚ Finally we have similar intersections with Eq. (33) and Eq. (34), which we leave for
the reader.

�

Appendix C. Additional computations

This appendix contains some extra computations that are helpful for some proofs in the
main text and the other appendices.

Lemma C.1. We have

. . .

. . .

k

u “
. . .

. . .

k

u `
k´1ÿ

ℓ“0

ÿ

s`t“
u´1

. . .

. . .

ℓ

s

. . .

. . .

k ´ ℓ ´ 1

t

for all u, k ě 0.

Proof. It follows from applying the relations in Eq. (13) recursively. �

Lemma C.2. We have

. . .

. . .

...

kµ

“

. . .

. . .

...

kµ

Proof. The statement follows from Eq. (13), Eq. (12) and Eq. (19). �
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Lemma C.3. We have

N

. . .

. . .

...

kµ

`
k´1ÿ

ℓ“0

p´1qℓ
ÿ

u`v
“N´1

u

. . .

. . .

...

ℓ

v

. . .

. . .

...

k ´ ℓ ´ 1µ

“
N

. . .

. . .

...

kµ

`
kÿ

ℓ“0

p´1qℓ
ÿ

u`v
“N´1

u

. . .

. . .

...

ℓ

v

. . .

. . .

...

k ´ ℓµ

Proof. First, we rewrite the RHS of the equation in the statement as

N

. . .

. . .

...

kµ

` p´1qk
ÿ

u`v
“N´1

u

. . .

. . .

...

k

v

µ

`
k´1ÿ

ℓ“0

p´1qℓ
ÿ

u`v
“N´1

u

. . .

. . .

...

ℓ

v

. . .

. . .

...

k ´ ℓ ´ 1µ

(50)
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Then we compute

N

. . .

. . .

...

kµ

“
N

. . .

. . .

...

kµ

´ p´1qk
ÿ

u`v“
N´1

u

. . .

. . .

...

k

v

µ

(51)

using first Eq. (13), then Lemma C.2 and finally Eq. (19).
We also compute

(52)

u

. . .

. . .

...

ℓ

v

. . .

. . .

...

k ´ ℓ ´ 1µ

“
u

. . .

. . .

...

ℓ

v

. . .

. . .

...

k ´ ℓ ´ 1µ

´
ÿ

t`s“
v´1

u

. . .

. . .

...

ℓ

s

. . .

. . .

...

k ´ ℓ ´ 1

t

µ

and for similar reasons as in Eq. (51) we have

u

. . .

. . .

...

ℓ

s

. . .

. . .

...

k ´ ℓ ´ 1

t

µ

“ p´1qk´ℓ´1 u

. . .

. . .

...

ℓ

s

. . .

. . .

...

k ´ ℓ ´ 1

t

µ

Therefore, by Lemma C.1, the rightmost term of Eq. (51) together with the the rightmost
term of Eq. (52) gives

´ p´1qk
ÿ

u`v“
N´1

u

. . .

. . .

...

k

v

µ
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These elements cancel with the middle terms of Eq. (50), so that what remains is

N

. . .

. . .

...

kµ

`
k´1ÿ

ℓ“0

p´1qℓ
ÿ

u`v
“N´1

u

. . .

. . .

...

ℓ

v

. . .

. . .

...

k ´ ℓ ´ 1µ

We compute

u

. . .

. . .

...

ℓ

v

. . .

. . .

...

k ´ ℓ ´ 1µ

“
u

. . .

. . .

...

ℓ

v

. . .

. . .

...

k ´ ℓ ´ 1µ

“ u

. . .

. . .

...

ℓ

v

. . .

. . .

...

k ´ ℓ ´ 1µ

using Lemma C.2 again. Putting all of the above together yields the equation in the
statement. �

Proposition C.4. We have

N . . .

. . .

...

kµ

“
N

. . .

. . .

...

kµ

`
k´1ÿ

ℓ“0

p´1qℓ
ÿ

u`v
“N´1

u

. . .

. . .

...

ℓ

v

. . .

. . .

...

k ´ ℓ ´ 1µ

Proof. We apply recursively the lemma. �

C.1. Detailed computations for rewriting. In order the make the following proofs less
notational heavy, we introduce the following shorthand. Fix p ě 0. When in a diagram we
draw m stars on the black strands, it means we consider the sum over all diagrams where
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we replace each star by pi dots for
ř
i pi “ p ´ m` 1, where we assume the sum is empty

whenever p ´ m ` 1 ă 0. For example

“
ÿ

p1`p2`p3
“p´2

p1 p2 p3

This allows us to write local relations as

“ ´(53)

“(54)

Lemma C.5. We have

µ1

“ 0,

in T
µ

b .

Proof. The statement immediately follows from Eq. (19) and Eq. (12). �

Proposition C.6. We have

p

. . .

. . .

. . .

µ1 ℓ

“ 0,

in T
µ

b .

Proof. We prove the statement by induction on the number of strands ℓ. The base case
ℓ “ 0 is given by

p

µ1

“

p

µ1

“ 0.

Suppose the statement is true for ℓ ´ 1. We have two cases to consider:

p

µi

. . .

. . .

. . .

µ1

and p

. . .

. . .

. . .

µ1
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For the first one, we directly have

p

µi

. . .

. . .

. . .

µ1

“ p1

µi

. . .

. . .

. . .

µ1

where p1 :“ p ` µi, and we conclude by using the induction hypothesis. For the second
case, we compute

. . .

. . .

. . .

µ1

“ ´

. . .

. . .

. . .

µ1

´

µi

. . .

. . .

. . .

µ1

The rightmost term is zero by induction hypothesis. Then we compute

. . .

. . .

. . .

µ1

“

. . .

. . .

. . .

µ1

`
ÿ

i

ÿ

u`v“
µi´1

u

. . .

. . .

. . .

µi

v

. . .

. . .

. . .

µ1

where the elements in the sum are all zero by induction hypothesis. Then we compute

. . .

. . .

. . .

µ1

“

. . .

. . .

. . .

µ1

´

. . .

. . .

. . .

µ1

´

. . .

. . .

. . .

µ1

`

. . .

. . .

. . .

µ1

“

. . .

. . .

. . .

µ1

´

. . .

. . .

. . .

µ1

´

. . .

. . .

. . .

µ1

`

. . .

. . .

. . .

µ1

where the last term is zero by Lemma C.5. For the remaining terms, we can gather them
by number of dots distributed on the two stars on the left, so that we only need to compare
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the following terms:

. . .

. . .

. . .

µ1

´

. . .

. . .

. . .

µ1

´

. . .

. . .

. . .

µ1

“

. . .

. . .

. . .

µ1

`

. . .

. . .

. . .

µ1

´

. . .

. . .

. . .

µ1

We observe that

. . .

. . .

µ1

“
. . .

. . .

µ1

´
ÿ

. . .

. . .

. . .

. . .

µ1

where the sum is over all black strands. Applying this relation recursively yields

. . .

. . .

µ1

“
ÿ

p´1qc

. . .

. . .

. . .

. . .
. . .

. . .

. . .

µ1

(55)

where the sum is over all ways to resolve black/black crossings in the diagram, and c is the
number of resolved crossings. By applying Eq. (55) and its symmetric to

. . .

. . .

µ1

we obtain a collection of diagrams that typically look like

(56)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

µ1
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together with the following diagrams

p´1qc . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

µ1

p´1qc . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
µ1

and

. . .

. . .

µ1

All the diagrams of the same shape as in Eq. (56) are zero since

µ1

“ ´

µ1

and because of Eq. (54) and Lemma C.5. Applying Eq. (55) to

. . .

. . .

. . .

µ1
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yields a collection of elements

p´1qc . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

µ1

“ ´ p´1qc . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

µ1

and the element

. . .

. . .

. . .

µ1

“

. . .

. . .

. . .

µ1

´

. . .

. . .

µ1

Applying the symmetric of Eq. (55) to

´

. . .

. . .

. . .

µ1
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yields a collection of elements

´ p´1qc . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
µ1

“ ´p´1qc . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
µ1

“ ´p´1qc . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
µ1

by Lemma C.5, and the element

´

. . .

. . .

. . .

µ1

Comparing all the remaining terms, we observe that they cancel with each other, concluding
the proof. �
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